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Abstract With the advances in antiretroviral therapy (ART),
HIV infection has been transformed into a chronic medical
condition that can be effectively managed like diabetes or
hypertension. For HIV care providers, the focus of care for
many patients has shifted from prevention of opportunistic
infection and AIDS-related conditions to age-related cardio-
metabolic comorbidities, including cardiovascular disease,
diabetes, obesity, and frailty. Numerous reports have
highlighted that these diseases are occurring at an earlier age
among HIV-infected persons. However, there is an ongoing
debate regarding the role of HIV infection, ART, and other
factors that may underlie the accelerated occurrence of these
diseases. Herein, we review the epidemiology of the US HIV
epidemic with regards to several metabolic comorbidities and
address mechanisms that likely contribute to the current nature
of HIV disease.
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Introduction

Antiretroviral therapy (ART) has revolutionized HIV care,
resulting in expanding populations with well controlled HIV
infection but a growing list of comorbidities that require a
significant amount of time and resources to manage [1, 2•, 3].
Though challenges in the HIV treatment cascade still exist and

require further improvement [4], patients are now also increas-
ingly affected by numerous other chronic diseases, including
cardiometabolic disorders (coronary artery disease, diabetes,
hypertension). HIV-infected patients further face growing prev-
alence of low bone mineral density, frailty, and obesity that
threaten to undermine the gains in quality of life achieved with
widespread ART use [2•, 5–7]. Among the scientific commu-
nity there is a healthy, ongoing debate about the role of HIV
infection in the accelerated development of these comorbidi-
ties. Is the virus directly altering the natural history of these
diseases, or are other environmental and behavioral factors the
key drivers? Is there a differential effect of HIVand ARTon the
development of these comorbidities? Does HIV impact meta-
bolic function and the inflammatory response?

There are numerous hypotheses that have been suggested,
including: persistent HIVantigenemia or viremia, dysregulated
adaptive immune system, alterations in the innate immune
system, microbial translocation, co-infecting viral pathogens,
alterations in the microbiome, toxic effects of ART, or concom-
itant comorbidities such as a sedentary lifestyle or tobacco and
substance abuse. Given the complexity of the human organism,
the interaction of numerous factors contributes to any given
disease state. Herein, we review the current literature regarding
the pathology of metabolic disturbances observed in HIV-
infected individuals. We highlight key metabolic comorbidities
and provide available evidence of how HIV infection contrib-
utes, directly or indirectly, to their exacerbation.

HIV Infection is Associated with Higher Chronic Disease
Prevalence and Multimorbidity

Multimorbidity, the clustering of two or more chronic medical
conditions, is extremely common among elderly persons and
has been associated with polypharmacy, reduced functional
capacity, reduced quality of life, and increased mortality [8, 9].
Kim and colleagues recently reported that 65 % of patients
followed at a largeHIV clinic met the criteria for multimorbidity
[10•]. Notably, older age, higher CD4 cell counts and obesity
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were independent factors related to multimorbidity. The accel-
erated presence of multimorbidity has been confirmed from an
independent European cohort, although the authors suggest that
the highly heterogeneous nature of their HIV-infected cohort
makes definitive pathogenesis complicated to attribute to any
specific factor [11•, 12]. What about specific metabolic
comorbidities?

Cardiovascular Disease

Observational studies have revealed that HIV infection con-
fers a 1.5-2 times increased risk of dying from acute myocar-
dial infarction that remains after controlling for traditional
CVD risk factors [9]. Ongoing HIV viremia is clearly a risk
for progressive atherosclerosis [13, 14]. The Strategies for
Management of Antiretroviral Therapy (SMART) Study dem-
onstrated that persons who remained on continuous ART (i.e.,
remained virologically suppressed) had markedly reduced
CVD endpoints than those persons who underwent treatment
interruption [15, 16]. Data from the CDC-funded Study to
Understand the Natural History of HIV Infection (SUN) con-
firmed that uncontrolled viremia independently was associat-
ed with progressive atherosclerosis as measured by carotid
intima media thickness [17].

However, even with controlled viremia, CVD remains
elevated in the HIV population [18•, 19•]. The Data
Collection on Adverse Events of Anti-HIV Drugs (D:A:D)
study implicated the metabolic toxicities of early ART prote-
ase inhibitors, which were independently associated with
CVD. The effect was attenuated after accounting for lipid
abnormalities [20]. Studies assessing more current ARVs
consistently demonstrate a beneficial effect of ART on surro-
gate markers of atherosclerosis [21]. Does this improvement
relate strictly to controlled viremia, or some other factor such
as an improvement in the generalized inflammatory state?

Atherosclerosis is an inflammatory process; the accumula-
tion of inflammatory macrophages, deposition of oxidized
lipids, and ongoing plaque formation ultimately lead to acute
myocardial infarction [22, 23]. Progression of atherosclerosis
was more rapid over an average two-year follow-up among
HIV-infected patients compared to controls, even among those
with controlled viremia [24]. The multiplicative effects of
HIV-related chronic inflammation, microbial translocation,
and mitochondrial function discussed below could all contrib-
ute. However, HIV-infected individuals also present with high
prevalence of traditional risk factors of CVD that are associ-
ated with inflammation, including tobacco use, substance
abuse, dyslipidemia, and obesity [10•, 13]. Additional inves-
tigation into the independent and interactive contributions of
HIV infection, host genetics, environment and behavior are
required to determine the best course of treatment for CVD
risk reduction and whether interventions for the general pop-
ulation are effective in the setting of HIV infection.

Diabetes Mellitus

Several groups have reported a high diabetes prevalence
(ranging 9-14 %) among HIV-infected patients in the United
States, with a higher diabetes risk in both HIV-infected men
and women [10•, 11•]. HIV-infected men in the Multicenter
AIDS Cohort Study (MACS) had a four times greater preva-
lence of diabetes than uninfected men [25]. When compared
to uninfected control groups, HIV-infected individuals also
present with higher levels of insulin resistance [26, 27].
Traditional risk factors such as race/ethnicity, smoking
status, and obesity are associated with diabetes risk in
HIV-infected patients, and a focus on modifiable risk
factors such as smoking could aid with diabetes preven-
tion and control [28].

While traditional risk factors have a significant impact on
diabetes risk, HIV infection and ART therapy are recognized
as independent risk factors for diabetes. HIV-1 proteins direct-
ly contribute to insulin resistance via several tissue-related
alterations, including attenuation of peroxisome-proliferator-
activated receptor-γ (PPAR-γ) and increased sensitivity to
glucocorticoids [29, 30]. HIV-associated lipoatrophy is also
a risk factor for pancreatic β-cell dysfunction that exacerbates
insulin resistance. Additionally, insulin resistance is a side
effect of many ART regimens, particularly PI-based regimens
that interfere with glucose uptake [31]. Newer HIV ART
induce less insulin resistance and thus are considered more
metabolically friendly [32].

Do traditional pharmaceutical and lifestyle treatments im-
prove glycemic control and diabetes risk in HIV-infected
individuals? One weight loss study observed that HIV-
infected women experienced less improvement in metabolic
outcomes than uninfected women, despite similar weight loss
[33]. When using metformin, HIV-infected patients with dia-
betes also experience less improvement in HbA1c levels than
uninfected individuals with diabetes [34]. While part of this
blunted response was attributable to PI use, it is likely that
chronic HIV-related inflammation also plays a role in this
limited response to traditional therapies [35•].

Low Bone Density/Osteoporosis

HIV infection and ART, particularly ART initiation, have been
associated with low bone mineral density (BMD) and accel-
erated BMD loss. Numerous studies report higher rates of
fractures than expected for any given age with HIV infection
[5, 36–38]. While several factors are associated with acceler-
ated bone loss, some key mechanistic features have recently
been identified. HIV infection in childhood or adolescence,
before peak BMD has been achieved, is associated with a
significant reduction in BMD (as measured by DXA) and a
marked reduction in the quality of bone by assessment of
trabecular BMD and cortical thickness (as measured by
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qualitative CT scanning) [39•, 40]. These data suggest that
HIV infection undermines normal bone formation.

Other key mechanisms of low BMD have also been ex-
plored. ART initiation is consistently associated with a 3-6 %
loss in BMD in the first 48 weeks after therapy, with TDF-
containing regimens having the greatest impact. Grant and
colleagues recently confirmed in the AIDS Clinical Trial
Group that advanced HIV disease, particularly having CD4
count<50 c/mm3 and high plasma HIV viral loads, was asso-
ciated with the greatest loss of BMD following ART initiation,
suggesting that starting ART earlier in the course of disease
can limit this metabolic complication [41]. At CROI 2013,
Titanji reported that dysregulated B cells were strongly asso-
ciated with bone loss [42]. In their evaluations, B cells from
HIV-infected persons, but not HIV seronegative controls, had
reduced levels of osteoprotegerin (OPG) expression and in-
creased expression of receptor activator of nuclear factor
kappa-B ligand (RANKL). RANKL binds to osteoclasts stim-
ulating bone resorption, while OPG binds to RANKL to
prevent osteoclast activation. By altering the expression of
these key regulatory proteins, HIV infection tips the balance of
bone regulation to excess resorption and BMD loss.

Beaupere and colleagues evaluated the effects of HIV
proteins and two ritonavir boosted PIs (ATV/r and LPV/r)
on osteoblast formation from mesenchymal stem cells
(MSC) [43•]. Both HIV proteins and PIs increased oxidative
stress in the MSC with subsequent loss of proliferative capac-
ity and decreased differentiation into mature osteoblasts.
Again, the effects of HIV and certain ARVs tip the balance
of bone homeostasis toward excessive bone loss. Interestingly,
the detrimental effects of the boosted PIs was at least partially
reversed by the addition of pravastatin by a reduction in
farnesylated pre-lamin A, a marker of cellular aging.

Frailty

While wasting syndrome was recognized frequently in the
pre-ART era, frailty has emerged as a frequent comorbidity
for virologically suppressed patients and occurs at a markedly
earlier age among HIV-infected persons [6, 44, 45]. The frailty
syndrome is characterized by multisystem dysregulation with
decreased muscle mass and physical strength, unintentional
weight loss, decreased reported energy and physical activity.
In the geriatric literature, this phenotype is correlated with
increased morbidity (loss of independence, falls, and disabil-
ity) and mortality [46]. In the MACS cohort, prevalence of
frailty was higher among HIV-infected men compared to HIV
negative men with the most striking difference in the per-
sons≥age 50 [44]. Additional research in HIV-infected per-
sons confirms that markers of chronic inflammation are ele-
vated in both HIV-infected and geriatric patients with the
frailty phenotype [47, 48•].

Uncontrolled HIV Viremia is Bad

Clearly, we are seeing an increased prevalence of aging-
related metabolic diseases in HIV-infected populations.
Uncontrolled HIV viremia contributes not just to the progres-
sion to AIDS and its complications, but also to an increased
risk of non-AIDS related comorbidities (Table 1) [49•].
Specifically, the SMART study confirmed that persons with
strategic treatment interruption were at greater risk for cardio-
vascular disease, renal disease, and liver disease [15]. These
surprising results provided greater clarity that the ongoing
inflammatory response to persistent HIV viremia had conse-
quences beyond the immune system. Hence, current HIV
treatment guidelines recommend treatment for patients with
higher CD4 cell counts [50]. Clearly, the process of uncon-
trolled viremia has been shown to induce these metabolic
derangements in many different ways.

Table 1 Summary of pathogenic insights and important areas of research

Persistent viremia and antigenemia

• Poorly controlled viremia is associated with greater risk for
cardiometabolic diseases. [15].

• Continued viral replication is observed even among elite controllers
with low levels of plasma HIV RNA, suggesting that even this group
maintains a chronic inflammatory state. [108•].

Microbial translocation

• Chronic immune activation is promoted via depletion of CD4 Tcells.
[56–59].

• HIV-1 infection contributes to significant alterations in the gut
microbiome that promote a pro-inflammatory state [62–64].

Insulin resistance and metabolic function

• HIV-1 infection contributes to insulin resistance via tissue-related
alterations in PPAR-γ signaling, glucocorticoid sensitivity, and for
pancreatic β-cell dysfunction. [29–31].

• HIV-infected patients experience less improvement than uninfected
controls in metabolic outcomes with standard lifestyle and
pharmaceutical treatments for diabetes. [33, 34, 93].

• HIV infection is associated with degradation of the outer
mitochondrial membrane, with contributes to chronic inflammation,
frailty, and cardiometabolic diseases. [47, 48•, 66, 67].

• Elevated resting energy expenditure is observed in HIV-infected
individuals, and is associated with the infection itself rather thanART
side effects. [72–74].

Future questions for research

What factors contribute to persistent viremia that can be targeted to
decrease systemic inflammation?

How does HIV-1 contribute to alterations in the gut microbiome, and
which strategies are effective at promoting a healthy gut
microbiome despite HIV infection?

Can mitochondrial function be maintained/restored in HIV-infected
individuals?

What lifestyle and pharmaceutical interventions are realistic and cost-
effective to treat cardiometabolic diseases in infected patients?

PPAR-γ , peroxisome-proliferator-activated receptor-γ; ART, antiretro-
viral therapy
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Does HIV Infection Accelerate the Aging Process?

In the geriatric literature, the development of chronic medical
conditions has been related to chronic “sterile” inflammation
throughout the body [51]. An area of intense research to
prevent these aging-related diseases has focused on the role
of cellular senescence. Cellular senescence occurs in response
to potential oncogenic insults to cells and also is seen at sites
of tissue and wound healing [52]. Thus, senescent cells gen-
erally serve a useful anticancer and wound healing purpose in
the young organism. Unfortunately senescent cells are resis-
tant to apoptosis. As they accumulate, these metabolically
active cells secrete a senescence–associated secretory pheno-
type (SASP), comprised of numerous pro-inflammatory bio-
markers that contribute to the development of tissue damage
and age-related comorbidities [53].

The responsiveness of adaptive immunity, specifically T
cell function, is a key feature of a functional immune system.
One of the primary features of aging is the accumulation of
terminally differentiated memory CD8+ T cells. Notably in
the geriatric literature, this accumulation of senescent Tcells is
associated with chronic CMV infection [54]. Similar to CMV,
chronic HIV infection is associated with increasing numbers
of terminally differentiated senescent CD8+ T cells in re-
sponse to chronic antigen stimulation. Even with suppressive
ART, the proportion of senescent T cells remains similar to
that reported in older HIV-negative adults. Furthermore, and
more importantly, the alterations in lymphocyte populations
remains associated with end organ disease even in the setting
of HIV treatment. This topic has recently been reviewed
extensively elsewhere [55]. The persistently elevated levels
of pro-inflammatory cytokines in suppressed HIV infection
are not solely attributable to these changes in the adaptive
immune system; we must also consider the alterations in the
gut environment and microbial translocation, the changes in
cellular bioenergetics, and the role of insulin resistance.

Microbial Translocation and the Gut Microbiome

Due to the constant surveillance of the intestinal flora, the gut-
associated lymphoid tissue (GALT) serves as the largest res-
ervoir for lymphocytes in the body [56]. The profound deple-
tion of CD4 Tcells from the GALT during acute HIV infection
causes catastrophic changes in the gut mucosal integrity facil-
itating bacterial translocation, augmenting trafficking of in-
flammatory cells to the GI tract, and promoting chronic im-
mune activation [57–59]. With ART, the level of peripheral T
cell activation decreases but fails to return to levels seen in
HIV uninfected persons [60, 61]. Interestingly, T cell activa-
tion in the GALT is not significantly reduced with ART,
leading to ongoing inflammation in the gut mucosa [62].
Following HIV-1 infection, individuals also have a shift in

their gut microbiome to one that consists of a greater propor-
tion of Gram negative bacteria with enhanced potential to
induce systemic inflammation [62, 63]. This dysbiosis has
been confirmed in a recent analysis by Vujkovic-Cvijin and
colleagues who observed a significantly altered microbiome
composition in HIV-infected patients compared to uninfected
controls [64].

Microbial Translocation Alters Lipoproteins as Well

Lipopolysaccharide (LPS), a cell wall component of Gram-
negative bacteria, is a common marker of microbial translo-
cation. LPS binds to Toll-like receptor 4 (TLR-4) and induces
robust activation of both adaptive and innate immune re-
sponses. In addition to this direct immune activation, exces-
sive circulating LPS contribute to another proinflammatory
effect: HDL consumption. HDL particles play a critical role in
cholesterol clearance. These scavenger molecules transport
excess cholesterol particles from tissues, endothelial plaques,
and macrophages to the liver where they are ultimately dis-
posed in the feces [65]. HDL also serves as the primary
particles in circulation that bind and clear LPS. While this
process protects the human organism from an acute bacterial
infection, with chronic bacterial translocation as in HIV infec-
tion, it likely leads to marked alterations in the clearance of
pro-atherosclerotic cholesterol molecules. Thus, a well de-
scribed consequence of HIV infection, low HDL cholesterol,
may have significant ramifications for the progression of
aging-related disease, particularly atherosclerosis.

Mitochondrial Function

Adequate mitochondrial reserve capacity is essential for cell
function, yet preliminary evidence implicates certain ART
medications, and potentially the HIV virus, in promoting
mitochondrial toxicity and dysfunction. Host genetics deter-
mine baseline mitochondrial function, and naturally occurring
variations in mitochondrial DNA of HIV-infected individuals
are associated with the rate of progression of HIV disease.
Activity of HIV-1 viral protein R (Vpr) is associated with a
decrease in the number of CD4+ T cells and contributes to
host cell death via a cascade effect resulting in damage of the
mitochondrial outer membrane [66]. Our understanding of the
impact of HIV infection on mitochondrial function remains
limited, however, with significant gaps in knowledge that
could alter clinical care related to the impact of HIV on
mitochondrial dysfunction/toxicity and the interactive role of
HIV virus and mitochondrial function on the aging process in
infected individuals.

One area of recent study has been a greater understanding of
the bioenergetics of T cell regulation. In response to antigenic
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stimulation, naïve T cells are activated, proliferate, and differ-
entiate into effector T cells. These effector cells undergo meta-
bolic reprogramming to clear whatever pathogenic process is
ongoing. The changes are marked by an increase in glycolytic
rate, increase in synthesis of proteins, lipids and nucleic acids,
and a decrease in mitochondrial mass [67]. With resolution of
the pathogen, the effector cells die, leavingmemory cells which
have lower metabolic states and utilize oxidative phosphoryla-
tion for metabolic demands. In the setting of persistent antigen
(Ag) stimulation, the population of effector cells remains high
and serves as a driver of inflammation and excess reactive
oxygen and nitrogen species which further serve to cause tissue
damage and ultimately end organ disease. Thus, persistent Ag
stimulation from the chronic HIV infection and microbial trans-
location both serve to facilitate immune activation, excessive
reactive oxygen species (ROS) and end organ disease.

HIV Infection Alters Body Composition and Metabolism

HIV infection is associated with loss of subcutaneous adipose
tissue in the face, extremities, and buttocks (lipoatrophy) [68].
A significant gain of central visceral adipose tissue
(lipohypertrophy) has also been reported, though not all
follow-up studies show this association [69, 70]. An excess
of circulating fatty acids due to the inability of lipoatrophic
tissues to store energy, as well as the hormonal/cytokine
secretory response of adipose tissue to HIV infection, contrib-
utes to chronic inflammation and may alter the body’s metab-
olism as previously reviewed [71]. One area that has been
evaluated but not extensively reviewed is the alteration of
metabolic rates with HIV infection.

The etiology of metabolic rate alterations with HIV infec-
tion remains unclear. Most studies confirm that resting energy
expenditure (REE), the amount of kilocalories required to
maintain basic bodily functions during rest, is elevated by
10-30 % in HIV-infected patients [72, 73]. REE may be
correlated with increasing CD4+ T-cell counts, and it remains
elevated among women on ART with undetectable viremia,
implicating HIV infection itself rather than effects of ART in
contributing to a higher metabolic rate among HIV-infected
individuals [74]. Several mechanisms, including body com-
position changes and opportunistic infections contribute to but
do not fully explain elevated REE with HIV infection.
Lipoatrophy accompanied by an altered adipose tissue
hormone/cytokine secretion, along with evidence of increased
REE with overfeeding in HIV-infected individuals but not
uninfected controls, suggests a role of adaptive thermogenesis
(metabolic inefficiency in response to environmental changes)
in elevating REE. However, brown fat, a type of adipose tissue
associated with higher REE in uninfected patients, was not
found in HIV-infected men with severe lipoatrophy [75]. The
etiology of elevated REE with HIV infection is of great

clinical significance, as a higher REE may impair gain of
muscle mass, lead to increased production of reactive oxygen
species by mitochondria, and increase systemic inflammation
hypothesized to contribute to chronic disease risk.

Additional Risk Factors Can Exacerbate
the Consequences of HIV Infection

While HIV infection is associated with significant inflamma-
tion and a variety of metabolic complications, it often occurs
in the context of other factors that amplify the infection’s
deleterious effects. HIV infection itself can contribute to in-
creased likelihood of a patient experiencing these conditions,
resulting in a feedback loop that may require clinical and/or
social intervention.

Smoking Smoking and substance abuse are associated with
increased CVD, poor ARTadherence, and increasedmortality.
Although smoking rates have declined over time, persons
living with HIV continue to smoke at rates 2–3 times higher
than the general population [76, 77]. Among HIV-infected
populations, smoking has been associated with lower quality
of life and many of the age-related comorbidities discussed
herein. Importantly, cigarette smoking is associated with a 1.5
times greater risk of mortality [78], and tobacco use is associ-
ated with increased T cell activation among HIV-infected
individuals [79]. It is likely that the effects of smoking and
HIV-related inflammation have additive negative conse-
quences for health management.

Poverty Poverty is both a driver and consequence of HIV
infection, and United States residents living below the poverty
line are five times more likely than the general population to
be HIV-positive. Even those persons in poor communities
who live above the poverty line have a 2.5 fold increased risk
of HIV infection than persons living in higher income neigh-
borhoods. Furthermore, poverty is also associated with factors
that contribute to both HIV infection and poor ARTadherence,
including homelessness, substance abuse, depression, and
food insecurity. Poverty has further been linked to decreased
access to health care resources and low health literacy, which
can significantly impact HIV treatment outcomes.

Nutrition Adequate nutrition is essential to maintain a func-
tioning immune system in HIV-infected individuals. Food
insecurity is a recognized risk factor for HIV, and up to
50 % of currently infected urban patients may be food inse-
cure [80, 81]. It is independently associated with increased
mortality, decreased ARTadherence, and incomplete virologic
suppression [82, 83]. Interventions to improve food security
are thus a vital component of HIV care, and investigations

Curr HIV/AIDS Rep (2014) 11:35–44 39



focused on which strategies are most effective at ameliorating
food insecurity are greatly needed.

Nutrition strategies can also improve health outcomes for
food secure HIV-infected patients. Observational and clinical
studies have investigated Mediterranean dietary patterns,
Omega-3 fatty acids, and vitamin D intake for their potential
roles in CVD and diabetes risk among HIV-infected groups
[26, 84, 85]. However, knowledge regarding effective dietary
patterns for immune function and chronic disease reduction
among HIV-infected groups remains limited. Elucidating die-
tary patterns to improve nutrition that are realistic and afford-
able for HIV-infected individuals will be critical for adequate
patient care.

Obesity A significant increase in body weight was observed
in the decades following ART initiation and now up to 65% of
HIV-infected individuals are considered overweight (body
mass index [BMI] 25–29.9) or obese [BMI≥30]) [2•, 86].
The effects of excess adiposity in the context of HIV infection
are not well elucidated, though obesity is also associated with
increased systemic inflammation and CVD risk [87, 88]. Does
the presence of obesity in an HIV-infected individual increase
chronic disease risk? Could there be benefits to carrying
excess body fat for HIV-infected persons? Does obesity im-
pact HIV-related treatment outcomes? Obesity is associated
with higher initial CD4+ cell counts; however, less improve-
ment in CD4+ cell levels following ART initiation among
obese patients has been reported [89, 90]. Still others have
found no difference in CD4+ counts following ART initiation
[91, 92], and the degree to which excess adipose tissue may
have an immunomodulatory effect on CD4+ cell recovery
remains unclear. Intentional weight loss has not been associ-
ated with changes in CD4+ cell count or viral load and can be
considered safe for HIV-infected patients; however, improve-
ments in insulin sensitivity were either insignificant or worse
compared to uninfected controls [33, 93].

Dental Caries HIV-infected individuals are more likely to
experience dental caries compared with uninfected controls,
and lower CD4+ cell counts are associated with a greater
frequency of rampant caries and periodontal disease [94,
95]. The association of ARTwith dental caries is unclear, with
studies reporting either no impact [95] or increased presence
of caries in patients on long-termART [96]. Poor dental health
may exacerbate chronic inflammation and CVD risk [97]; thus
adequate dental care is an effective strategy to improve overall
health among HIV-infected individuals.

The role of Chronic Viral Hepatitis Multiple reports had been
summarized in a meta-analysis showing that co-infected pa-
tients have a two-fold higher relative risk (RR) of developing
cirrhosis and a six-fold higher RR of developing decompen-
sated liver disease than HCV mono-infected persons [98].

Several population-specific factors may account for this in-
creased risk including ART-direct toxicity (microsteatosis
from lactic acidosis, drug-induced hepatitis, hypersensitivity
reactions), ART-indirect toxicity (metabolic syndrome and
non-alcoholic steatohepatitis [NASH]) and higher prevalence
of harmful alcohol ingestion [99, 100]. Additionally, HIV can
directly mediate liver fibrosis via different pathways: 1) the
external envelope protein of HIV, gp120, induces chemokine
receptor-mediated signaling and subsequent activation of he-
patic stellate cells (HSCs) and production of fibrogenic cyto-
kines; and 2) HIV depletes intestinal lymphocytes, increasing
microbial translocation, which has been correlated with pro-
gression of HCV-related liver disease [101–103]. Both viruses
increase the production of ROS in HSCs and hepatocytes, and
are able to induce oxidative stress in tissues such as liver,
muscle, fat and peripheral blood mononuclear cells (PBMCs)
[104, 105, 106•]. Oxidative stress plays an important role not
only in the pathogenesis of liver fibrosis in infectious hepatitis
but also in many other processes including aging, cardiovascu-
lar diseases, neurodegenerative disease, and cancer [107]. Co-
infection may facilitate a more rapid progression of these non-
AIDS comorbidities.

Conclusions

HIV infection confers a chronic inflammatory state that signif-
icantly impairs immune function and exacerbates chronic dis-
ease risk. The clinical knowledge base for chronic disease
prevention and treatment is primarily limited to data obtained
from HIV-negative populations, and much work remains to
elucidate the mechanistic link between HIVand cardiometabol-
ic diseases as well as to develop effective clinical interventions.
Recent studies suggest that current ART regimens may contrib-
ute to fewer metabolic disturbances than older generations of
therapy, and in fact earlier initiation of ARTat higher CD4+ cell
counts could be critical to minimize the inflammatory state even
among elite controllers [108•]. As the HIV-infected population
continues to age and experience multimorbidity, an understand-
ing of the pathogenesis of metabolic complications will be
necessary for effective patient treatment outcomes.
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