Alvaro veliz-osorio

Alvaro veliz-osorio
Queen Mary, University of London | QMUL

About

19
Publications
706
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
234
Citations

Publications

Publications (19)
Article
Full-text available
We study the physical properties of a length-torsion functional which encodes the holographic entanglement entropy for (1+1)-dimensional theories with chiral anomalies. Previously, we have shown that its extremal curves correspond to the mysterious Mathisson’s helical motions for the centroids of spinning bodies. We explore the properties of these...
Preprint
We study the physical properties of a length-torsion functional which encodes the holographic entanglement entropy for 1+1 dimensional theories with chiral anomalies. Previously, we have shown that its extremal curves correspond to the mysterious Mathisson's helical motions for the centroids of spinning bodies. We explore the properties of these he...
Article
Full-text available
We study extremal curves associated with a functional which is linear in the curve's torsion. The functional in question is known to capture the properties of entanglement entropy for two-dimensional conformal field theories with chiral anomalies and has potential applications in elucidating the equilibrium shape of elastic linear structures. We de...
Article
We explore the question of which shape a manifold is compelled to take when immersed into another one, provided it must be the extremum of some functional. We consider a family of functionals which depend quadratically on the extrinsic curvatures and on projections of the ambient curvatures. These functionals capture a number of physical setups ran...
Article
In this paper we investigate measures of chaos and entanglement in rational conformal field theories in 1+1 dimensions. First, we derive a formula for the late time value of the out-of-timeordered correlators for this class of theories. Our universal result can be expressed as a particular combination of the modular S-matrix elements known as anyon...
Article
Full-text available
In this work we explore the structure of the branching graph of the unitary group using Schur transitions. We find that these transitions suggest a new combinatorial expression for counting paths in the branching graph. This formula, which is valid for any rank of the unitary group, reproduces known asymptotic results. We proceed to establish the g...
Article
Full-text available
In this letter we investigate measures of chaos and entanglement scrambling in rational conformal field theories in 1+1 dimensions. First, we derive a formula for the late time value of the out-of-time-order correlators for these class of theories. Our universal result can be expressed as a particular combination of the modular S-matrix elements kn...
Article
Full-text available
We carry out a systematic study of entanglement entropy in nonrelativistic conformal field theories via holographic techniques. After a discussion of recent results concerning Galilean conformal field theories, we deduce a novel expression for the entanglement entropy of (1+1)-dimensional Lifshitz field theories --- this is done both at zero and fi...
Article
Full-text available
We introduce a prescription to compute the entanglement entropy of Galilean conformal field theories by combining gravitational anomalies and an \.{I}n\"{o}n\"{u}-Wigner contraction. Using this proposal, we calculate the entanglement entropy for a class of Galilean conformal field theories, which are believed to be dual to three-dimensional flat-sp...
Article
Full-text available
We show that in 1+1 dimensional conformal field theories, exciting a state with a local operator increases the Renyi entanglement entropies by a constant which is the same for every member of the conformal family. Hence, it is an intrinsic parameter that characterises local operators from the perspective of quantum entanglement. In rational conform...
Article
Full-text available
We explore an identity between two graphs and unravel its physical meaning in the context of the gauge-gravity correspondence. From the mathematical point of view, the identity equates probabilities associated with $\mathbb{GT}$, the branching graph of the unitary groups, with probabilities associated with $\mathbb{Y}$, the branching graph of the s...
Article
Full-text available
In order to compute the entanglement entropy for a given region in a theory with an Einstein gravity dual, the Ryu-Takayanagi prescription tells us that we must compute the the area of an extremal surface anchored to the entangling region. However, if the dual gravity theory receives higher-curvature corrections we are compelled to extremize a quan...
Article
Full-text available
We compute the renormalized entanglement entropy (REE) for BPS black solutions in ${\cal N}=2$, 4d gauged supergravity. We find that this quantity decreases monotonically with the size of the entangling region until it reaches a critical point, then increases and approaches the entropy density of the brane. This behavior can be understood as a cons...
Article
Using the attractor mechanism for extremal solutions in \( \mathcal{N}=2 \) gauged supergravity, we construct a c-function that interpolates between the central charges of theories at ultraviolet and infrared conformal fixed points corresponding to anti-de Sitter geometries. The c-function we obtain is couched purely in terms of bulk quantities and...
Article
Full-text available
Using the attractor mechanism for extremal solutions in ${\cal N}=2$ gauged supergravity, we construct a $c$-function that interpolates between the central charges of theories at ultraviolet and infrared conformal fixed points corresponding to anti-de Sitter geometries. The $c$-function we obtain is couched purely in terms of bulk quantities and co...
Article
Full-text available
In this note, we explore the solution space of non-extremal black objects in $4D$ and $5D$ ${\cal N}=2$ gauged supergravity in the presence of fluxes. We present first order rewritings of the $4D$ action for a classes of non-extremal dyonic and electric solutions with electric flux backgrounds. Additionally, we obtain the non-extremal version of th...
Article
Full-text available
We discuss quantum corrections to extremal black brane solutions in N=2 U(1) gauged supergravity in four dimensions. We consider modifications due to a certain class of higher-derivative terms as well as perturbative corrections to the prepotential. We use the entropy function formalism to assess the impact of these corrections on singular brane so...
Article
We discuss the deformed sigma-model that arises when considering four-dimensional N=2 abelian vector multiplets in the presence of an arbitrary chiral background field. In addition, we allow for a class of deformations of special geometry by non-holomorphic terms. We analyze the geometry of the sigma-model in terms of intrinsic torsion classes. We...
Article
Full-text available
We investigate the generating functions of multi-colored discrete disks with non-homogenous boundary conditions in the context of the Hermitian multi-matrix model where the matrices are coupled in an open chain. We show that the study of the spectral curve of the matrix model allows one to solve a set of loop equations to get a recursive formula co...

Network

Cited By