Alvaro Somoza

Alvaro Somoza
Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Madrid, Spain · Nanomedicine

PhD in Chemistry

About

92
Publications
8,566
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,439
Citations

Publications

Publications (92)
Article
The development of DNA-sensing platforms based on new synthetized Methylene Blue functionalized carbon nanodots combined with different shape gold nanostructures (AuNs), as a new pathway to develop a selective and sensitive methodology for SARS-CoV-2 detection is presented. A mixture of gold nanoparticles and gold nanotriangles have been synthetize...
Article
At the time of writing, the global cases of COVID‐19 were 486.761.597 with 6.142.735 confirmed deaths (WHO, April 4th). According to the scarce information about estimations of cases with mild or no symptoms, scientists suggest that they could represent 25 ‐80% of all infections. The majority of these cases remain untested, while they are infective...
Article
In this work we present a powerful, affordable, and portable biosensor to develop Point of care (POC) SARS-CoV-2 virus detection. It is constructed from a fast, low cost, portable and electronically automatized potentiostat that controls the potential applied to a disposable screen-printed electrochemical platform and the current response. The pote...
Article
Full-text available
This research raises the potential use of coordination polymers as new useful materials in two essential research fields, allowing the obtaining of a new multiartificial enzyme with the capacity to inhibit the growth of bacteria resistance. The fine selection of the ligands allows the design of a new 2D coordination polymer (CP), with the formula [...
Article
Full-text available
Gold nanotriangles (AuNTs) functionalized with dithiolated oligonucleotides have been employed to develop an amplification-free electrochemical biosensor for SARS-CoV-2 in patient samples. Gold nanotriangles, prepared through a seed-mediated growth method and exhaustively characterized by different techniques, serve as an improved electrochemical p...
Article
Full-text available
We present a fast, reliable and easy to scale-up colorimetric sensor based on gold nanoparticles (AuNPs) to detect the sequences coding for the RdRp, E, and S proteins of SARS-CoV-2. The optimization of the system (so-called “the sensor”) includes the evaluation of different sizes of nanoparticles, sequences of oligonucleotides and buffers, which i...
Article
Full-text available
The COVID-19 pandemic has brought to light the need for fast and sensitive detection methods to prevent the spread of pathogens. The scientific community is making a great effort to design new molecular detection methods suitable for fast point-of-care applications. In this regard, a variety of approaches have been developed or optimized, including...
Article
Stimuli-responsive nanomaterials are very attractive for biomedical applications. They can be activated through external stimuli or by the physico-chemical conditions present in cells or tissues. Here, we describe the preparation of hybrid iron oxide-manganese oxide core-satellite shell nanostructures that change their contrast mode in magnetic res...
Preprint
Full-text available
Natural killer (NK) cells recognise and kill target cells undergoing different types of stress. NK cells are also capable of modulating immune responses. In particular, they regulate T cell functions. Small RNA next-generation sequencing of resting and activated NK cells and their secreted EVs led to the identification of a specific repertoire of N...
Chapter
Full-text available
Gold nanoparticles (AuNPs) can be used as carriers for biomolecules or drugs in cell culture and animal models. Particularly, AuNPs ease their internalization into the cell and prevent their degradation. In addition, engineered AuNPs can be employed as sensors of a variety of biomarkers, where the electronic and optical properties of the AuNPs are...
Article
Small molecule drugs, including most chemotherapies, are rapidly degraded and/or eliminated from the body, which is why high doses of these drugs are necessary, potentially producing toxic effects. Several types of nanoparticles loaded with anti-cancer drugs have been designed to overcome the disadvantages of conventional therapies. Modified nanopa...
Article
Full-text available
Mutant p53 proteins result from missense mutations in the TP53 gene, the most mutated in human cancer, and have been described to contribute to cancer initiation and progression. Therapeutic strategies for targeting mutant p53 proteins in cancer cells are limited and have proved unsuitable for clinical application due to problems related to drug de...
Article
Full-text available
Magnetic nanoparticles (MNP) are employed as nanocarriers and in magnetic hyperthermia (MH) for the treatment of cancers. Herein, a smart drug delivery system composed of MNP functionalized with the cytotoxic drug gemcitabine (MNP-GEM) has been thoroughly evaluated. The linker employed is based on a disulfide bond and allows the controlled release...
Article
Full-text available
Uveal melanoma (UM) is an intraocular cancer tumor with high metastatic risk. It is considered a rare disease, but 90% of affected patients die within 15 years. Non-coding elements (ncRNAs) such as long non-coding RNAs (lncRNAs) have a crucial role in cellular homeostasis maintenance, taking part in many critical cellular pathways. Their deregulati...
Article
Full-text available
Cancer is one of the major health problems worldwide, and hence, suitable therapies with enhanced efficacy and reduced side effects are desired. Gene therapy, involving plasmids, small interfering RNAs, and antisense oligonucleotides have been showing promising potential in cancer therapy. In recent years, the preparation of various carriers for nu...
Article
Full-text available
Albumin-based nanoparticles are an emerging platform for the delivery of various chemotherapeutics because of their biocompatibility, safety, and ease of surface modification for specific targeting. The most widely used method for the preparation of albumin nanoparticles is by desolvation process using glutaraldehyde (GLU) as a cross-linker. Howeve...
Article
Uveal melanoma (UM) is an intraocular tumor which is almost lethal at the metastatic stage due to the lack of effective treatments. In this regard, we have developed an albumin-based nanostructure (ABN) containing AZD8055 (ABN-AZD), which is a potent mTOR kinase inhibitor, for its efficient delivery to the tumors. The drug has been conjugated to AB...
Article
Full-text available
Pancreatic cancer is a usually fatal disease that needs innovative therapeutic approaches since the current treatments are poorly effective. In this study, based on cell lines, triazole-based coordination trimers made with soluble Fe(II) in an aqueous media were explored for the first time as adjuvant agents for the treatment of this condition. The...
Article
Full-text available
Autophagy is an evolutionary conserved physiological process with a fundamental role during development, differentiation, and survival of eukaryotic cells. On the other hand, autophagy dysregulation is observed in many pathological conditions, including cancer. In particular, tumor growth and progression are accompanied and promoted by increased au...
Article
Hypothesis Superparamagnetic MnxFe3-xO4 nanoparticles are promising materials for applications in biomedicine and other fields. Small variations in the Mn/Fe ratio have a strong impact on the properties of the nanoparticles. Those variations may be caused by the synthesis itself and by common post-synthesis manipulations like surface modification....
Article
Full-text available
Nanotechnology-based approaches hold substantial potential to avoid chemoresistance and minimize side effects. In this work, we have used biocompatible iron oxide magnetic nanoparticles (MNPs) called MF66 and functionalized with the antineoplastic drug doxorubicin (DOX) against MDA-MB-231 cells. Electrostatically functionalized MNPs showed effectiv...
Article
Full-text available
There is still a need for improving the treatment of breast cancer with doxorubicin (DOX). In this paper, we functionalized magnetic nanoparticles (MNPs) with DOX and studied the DOX-induced antitumor effects in breast cancer cells (BT474) in the presence of magnetic hyperthermia (43 °C, 1 h). We show that i) intratumoral application of DOX-functio...
Article
We describe the preparation of two monomers that bear complementary nucleobases at the edges (guanine-2'-deoxycytidine and 2-aminoadenine-2'-deoxyuridine) and that are conveniently protected and activated for solid-phase automated DNA synthesis. We report the optimized synthetic routes leading to the four nucleobase derivatives involved, their cros...
Article
Full-text available
Epithelial-mesenchymal transition (EMT) has emerged as a key regulator of cell invasion and metastasis in cancers. Besides the acquisition of migratory/invasive abilities, the EMT process is tightly connected with the generation of cancer stem cells (CSCs), thus contributing to chemoresistance. However, although EMT represents a relevant therapeuti...
Article
Full-text available
Controlled delivery of multiple chemotherapeutics can improve the effectiveness of treatments and reduce side effects and relapses. Here in, we used albumin-stabilized gold nanoclusters modified with doxorubicin and SN38 (AuNCs-DS) as combined therapy for cancer. The chemotherapeutics are conjugated to the nanostructures using linkers that release...
Article
Full-text available
Despite the extensive genetic and phenotypic variations present in the different tumors, they frequently share common metabolic alterations, such as autophagy. Autophagy is a self-degradative process in response to stresses by which damaged macromolecules and organelles are targeted by autophagic vesicles to lysosomes and then eliminated. It is kno...
Article
Full-text available
In this paper we show that conjugation of magnetic nanoparticles (MNPs) with Gemcitabine and/or NucAnt (N6L) fostered their internalization into pancreatic tumor cells and that the coupling procedure did not alter the cytotoxic potential of the drugs. By treating tumor cells (BxPC3 and PANC-1) with the conjugated MNPs and magnetic hyperthermia (43...
Article
MicroRNAs (miRNAs) are small regulatory RNAs, the dysregulation of which has been associated with the progression of several human diseases, including cancer. Interestingly, these molecules can be used as biomarkers for early disease diagnosis and can be found in a variety of body fluids and tissue samples. However, their specific properties and ve...
Article
Full-text available
Molecular shuttles are the basis of some of the most advanced synthetic molecular machines. In these devices a macrocycle threaded onto a linear component shuttles between different portions of the thread in response to external stimuli. Here, we use optical tweezers to measure the mechanics and dynamics of individual molecular shuttles in aqueous...
Preprint
Full-text available
Here, we exploit the high force (0.1 pN), spatial (1 nm) and temporal (1 kHz) resolutions of optical tweezers <sup></sup> <sup></sup> <sup></sup> to quantify and control mechanically the real-time kinetics of individual synthetic molecular shuttles operating at near-physiological conditions, for several hundreds of switching cycles, near equilibriu...
Preprint
Doxorubicin (DOX) is a frequently used chemotherapeutic drug for breast cancer, but its site specificity and local internalization into tumor cells is rather low. In this paper we conjugated magnetic nanoparticles (MNPs) with DOX and/or a pseudopeptide NucAnt (N6L) as modality to enhance DOX-induced antitumor effects in breast cancer cells (BT474)....
Article
Full-text available
Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults and around half of the patients develop metastasis and die shortly after because of the lack of effective therapies for metastatic UM. Consequently, new therapeutic approaches to this disease are welcome. In this regard, microRNAs have been shown to have a key role...
Article
An imine-based covalent organic framework (COF) decorated in its cavities with uracil groups has shown selective recognition towards adenine in water. These results show how the confinement of the base-pair inside the COF's pores allows a remarkable selective recognition in aqueous media.
Article
Full-text available
A set of Ru(II) metallopeptides containing the dppz ligand has been synthesized using solid-phase peptide synthesis methods. Fluorescence titration studies show that those metallopeptides featuring an octaarginine tail display a large binding preference for DNA G-quadruplex structures over those lacking the oligocationic domain, and also that the i...
Article
Full-text available
Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of bio...
Article
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Recent advances in the understanding of molecular characteristics helped to determine which tumors are most likely to progress. About 50% of patients carrying genetic alterations such as chromosomal aberrations and mutations are at significant risk for metastatic disea...
Chapter
Silver nanoclusters (AgNCs) stabilized by oligonucleotides are fluorescent structures, whose properties are attracting researchers from various areas. The two main characteristics that have prompted the development of projects involving AgNCs are: their ease of preparation and their tunable fluorescent properties, which can be modulated simply by t...
Article
Full-text available
We present a sensor that exploits the phenomenon of upconversion luminescence to detect the presence of specific sequences of small oligonucleotides like miRNAs among others. The sensor is based on NaYF4:Yb,Er@SiO2 nanoparticles functionalized with ssDNA that contain azide groups on the 3' ends. In the presence of a target sequence, inter-strand li...
Poster
Uveal melanoma is a rare disease accounting for 5% of all melanomas. It is the most common primary intraocular malignant tumor in adults resulting in liver metastasis in 85% of the cases, half of which end up in death. This overwhelming scene has raised up a considerable interest in the development of novel approaches for the treatment of such dise...
Article
The direct reaction between copper nitrate, thymine-1-acetic acid, and 4,4′-bipyridine in water leads to the formation of a blue colloid comprising uniform crystalline nanoribbons (length >1 μm; width ca. 150–185 nm; diameter ca. 15–60 nm) of a coordination polymer. The polymer displays a thymine-based structure freely available for supramolecular...
Article
Full-text available
The direct reaction between copper nitrate, thymine-1-acetic acid, and 4,4′-bipyridine in water leads to the formation of a blue colloid comprising uniform crystalline nanoribbons (length >1 μm; width ca. 150–185 nm; diameter ca. 15–60 nm) of a coordination polymer. The polymer displays a thymine-based structure freely available for supramolecular...
Article
Silver nanoclusters (AgNCs) stabilized by DNA are promising materials with tunable fluorescent properties, which have been employed in a plethora of sensing systems. In this report, we explore their antimicrobial properties in gram positive and gram negative bacteria. After testing 9 oligonucleotides with different sequence and length, we found tha...
Article
Old tricks, new dog: CRISPR/Cas9 is a powerful tool for gene editing that requires an endonuclease (Cas9) and RNA strands. It has been shown that chemical modification of the RNA structures, an approach that has been used to improve the efficiency of RNA interference, can also be applied to enhance the activity of CRISPR/Cas9 and reduce its off-tar...
Article
Gelernte Lektionen: CRISPR/Cas9 ist eine leistungsfähige Methode des Genom-Editing, die eine Endonuklease (Cas9) und RNA-Stränge erfordert. Nun wurde gezeigt, dass chemische Modifikationen der RNA-Strukturen, wie sie in der RNA-Interferenz zur Effizienzverbesserung etabliert sind, ebenfalls genutzt werden können, um die Aktivität des CRISPR/Cas9-Sy...
Article
Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully apply these novel th...
Article
Full-text available
Au- and iron-based magnetic nanoparticles (NPs) are promising NPs for biomedical applications due to their unique properties. The combination of a gold coating over a magnetic core puts together the benefits from adding the magnetic properties to the robust chemistry provided by the thiol functionalization of gold. Here, the use of Au-coated magnet...
Article
Proteins have been used as templates to stabilize fluorescent metal nanoclusters thus obtaining stable fluorescent structures, and their fluorescent properties being modulated by the type of protein employed. Designed consensus tetratricopeptide repeat (CTPR) proteins are suited candidates as templates for the stabilization of metal nanoclusters du...
Chapter
In an ever-growing number of investigations it has been shown that nucleic acid templated reactions are useful tools in nucleic acid diagnosis and reaction/drug discovery. Furthermore, applications in materials chemistry are being explored, wherein nucleic acid templates instruct the size-controlled formation of macromolecular materials. Nucleic ac...
Article
Full-text available
BACKGROUND: Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Early treatment may improve any chances of preventing metastatic disease, but diagnosis of small UM is challenging. Up to 95 % of all UMs carry somatic mutations in the G-coupled proteins GNAQ and GNA11 promoting anchorage-independent growth and proliferati...
Article
Full-text available
The delivery of drugs can be improved with the use of different carriers, such as those based on nanoparticles. The nanostructures loaded with the therapeutic molecules should be able to reach the target cells and, what is more, release the drugs efficiently. Ideally, the drugs should be delivered only in the target cells, and not along their way t...
Article
Full-text available
Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells wi...
Article
Telomeric repeat-containing RNA (TERRA) is a novel and very attractive antitumoral target. Here we report the first successful application of 19F-NMR fragment-based screening to identify chemically diverse compounds that bind to an RNA molecule such as TERRA. We have built a library of 355 fluorinated fragments, and checked their interaction with a...
Article
Full-text available
Gold nanoparticles functionalized with oligonucleotides that bear a cholesterol group are used as gene sensors. The hydrophobic molecule is buried inside the nanostructure but when the complementary RNA sequence is present the structure unfolds exposing the cholesterol group to the water molecules. This rearrangement leads to the aggregation of the...