Álvaro Quintanar Pascual

Álvaro Quintanar Pascual
University of Alcalá | UAH · Technical School of Computer Engineering

About

12
Publications
512
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
74
Citations

Publications

Publications (12)
Article
Full-text available
This work presents a novel method for predicting vehicle trajectories in highway scenarios using efficient bird’s eye view representations and convolutional neural networks. Vehicle positions, motion histories, road configuration, and vehicle interactions are easily included in the prediction model using basic visual representations. The U-net mode...
Preprint
This work presents a novel method for predicting vehicle trajectories in highway scenarios using efficient bird's eye view representations and convolutional neural networks. Vehicle positions, motion histories, road configuration, and vehicle interactions are easily included in the prediction model using basic visual representations. The U-net mode...
Article
Full-text available
This paper introduces a novel method of lane-change and lane-keeping detection and prediction of surrounding vehicles based on Convolutional Neural Network (CNN) classification approach. Context, interaction, vehicle trajectories, and scene appearance are efficiently combined into a single RGB image that is fed as input for the classification model...
Preprint
Understanding the behavior of road users is of vital importance for the development of trajectory prediction systems. In this context, the latest advances have focused on recurrent structures, establishing the social interaction between the agents involved in the scene. More recently, simpler structures have also been introduced for predicting pede...
Preprint
While driving on highways, every driver tries to be aware of the behavior of surrounding vehicles, including possible emergency braking, evasive maneuvers trying to avoid obstacles, unexpected lane changes, or other emergencies that could lead to an accident. In this paper, human's ability to predict lane changes in highway scenarios is analyzed th...
Preprint
This paper describes a novel approach to perform vehicle trajectory predictions employing graphic representations. The vehicles are represented using Gaussian distributions into a Bird Eye View. Then the U-net model is used to perform sequence to sequence predictions. This deep learning-based methodology has been trained using the HighD dataset, wh...
Chapter
This paper describes an end-to-end training methodology for CNN-based fine-grained vehicle model classification. The method relies exclusively on images, without using complicated architectures. No extra annotations, pose normalization or part localization are needed. Different full CNN-based models are trained and validated using CompCars [31] dat...

Network

Cited By