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Environmental changes cause abiotic stress in plants, primarily through alterations in the uptake of the 

nutrients and water they require for their metabolism and growth and to maintain their cellular 

homeostasis. The plasma membranes of cells contain transporter proteins, encoded by their specific 

genes, responsible for the uptake of nutrients and water (aquaporins). However, their inter-regulation 

has rarely been taken into account. Therefore, in this review we identify how the plant genome responds 

to abiotic stresses such as nutrient deficiency, drought, salinity, and low temperature, in relation to both 

nutrient transporters and aquaporins. Some general responses or regulation mechanisms can be observed 

under each abiotic stress such as the induction of plasma membrane transporter expression during 

macronutrient deficiency, the induction of tonoplast transporters and reduction of aquaporins during 

micronutrients deficiency. However, drought, salinity and low temperatures generally cause an increase 

in expression of nutrient transporters and aquaporins in tolerant plants. We propose that both types of 

transporters (nutrients and water) should be considered jointly in order to better understand plant 

tolerance of stresses. 

 
 
Introduction 
 
As they are essential for plants, the maintenance of the optimal concentrations of certain mineral 

nutrients within the plant tissues is highly important for proper growth. Therefore, to complete the life 
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cycle, and for optimal development of morphology and anatomy, nutrient uptake should be rationalized 

according to the need of each plant (Barker and Pilbeam 2016). But, beside their involvement in primary 

metabolism, these mineral nutrients are the basis of the secondary metabolism, defense, signal 

transduction, hormone reception, and energy and molecular regulation of the plant (Maathuis and 

Diatloff 2013). Therefore, deficiencies in one or more of them produce a dramatic effect on plant 

physiology. 

Root hydraulic conductivity is one of the main parameters that describe the capacity of the root 

to uptake water, conferring the ability to adapt to changes in environment (Armand et al. 2019). In this 

way, the plasticity of the changes of root hydraulic conductivity has been related to the presence and 

functionality of aquaporins, since they allow water to pass freely across cellular membranes, following 

osmotic or hydrostatic pressure gradients (Wang et al. 2019a).  

There is a strong interaction between mineral uptake and water status in plants. Although both 

ions and water are taken up by specific membrane transporters (channels, antiporters, and specific 

transporters for ions, and aquaporins for water), the regulation of these transporters must be connected 

to ensure the cellular homeostasis. The apparently simple water transporters, aquaporins, are in fact 

highly complicated due to the wide number of families and isoforms. Therefore, the multiplicity of 

aquaporins isoforms, the interaction between isoforms and lipid bilayer  and their response under 

different abiotic stress is still under study (Martínez-Ballesta and Carvajal 2016). Aquaporins can be 

classified into five families depending on their cellular membrane localization and amino acid sequence. 

Thus, they are classified as PIPs, if located in the plasma membrane; TIPs, in the tonoplast; NIPs, if they 

are nodulin-26-like; SIPs, if they are small and basic; and XIPs, if they are uncharacterized intrinsic 

proteins (for a review, see Martinez-Ballesta and Carvajal 2014). Reverse genetics and overexpression 

are effective tools for investigating the physiological functions of each aquaporin isoform in plants and 

for understanding their roles in water transport and abiotic stress responses. In this way, successful 

examples have been reviewed by Martinez-Ballesta and Carvajal (2014) as the expression of Vicia faba 

PIP1 in transgenic Arabidopsis thaliana and over-expression of PIP1 in Oriza sativa improved drought 

resistance by increasing root hydraulic conductivity. 

In this sense, as vital regulators of plant short-distance cell to cell transport and homeostasis, 

the study of the response of aquaporins to abiotic stress has been implemented in recent years (reviewed 

by Afzal et al. 2016, Kapilan et al. 2018). Also, changes in nutrient transporters under different abiotic 

stresses have been studied, highlighting some relationship with tolerance (Hasanuzzaman et al. 2018). 
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In the context of the abiotic stresses that crops suffer, and with regard to climate change 

scenarios, attention has been focused on nutrient deficiency, salinity, drought, and sudden low 

temperatures. The impacts of these stresses on nutrient and water uptake have been studied, but rarely 

in an integrated way. In this review, we establish the relationship between nutrient transporters and 

aquaporins in abiotic stress situations, to reinforce the importance of studying their integrated regulation 

under environmental changes. Also, we will point out the need to complete our knowledge of nutrient 

transporters and aquaporins for a better interpretation of their key role under abiotic stress. 

 

The influence of macronutrient deficiencies on the interaction of their transporters and 

aquaporins 

 

The concentration of macronutrients required for plant optimal growth is above 0.1% on a dry matter in 

plant tissue  (Karthika et al. 2018). Therefore, as macronutrients are required at high concentrations, it 

is not common to find macronutrient toxicity stress in field conditions. However, macronutrient 

deficiency is an important problem for crop productivity, affecting many plant physiological features 

(Pessarakli 2015) involving transporters and aquaporins (Fig. 1). 

 

Nitrogen 

Nitrogen (N) is taken up either as the nitrate ion (NO3
-), the prevalent form of uptake, or as the 

ammonium ion (NH4
+), depending on the plant species and the soil conditions regarding factors like pH 

and the redox state (Karthika et al. 2018). The principal transporters described for NO3
- belong to  the 

NRT family, a large protein family. They include high-affinity transporters such as NRT2 and low-

affinity transporters such as NRT1 (Forde 2002). But, among the NRT1s, some transporters have been 

described that present a dual affinity for NO3
-, such as AtNRT1;1 (or CHL1) (Gojon et al. 2011). 

Therefore, under low-NO3
- conditions the NRT2 transporters (NRT2;1, NRT2;2, NRT2;4, and NRT2;5) 

take up approximately 95% of the total amount of this anion, NRT2;1 and NRT2;2 being the main 

contributors (Lezhneva et al. 2014). While it has been reported that NRT2;5 is the only one up-regulated 

under NO3
-
 starvation in wheat (Triticum durum L.) plants, in sorghum (Sorghum vulgare Pers, syn), N 

deficiency caused higher abundance of NRT2;2, NRT2;3, NRT2;5, and NRT2;6 transcripts (Gelli et al. 

2014, Curci et al. 2017). 

The root hydraulic conductivity (Lp, m-1 s-1 MPa-1), which defines the intrinsic ability of roots to conduct 

water across a water potential gradient between the root surface and the xylem in the stem (Eissenstat 
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1997), is affected by N deficiency, showing a significant reduction in N-deficient plants. In this sense, 

the high contribution of aquaporins to the roots Lp value (Carvajal et al. 1996a, Gorska et al. 2008) 

suggests that N deficiency produces a reduction in aquaporins activity or expression (Clarkson et al. 

2000). Ding et al (2018) showed, in rice (Oryza sativa L.) plants, that the expression of PIPs in roots 

was reduced under low-N conditions. Also, previous studies in Arabidopsis thaliana L. found a decrease 

in root plasma membrane aquaporins (PIP2;1, PIP2;2, PIP2;4, PIP1;2, and PIP1;3) expressions in 

response to N starvation for 6 days (Di Pietro et al. 2013). These results suggest that NRT2;1, that acts 

as a NO3
-
 sensor, could trigger complex transcriptional and post-transcriptional regulations of 

aquaporins, leading to possible N-dependent root Lp regulation. Despite these results, the regulatory 

mechanism still remains unclear and further investigation is needed (Little et al. 2005, Tyerman et al. 

2017). 

Besides, NH4
+ uptake by roots occurs mainly via NH4

+ transporters (AMT) localized in the 

plasma membrane (Yuan et al. 2007). This ion is transported from the cytosol to the vacuole for N 

storage and to avoid its toxicity to the plant (Wang et al. 2008). It has been reported that this transport 

is probably facilitated by the tonoplast aquaporins AtTIP2;1 and AtTIP2;3 in A. thaliana cells (Loqué 

et al. 2005). Therefore, when N is needed, it could be remobilized by passive transport. In this way, the 

described low-affinity transport pathway may generally involve aquaporins of type TIP (Wang et al. 

2016). In fact, several TIPs, such as ZmTIP1;1 and ZmTIP1;2, have been described as participating in 

NH4
+ transport in corn plants (Zea mays L.) (Bárzana et al. 2014). 

Members of the plasma membrane PIP and NIP and the tonoplast TIP subfamilies have been 

reported to facilitate urea transport through membranes (Liu et al. 2003). Accordingly, under N 

starvation, the expression of ZmTIP4;4 has been observed to increase significantly in roots and expanded 

leaves, suggesting that ZmTIP4;4 is essential for urea efflux to the cytoplasm (Gu et al. 2012). This 

indicates that this aquaporin is a urea transporter involved in the mobilization of reserve pools in the 

vacuole under N deficiency (Figure 1). 

 

Phosphorus 

Normally, phosphorus (P) is taken up from soil mainly as its inorganic form (Pi), and its uptake by plants 

is an energy-consuming, co-transport process. In this sense, we can find high- and low-affinity Pi 

transporters whose activities mostly depend on the rhizosphere concentrations of P (Schachtman et al. 

1998). Thereby, in A. thaliana and rice plants, five high-affinity Pi transporters (PHT1, PHT2, PHT3, 

PHT4, and PHT5) have been identified (Sun et al. 2017). In particular, members of the PHT1 group 
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have been shown to be predominant under Pi deficiency. This has been proven in in A. thaliana and 

wheat, wereAtPHT1;4 could become predominant, being up-regulated under Pi deficiency (Liu et al. 

2013, Ayadi et al. 2015). However, in soybean (Glycine max L.) plants, most of the PHT1 genes had 

elevated transcript levels under low-P conditions (Qin et al. 2012). 

Also, P starvation could cause combined changes in root Lp and aquaporins gene expression 

together with the formation of endodermal apoplastic barriers in roots (Li et al. 2019a). In fact, recently, 

Li et al. (2019) showed a decrease in the gene expression of six PIPs aquaporins (LcPIP1;1, LcPIP1;4, 

LcPIP2;1, LcPIP2;4, Put-LcPIP2;2, and Put-LcPIP2;5) in Leymus chinesis L. under low P availability. 

Indeed, P starvation may also modulate aquaporins activity, due to changes in their phosphorylation 

status (Wang et al. 2016). A study in corn plants showed correlation between  the expression patterns of 

the high-affinity Pi transporters ZmPHT4;2 and ZmPHT4;6 and that of the NIP-type aquaporin 

ZmNIP2;1 (Yue et al. 2012), thus revealing the possible existence of a direct or indirect mechanism that 

regulates their expression under this mineral-deficiency stress.  

 

Potassium  

Most potassium ion (K+) channels in plant cells can be considered as passive transporters. Although, 

other K+ transporters usually behave as carriers, and function as co-transporters coupled with H+ or 

sodium ion (Na+) transport (Chen et al. 2008). In A. thaliana, a total of 71 K+ transporters, channels and 

carrier proteins, have been identified. Also, they are divided into three channel families (the Shaker, 

TPK, and Kir-like families) and four transporter families (the KUP, KT/KUP/HAK‐type, HKT , and 

CPA families) (Chen et al. 2008). Studies carried out with A. thaliana indicated that AtHAK5, AtKEA5, 

AtKUP3, AtCHX13, and AtCHX17 were up-regulated and induced by potassium (K) starvation (Ahn et 

al. 2004, Cellier et al. 2004, Gierth et al. 2005, Zhao et al. 2008). In rice plants, Liu et al. (2006) found 

that K starvation induced the expression of OsAKT1, OsHAK1, and OsPIP2;7. The same authors also 

showed that the rice root Lp dramatically increased in response to K starvation, which could be the result 

of an increase in either the density or the activity of aquaporins. In addition, other authors reported that 

aquaporin genes were strongly up-regulated after K+ resupply; in this sense, 12 aquaporins genes were 

identified in the shoots of A. thaliana plants and 15 in the roots (Armengaud et al. 2004). In contrast, 

Coffey et al. (2018) observed both increases, but mainly, decreases in gene transcript abundance in 

barley plants under low K  conditions; in particular, the expression of HvPIP2 in roots decreased. They 

also found a decrease in root Lp. These contradictory results could be due to the PIP isoforms-specific 

responses or the different experimental designs. While Coffey et al. (2018) grew the plants under K 
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starvation from the beginning, Liu et al. (2006) only grew the plants for a maximum time of 24 h in a 

K-deficient solution. Therefore, different plant responses might reflect, on the one hand, a long-term 

effect of K starvation and, on the other, a rapid response of the plant to changes in K availability. The 

results of Liu et al. (2006) suggest that aquaporins and K channels were functionally co-regulated during 

cell turgor regulation; this could reflect the co-regulation of both transporters in roots, leading to the 

possibility of discovering an unknown regulatory factor for both ion and water channels. 

 

Calcium  

Calcium (Ca) deficiency is rare in nature since Ca is usually abundant and available in soils. However, 

in cases of severe weathering and extreme leaching of soil, deficiency of Ca may occur (Karthika et al. 

2018). Calcium ion (Ca2+) channels - that could be Ca2+-selective or non-selective ion channels - allow 

the entry of Ca into the roots. The influx of Ca2+ into the cytosol is carried out by three different types 

of channels classified on the basis of their voltage-dependence: depolarization-activated (DACC), 

hyperpolarization-activated (HACC), and voltage-independent (VICC) cation channels (White and 

Broadley 2003). Meanwhile, Ca2+ efflux from the cytosol, that requires energized active transport, is 

accomplished by either Ca2+-ATPases, divided into two families (P-type ATPase IIA and IIB), or 

H+/Ca2+-antiporters (Sharma et al. 2017). Among the latter, the CAXs (Cation/H+ exchangers) are a 

group of high-capacity, low-affinity transporters that export cations out of the cytosol to maintain ion 

homeostasis across biological membranes (Cheng et al. 2003). In particular, under Ca deficiency, 

amaranth (Amaranthus hypochondriacus L.) plants showed an up-regulation of the AhCAX and 

calmodulin (CaM, a protein that functions as a Ca sensor) genes, as described by Aguilar-Hernández et 

al. (2011).  

On the other hand, Ca starvation generally produces down-regulation of aquaporin genes 

expression, despite the fact that Ca deprivation does not have a great impact on water relations at the 

whole plant level (Maathuis et al. 2003). Indeed, White (2001) described trans-root movement of Ca2+ 

as mainly apoplastic. For this reason, it was proposed that, when Ca is limiting, in order to ensure its 

adequate delivery, a shift to apoplastic water movement might be required through a decrease in 

symplastic water permeability, which relies on aquaporins activity (Maathuis et al. 2003). In fact, 

protoplasts extracted from pepper (Capsicum annuum L.) plants grown under Ca starvation showed no 

aquaporin functionality, while, when Ca2+ was added to the protoplasts, an increase in the aquaporin 

functionality of the plasma membrane was observed. In addition, when a Ca2+ channel blocker was 

added, no aquaporin functionality was observed (Cabañero et al. 2006).  
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Moreover, the gene of ACA4 (calmodulin-regulated Ca2+ pump in endoplasmic reticulum) 

showed the same expression pattern as NIP2;2 in corn (Yue et al. 2012). In addition, Kapilan et al. 

(2018) reported that aquaporins activity could be directly modulated by divalent cations like Ca2+. 

Furthermore, Ca2+ seems to be involved in plasma membrane aquaporins regulation via a chain of 

processes within the cell but not by alteration of the stability of the plasma membrane (Carvajal et al. 

2000, Cabañero et al. 2006). Although a relationship among the Ca2+ transporters and aquaporins has 

not been demonstrated, these findings could suggest an interrelation between aquaporins and Ca2+ 

transporters that needs to be investigated in further studies.  

 

Magnesium  

Although it is difficult to find magnesium (Mg) deficiency in soils, its bioavailability is decreased by 

acidic soils, high rainfall in tropical regions (Gransee and Führs 2013, Sun et al. 2013), aluminum 

toxicity (Chen and Ma 2013), heat stress (Mengutay et al. 2013), drought-affected soils, and high levels 

of competing elements (K, Ca, NH4
+, and Na) (Guo et al. 2016). The homeostasis of Mg in A. thaliana 

cells is maintained by Mg transporters such as AtMHX (magnesium ion (Mg2+)/H+ exchanger) (Berezin 

et al. 2008, Gaash et al. 2013). Another well-known family of Mg transporters is the CorA family; this 

superfamily groups together high-, low-, and dual-affinity types of transporters. They are considered the 

primary Mg2+-transport system in plants and play major roles in Mg2+ uptake, distribution, and 

homeostasis in cells (Shaul 2002). In particular, under Mg-starvation conditions, BnMGT1;2 and 

BnMGT6;1 transporters, associated with Mg2+ translocation from root to shoot, were up-regulated in 

Brassica napus L. plants (Sun et al. 2019). There is some evidence that suggests a relationship between 

Mg deficiency and aquaporins activity since Yue et al. (2012) found that the CorA-like family protein 

(MRS2-2) has the same expression patterns as ZmPIP1;5 in corn plants. However, there is no clear 

evidence of a direct relationship between Mg deficiency and aquaporins activity. 

 

Sulfur 

Sulfur (S) is taken up and transported as the sulfate ion (SO4
2-), by a family of high-affinity 

transmembrane SO4
2- transporters that includes SULTR1;1, SULTR1;3, SULTR1;2, SULTR3;1, 

SULTR3;2, SULTR3;4, SULTR3;5, SULTR4;1, and SULTR4;2 (Yue et al. 2012). Under S deprivation, 

the expression of the SO4
2- transporter genes AtSultr1;1, AtSultr1;2, and AtSultr4;1 is up-regulated in A. 

thaliana, showing the importance of these high-affinity transporters under S deficiency (Buchner et al. 

2004). Although there is no evidence of a direct relationship between PIP aquaporins activity or 
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expression and S transporters, Yue et al. (2012) found that ZmSULTR2;1 exhibited the same expression 

patterns as ZmTIP2;2, while ZmSULTR3;4 exhibited the same expression patterns as ZmTIP3;2. This 

suggests the involvement of aquaporins in S transfer from the S pool in the vacuole to the cytoplasm. 

This could be the starting point for future studies focused on the cooperation of S transporters and 

aquaporins in stressed plants.  

 

The influence of deficiencies of micronutrients on the interaction of their transporters and 

aquaporins 

Micronutrient deficiencies are extensive in crop soils. Although the total concentration of micronutrients 

in soil may be optimal, their bioavailability is determined by soil factors such as pH, microorganisms, 

and water status (Mikula et al. 2020). However, as pointed out below, the interrelation of transporters 

and aquaporins need investigation (Fig. 1). 

The micronutrients are transported by big transporters families as ZRT-IRT-like Protein (ZIP), 

CAX, natural resistance-associated macrophage protein (NRAMP), heavy metal transporters (HMA) 

and yellow stripe like (YSL). ZIP, NRAMP and YSL are mainly influx transporters while CAX and 

HMA are mainly efflux ones, but their specific function depend on nutrient concentration and cellular 

localization (Dalcorso et al. 2014). Although, all families have members that could transport several 

micronutrient, the isoforms are highly specific (Haydon and Cobbett 2007). However, under deficient 

conditions, some overexpressed transporters can transport other similar cations, increasing their 

concentration (Williams et al. 2000).  

 

Iron 

Although iron (Fe) is an abundant element in soil, most of it is present as non-available (insoluble) forms 

(Ricachenevsky et al. 2013). Plants possess different strategies of Fe uptake from soil, involving 

reduction of insoluble Fe3+ to soluble Fe2+ (Strategy I) or direct chelation in the rhizosphere (Strategy 

II) (Briat et al. 2015).  

Thus far, the relationship between Fe and water flow has not been directly studied. Under Fe 

deficiency, plants seem to produce a signal that could influence the water movement through the plant. 

Lei et al. (2014) concluded that in Fe-deficient A. thaliana plants the contents of some hormones, such 

as abscisic acid (ABA) increase, as well as  the expression of tonoplast AtNRAMP3, leading to the 

removal of Fe from vacuolar pools. Also, the expression of plasma membrane transporters localized 

mainly in pericycle and vascular cells - namely, AtFRD3, AtYSL2, and AtNAS1 - was increased to 
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enhance long-distance transport of Fe. In addition, a study performed by Hopff et al. (2013), in maize 

roots, showed a decrease in PIP2.2 abundance under Fe deficiency, but no relationship has been found 

between the two types of transporter (Fe-transporters and aquaporins). Now, Fe uptake and transport 

have been studied in depth, but the roles of aquaporins as plasma membrane proteins could be a starting 

point for future investigation of Fe movement.  

 

Manganese 

Deficiencies of manganese (Mn) often appear in plants growing in alkaline soils or in soils with a high 

concentration of other minerals, such as Fe, Mg, Ca, or P, which decreases Mn bioavailability 

(Marschner 2011). Manganese could be a substrate of many membrane transporters that have been 

reported to contribute to the influx and efflux of this element. In this regard, the transporter families can 

be separated according to their participation in Mn efflux or influx. Then, NRAMP, ZIP, and YSL are 

considered Mn influx transporters. NRAMP is a big family of transporters localized in the plasma 

membrane, NRAMP1 being the main member that contributes to Mn uptake. Also, other members, such 

as NRAMP3 and 4, have been found in the tonoplast, where they regulate the Mn homeostasis in cells 

(Thomine et al. 2003). Besides, members of the ZIP family are known to transport metals in plants; they 

are localized mainly in the plasma membrane and are composed of eight transmembrane domains 

(Rogers et al. 2000). Studies in A. thaliana have demonstrated that many members - such as AtZIP1, 

AtZIP2, AtZIP5, AtZIP6, AtZIP7, and AtZIP9 - are involved in Mn uptake, mainly under Mn deficiency 

(Milner et al. 2013); AtZIP1 is  localized in the tonoplast, suggesting that it is involved in Mn movement 

from vacuole to cytoplasm. In addition, some YSL transporters, which are proteins involved in the long-

distance and intracellular transport of metals, have been shown to be involved in Mn influx. In A. 

thaliana, YSL 4 and 6 have been localized in the membranes of the vacuole and chloroplast, moving 

Mn from these organelles to the cytosol. Also, in rice plants, these transporters were found in the plasma 

membrane, involved in Mn uptake from the apoplast (Socha and Guerinot 2014).  

Also, there are many protein families involved in Mn efflux - such as the cation exchanger 

(CAX), Ca cation exchanger (CCX), and vacuolar Fe transporter (VIT) families - together with Ca-

permeable channels (Gollhofer et al. 2011, Zhang et al. 2012). Thus, CAX and CCX have been localized 

in the tonoplast and they are involved in Mn movement from cytosol to vacuole in A. thaliana. Also, 

VITs were found in the tonoplast of rice and A. thaliana. Under Mn deficiency, Mn can pass through 

the plasma membrane via Ca-permeable channels, from apoplast to cytoplasm (White et al. 2002). 
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Although there has been no investigation that relates water flow, aquaporins, and Mn nutrition status, 

the fact that there is a relationship with other micronutrients supports some unknown interrelations.  

 

Copper 

Copper (Cu) is moved by membrane transporters of several families, such as COPT, ZIP, HMA, and 

YSL. Under Cu deficiency, there is up-regulation of COPT 1 and 2 and ZIP 2 and 4, which encode 

proteins localized in the plasma membrane, mainly in root tips and the zone of differentiation. Also, 

COPT5, localized in the tonoplast, mediates influx transport to increase the Cu concentration in the 

cytosol. In addition, under Cu deficiency, the abundance of YSL 2 increases since it is involved in long-

distance transport of Cu, from the xylem to sink cells. However, there are other important transporters, 

like HMA5, that have a contrary role depending on the plant. So, in rice, HMA5 is up-regulated to 

facilitate long-distance Cu transport since it mediates Cu efflux across the plasma membrane. While, in 

A. thaliana, HMA5 is localized in the tonoplast, mediating Cu efflux to the vacuole; under Cu deficiency 

its expression is down-regulated (Bernal et al. 2012, Aguirre and Pilon 2016, Printz et al. 2016). 

Few studies have demonstrated the relationship of Cu stress with water uptake and transport. It has been 

reported that in the leaves of Cu-deficient plants of safflower (Carthamus tinctorius L.) and cotton 

(Gossypium hirsutum L.) the water flow was decreased, since these plants had low stomatal conductivity 

(Sharma 2006). However, an excess of Cu could affect aquaporins functioning in the plasma membrane, 

inhibiting their water transport. In this way, the blue copper‐binding protein ( GhBCP2) has been 

reported to inhibit the cotton GhPIP2;6 activity, suggesting that Cu levels could regulate the function of 

this aquaporin decreasing the water flow across it (Li et al. 2013). Recently, Landa et al. (2017) reported 

that excess Cu provoked the down-regulation of genes involved in metal homeostasis and aquaporins 

synthesis in A. thaliana plants. A high Cu concentration provoked a decrease in the transcription of 

aquaporins genes, such as PIP1C, DELTATIP, TIP2, and PIP2;4, reducing water uptake. Also, these 

authors indicated that the reduction of water flow was due to damage to the membrane structure caused 

by the low content and expression of aquaporins under this condition.  

In addition, Noronha et al. (2016) described a XIP in grapevine (Vitis vinifera L.), VvXIP1, that 

transports Cu and Ni, but an excess of Cu provoked a down-expression of this aquaporin. The 

mechanism by which cations cross the aquaporins pore is unknown at this time. But, these authors 

suggested similarities with the results found in human aquaporins. They pointed out that PIP1 is formed 

by four subunits having one pore each, and water should be transported by each individual pore, but the 

central pore could facilitate the diffusion of charged solutes in response to cyclic nucleotide binding. 
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Previously, Yool and Weinstein (2002) found similarities between the carboxy tail domains of cyclic 

nucleotide gated (CNG) channels and PIP1. This could open the way to future studies that help us to 

understand the possible role of aquaporins in the transport of cations. 

 

Molybdenum 

Molydenum (Mo) uptake is mediated by a plasma membrane transporter known as MOT1, described in 

A. thaliana; due to its analogy with S transport it was known previously as SULTR5;2 (Mendel and 

Kruse 2012). Also, there is another Mo transporter localized in the vacuolar membrane, known as 

MOT2; normally, it accumulates and its activity increases in senescing leaves, suggesting that MOT2 

could transport Mo from vacuole to cytosol (Vatansever et al. 2017). 

In relation to Mo and water status, there are no studies that found a direct relationship between 

them. However, under Mo deficiency, nitrate reductase is inactive and the NO3
- concentration increases 

in cells and tissues. This could enhance TIPs activity since these aquaporins are involved in NO3
- efflux 

to the vacuole (Little et al. 2005), which would avoid NO3
- toxicity as the first step under Mo deficiency. 

Therefore, although there are no studies relating transporters of Mo and aquaporins, the indirect 

evidence for such a relationship supports the need for mutual regulation. 

 

Zinc 

Zinc (Zn) uptake by plants is carried out by six families of transporters that include: ZIP, cation diffusion 

facilitator proteins (CDF), P-type ATPase, NRAMP, ATPase, HMA, and CAX (Kobae et al. 2004). 

Members of the ZIP family move Zn from apoplast to cytosol, so they are considered the main 

transporters involved in Zn uptake from soil (Lin et al. 2009). However, Zn movement at the vacuolar 

level is controlled by CDF (efflux) and NRAMP (influx) (Oomen et al. 2009), so that the cytosolic Zn 

concentration is highly controlled. Under Zn deficiency, many ZIP transporters are strongly induced, 

mainly ZIP4, which is localized in the plasma membrane of root tip and epidermal cells (Assunção et 

al. 2010). Also, it seems that there is a general response to Zn deficiency in higher plants, since the 

transcription factors involved in the increase in these ZIP transporters are found in several species 

(Assunção et al. 2010; Kabir et al. 2014). In addition, NRAMP transporters in the tonoplast are up-

regulated while CDF are down-regulated, to transfer vacuolar Zn to the cytosol (Kabir et al. 2014). 

Furthermore, HMA transporters, mainly HMA2, are found in the plasma membrane of root vascular 

cells and affect the loading of Zn into the xylem for transport to the shoot in times of deficiency. Also, 
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these transporters permit Zn to cross the plasma membrane of root cells, reaching the xylem and finally 

the shoots (Hussain et al. 2004). 

Zinc deficiency has been shown to provoke changes in water relations in plants similar to those 

observed under drought stress, but aquaporins have not been studied in this regard. However, Jain et al. 

(2008) showed that excess Zn acted as an inhibitor of PIPs functions in seeds of tomato (Solanum 

lycopersicum L.). Also, Devi et al. (2016) studied the effect of excess Zn in soybean plants, observing 

no increase in aquaporins transcription, but there was inhibition of aquaporins function, with reduced 

water flow across cells. In this way, Gitto and Fricke (2018) showed decreased plant water flow together 

with a decrease in aquaporins functionality (14-80%), mainly for PIP1;3, PIP2;4, and PIP2;5 that are 

involved in water flux. But, a recent work in poplar (Populus trichocarpa L.) reported that excess Zn 

not only down-regulated PIP1, but also provoked post-translational changes - since it was observed that 

PIP1 was co-localized in the vacuolar membrane together with TIP1, in A. thaliana protoplasts (Ariani 

et al. 2019) - which could be involved in the control of water fluxes to maintain the cell homeostasis 

under excess Zn. Future investigations are needed to understand the Zn-water flux relationship, but 

reports on the relationship between Zn deficiency and aquaporins are scarce.  

 

Boron 

Boron (B) deficiency is one of the most widespread micronutrient deficiencies in crops. Boron can be 

taken up by plants in different ways. For a long time, passive diffusion was considered the only way of 

entry of B into roots and cells. This probably is the main mechanism under optimal or high B conditions 

(Miwa and Fujiwara 2010). But, at low external B concentrations, this element can be taken up by an 

active process mediated by the specific efflux transporter BOR1 localized in the inner domain of root 

cells (Dannel et al. 2000). In addition, some aquaporins - such as NIP5;1 - are able to transport B (Kato 

et al. 2009). Takano et al. (2006) reported that, under B deficiency, damage to the xylem could reduce 

water transport to leaves, affecting the distribution of other elements: in this situation, aquaporin NP5;1 

was highly expressed in A. thaliana plants, with an increase of almost 15-fold. Also, the expression of 

NIP6;1, which is expressed mainly in the phloem of stems, doubled  under B-deficient conditions 

(Tanaka et al. 2008). Such increases in expression have also been observed for other NIPs, such as 

NIP3,1 in rice and NIP2,1 in barley (Hordeum vulgare L.); the latter was described as participating in 

B transport, indicating the important roles of this channel protein in B uptake and transport (Hanaoka 

and Fujiwara 2007, Schnurbusch et al. 2010). In addition, other B transporters, like BOR1, should be 

activated under these conditions to increase the B movement across root cells to the stele, due to the 
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opposite localizations of NIP and BOR in the plasma membrane that facilitates B movement. Another 

transporter, known as BOR2, is involved in the efflux of B from symplast to apoplast, to maintain the 

formation in root cells of the cell wall, due to the importance of this structure to plant cells.  

Although, under B toxicity, normally BOR1 is quickly degraded to avoid excessive transport of 

B to the shoot (Poschenrieder et al. 2019), in rice an enhancement of other aquaporins, such as OsPIP2,4 

and OsPIP2,7 (Kumar et al. 2014), to augment B movement to the leaves, was observed. Sutton et al. 

(2007), in barley plants, demonstrated an enhanced expression of efflux transporters in cells of leaves 

and roots; the key to tolerance lies in an increase in B efflux from the sensitive symplast to the apoplast, 

with later efflux of this B from hydathodes to the leaf surface, mediated by BOR1 (Reid and Fitzpatrick 

2009). In addition, a member of the TIP aquaporins family localized in the tonoplast, AtTIP5,1 has been 

described as participating in B transport, effluxing it to the vacuole and thereby increasing the tolerance 

of B toxicity in A. thaliana plants (Pang et al. 2010). Finally, due to the importance of B to plants, a 

large number of aquaporins, of distinct types, participate in its homeostasis, mediating both influx and 

efflux processes. Thus, its movement is highly regulated, to maintain optimal B concentrations in cells 

and tissues.  

 

 

Effect of drought on the interaction of nutrient transporters and aquaporins 

The main effect of drought stress is the reduction of crop growth and yield, which ranges from 10 to 

90% depending on the severity and the phenological stage of the plant when subjected to water deficit. 

The reduced water availability leads to a reduction in cell turgor, inhibiting cell elongation and 

promoting stomatal closure. The latter inhibits CO2 absorption and photosynthetic efficiency, but also 

reduces water and nutrients uptake (Akinci and Lösel 2012). 

In general, most of the genes encoding nitrate transporters and the enzymes responsible for NO3
- 

assimilation and remobilization are down-regulated under drought stress (Goel and Singh 2015). 

However, in Brassica juncea L. plants, the expression of BjNRT1;1 and BjNRT1;5 was found to be up-

regulated after 1 h of exposure to different abiotic stresses, indicating an early reaction of N 

accumulation upon detection of the onset of stress, but down-regulation occurred after 24 h, affecting 

most of the N transporters, including BjNRT2;1 (Goel and Singh 2015). However, there are differences 

in the regulation of NRTs among different species and varieties of the same plant species. As an 

example, Duan et al. (2016) showed that a N-inefficient variety of winter wheat (Triticum aestivum L.) 

up-regulated NRT1;1, NRT1;2, and NRT2;2 in the reproductive stage and had strong down-regulation 
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of NRT2;1, 2;2, and 2;3 (high-affinity transporters) in vegetative tissues after 30 days of drought stress 

(long-term stress). Meanwhile, a N-efficient variety maintained the expression of almost all the NO3
- 

transporters, including the fundamental sensor NRT1;1 and the NRT2;1 and NRT2;2, at the same levels 

(Duan et al. 2016), demonstrating a better NO3
-
 uptake capacity. Curiously, the N-efficient variety also 

showed an up-regulation of AMT1;2 (NH4
+ transporter), that points to a fine sensing of changes in the 

availability of N forms in the soil and to better resource utilization under such long periods of drought 

stress. 

Under drought conditions, Pi uptake in plants is likely associated with alterations in the 

expression of the PHT family of transporters, and reflects the degree of drought tolerance in plants. In 

poplar PtPHO9 and PtPHT1;2 were up-regulated under drought (Zhang et al. 2016a); in apple (Malus 

domestica L.) MdPHT1;5, MdPHT1;7, and MdPHT4;7 were up-regulated in roots, and MdPHT3;7 and 

MdPHT4;3 in leaves (Sun et al. 2017); and in B. napus only three genes, BnaPT11, BnaPT34, and 

BnaPT38 (BnPHT1 family), were up-regulated in roots while 18 genes of the BnPHT1 family were up-

regulated in the leaves under drought stress, and, in addition, no genes were down-regulated (Li et al. 

2019c). 

Regarding the K+ transporters, it has been reported that the grapevine K+ transporter VvK1.1, 

the counterpart of the A. thaliana AKT1 channel, has a major role in K+ uptake from the soil solution 

and its expression is strongly sensitive to drought stress. Nevertheless, the highest expression of VvK1;1 

has been shown in berries, where it is localized in the phloem vasculature, pointing to a major role in 

K+ loading into berry tissues, especially upon drought stress (Cuéllar et al. 2010). Also, in chickpea 

(Cicer arietinum L.), the CarAKT1,2 influx K+ transporter and CarGORK (putatively involved in the 

K+ efflux directly related to stomatal closure (Osakabe et al. 2013)) were both up-regulated in response 

to drought stress (Azeem et al. 2018). However, decreased expression of CarKAT1,1 in chickpea and of 

HvAKT1 in barley indicates that the change in the transcript level of some members of the AKT1 family 

might not be related to drought tolerance (Azeem et al. 2018, Cai et al. 2019). The results demonstrate 

that a fine regulation of K+ transporters is essential to develop a strategy to cope with drought stress, 

although the response seems to be time- and genotype-dependent (Cai et al. 2019). 

Calcium plays a key role as signaling molecule. When plants are exposed to abiotic stress, 

transient peaks of Ca2+ in cytoplasm regulate the response of different genes and proteins activity 

depending on the intensity and duration of the stress (Choi et al. 2014, Jing et al. 2019). For this reason, 

there is high variability in the regulation of calcium transporters under drought stress depending on 

tissues and specific functions. Plant Ca2+ pumps are involved in Ca2+ efflux from the cytosol. The 
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transcript level of P-IIB Ca-ATPase PCA1 rose in Physcomitrella patens, B&S. were up-regulated in 

response to dehydration and abscisic acid (Qudeimat et al. 2008), and some auto-inhibited calcium 

ATPases (ACAs) and ER-type ATPases (ECAs) pumps have shown to be regulated by short-term 

dehydration stress in rice, ACA5 and ACA7 being strongly up-regulated in roots and seedlings, while 

ECA1 and ACA4 were strongly down-regulated and ACA3, ACA5, and ACA7 were up-regulated in 

mature leaves (Singh et al. 2014). In Brassica oleracea L., the BoACA4 and BoACA11 levels remained 

high for 24 h in leaves under dehydration stress (Lee et al. 2013). For A. thaliana and rice CAX 

(exchangers of Ca2+), transcripts levels increased or decreased in abundance in response to water deficit 

(Bickerton and Pittman 2015). A wide-ranging analysis in rice showed differences in the patterns of 

regulation between tissues, almost all the CAX exchangers being down-regulated in roots but not in leaf 

tissues (Singh et al. 2014). Also, in B. oleracea the expression level of BoCAX1 in leaf tissues gradually 

increased with the drought stress imposed (Lee et al. 2013), probably indicating a link to drought 

tolerance. 

Under drought stress, differences in the response of aquaporins have been shown between 

different aquaporin homologs in diverse plant species (Gambetta et al. 2017), cultivars of the same plant 

species with differing drought tolerance strategies (Vandeleur et al. 2009), and between tissues (Martins 

et al. 2015) or even between portions of the same tissue (Knipfer et al. 2011). Indeed, root transcriptome 

analysis showed both up and down-regulation of different PIPs, TIPs, and NIPs homologs under drought 

stress (Molina et al. 2008, Aroca et al. 2012, Afzal et al. 2016) and different homologs responded 

differently depending on the intensity and nature of the stress applied (Aroca et al. 2012, Bárzana et al. 

2014). Among the aquaporin groups, PIPs are the most responsive to drought stress, undergoing a 

general transcriptional down-regulation, particularly in roots (Jang et al. 2004, Alexandersson et al. 

2005, Mahdieh et al. 2008, Ruiz-Lozano et al. 2009, Šurbanovski et al. 2013, Bárzana et al. 2014). Only 

a few PIP genes (mostly from the PIP1 subgroup) were found to be up-regulated - in specific tissues and 

drought conditions, especially in leaves (Jang et al. 2004, Lian et al. 2004, Aroca et al. 2007, Mahdieh 

et al. 2008, Li et al. 2009, Ruiz-Lozano et al. 2009, Vandeleur et al. 2009, Bárzana et al. 2014, Martins 

et al. 2015). This up-regulation of specific isoforms of the PIP1 subgroup in leaves implies their 

involvement in gas and water exchange and stomatal behavior under stress conditions (Flexas et al. 

2006, Cui et al. 2008, Uehlein et al. 2012, Wang et al. 2016, Zwiazek et al. 2017). 

Studies with transgenic plants overexpressing PIP aquaporin genes have also yielded complex 

outcomes, sometimes with increased plant resistance (Lian et al. 2004, Cui et al. 2008, Ayadi et al. 2011,  

Sreedharan et al. 2013, Xu et al. 2014, Zhuang et al. 2015), but not in other cases (Aharon et al. 2003, 
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Katsuhara et al. 2003, Jang et al. 2007), while silencing of PIP genes commonly increases the 

susceptibility of the plants to drought stress (Martre et al. 2002, Siefritz et al. 2002, Yu et al. 2005).  

Besides PIPs, also TIPs and NIPs could be involved in the response of plants to drought stress. 

However, studies involving the overexpression of TIP and NIP homologs in different plants are scarce 

and also provide contradictory results. The constitutive expression of SlTIP2;2 converted tomato plants 

from isohydric to anisohydric drought-tolerance behavior (Sade et al. 2009). Overexpression of Panax 

ginseng, C.A.Mey. PgTIP1 in A. thaliana plants was detrimental to drought resistance under limited 

water supply due to rapid drying of the rooting medium and faster water loss through leaves by enhanced 

transpiration, but may be beneficial under slight drought stress and favorable growing conditions (Peng 

et al. 2007). Transgenic A. thaliana plants expressing TaNIP showed much longer roots and higher salt 

tolerance (Gao et al. 2010), while the tolerance of drought was not directly tested. 

The regulation of aquaporins by different N forms provides an effective mechanism to increase 

plant water stress tolerance and water use efficiency. Aquaporins are tightly linked with N metabolism 

in higher plants, and members of the PIP, NIP, and TIP subfamilies have been shown to transport NH3 

and urea, and are directly involved in maintenance of the cytoplasm-vacuole balance (Gaspar et al. 2003, 

Liu et al. 2003, Jahn et al. 2004, Loqué et al. 2005, Wallace and Roberts 2005, Bertl and Kaldenhoff 

2007, Gu et al. 2012, Bárzana et al. 2014, Yang et al. 2015, Zhang et al. 2016b). Moreover, NO3
- and 

NH4
+ are critical signaling factors for radial water fluxes in the roots (Gorska et al. 2008, Ding et al. 

2015). PIP expression has been shown to be controlled by both exogenous and internal NO3
- 

concentrations and the increased root hydraulic conductivity stimulated by NO3
- correlated with up-

regulation of PIP expression (Li et al. 2016). Under water stress, NH4
+ increased the drought tolerance 

of rice plants by inducing aquaporin expression and activity, which corresponded with increased root 

water uptake (Ding et al. 2015). In relation to urea, while DUR3 was identified as a high-affinity urea 

transporter, members of the PIP, NIP, and TIP sub-groups of aquaporins were identified as low-affinity 

transporters (Liu et al. 2003, Gu et al. 2012, Yang et al. 2015, Zhang et al. 2016b). The uptake or 

reutilization of urea as a N source could be extremely useful to the plant under drought conditions, when 

the NO3
- availability in soil decreases considerably. In Cucumis sativus L., CsNIP2;1 has a function in 

root urea uptake (Zhang et al. 2016b), and both CsNIP2;1 and DUR3 are up-regulated under conditions 

of N limitation such as under drought stress (Wang et al. 2016). Indeed, an up-regulation of maize 

ZmTIP1.1 and ZmTIP1.2 with a direct link to water, NH4
+, and urea transport, and a possible role in the 

remobilization of N under severe drought stress, has been described (Bárzana et al. 2014), while 
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ZmTIP4;4 has been related to vacuolar unloading under N-deprivation (Gu et al. 2012). We cannot rule 

out, therefore, that DUR3 and AMT1 are equally involved in such redistribution under drought stress. 

There are several studies that relate Pi uptake with water flow. The fact that Pi accumulation 

was reduced under drought conditions indicates that aquaporins expression was also reduced (Carvajal 

et al. 1996b, Lovelock et al. 2006, Wang et al. 2016). Similarly, it has been reported that augmented Pi 

uptake is related to increased aquaporins expression and/or activity during the recovery of plant water 

status after drought stress (Shangguan et al. 2005). 

There is also a close relationship between water and K under drought stress. Both are transported 

throughout the plant by channels/transporters which share regulatory mechanisms under drought stress. 

Transmembrane channels for water and K+ channels/transporters are co-regulated and function in a 

coordinated manner to maintain the cytosolic osmolality. The first evidence of this coordination was 

obtained with K+-channel inhibitors that produce a diminution in the hydraulic conductivity of the roots 

(Tazawa et al. 2001) and down-regulation of both water channels (PIP1;2, PIP2;2, and TIP1;2) and the 

K transporter HAK5  (Sahr et al. 2005). Similar co-regulation has been observed under drought stress in 

rice plants, where water deficiency strongly affects PIPs aquaporins and the OsAKT1, OsHAK1, and 

OsHKT1 K+ channel and transporters in a coordinated manner that directly affects hydraulic 

conductance (Liu et al. 2006). These authors suggested that a common factor should exist for ion and 

water channels regulation in plants, ABA being the suggested candidate. 

The interaction between Ca2+ and water channels/transporters under drought stress has not been 

directly measured, but it is well known that Ca2+ can indirectly and directly regulate the water transport 

in plants. The first clues of an indirect regulation of the closure of aquaporin channels by 

phosphorylation mediated by Ca2+ were provided in the 1990s for PIPs, TIPs, and NIPs isoforms, and 

the relationship of this aquaporin gating with a diminished water conductance of membranes mediated 

by Ca2+ and, to a lesser degree, by Mg2+ is well established (Johnson and Chrispeels 1992, Weaver and 

Roberts 1992, Johansson et al. 1996, Gerbeau et al. 2002). In roots, AtPIP2;1, AtPIP2;2, and AtPIP2;7 

are important for the regulation of water flow through plants, and AtPIP2;1 is also implicated in 

signaling for stomatal closure; these aquaporins are Ca2+-regulated, by direct interaction (Byrt et al. 

2017, Kourghi et al. 2017). 

 

 

Effect of salinity on the interaction of nutrient transporters and aquaporins  
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Salinity is one of the most widespread plant abiotic stresses around the world. Around 6% of the total 

land area is affected by salinity, which corresponds to 800 million hectares (Munns and Tester 2008). 

Soil is considered saline when the EC is greater than 4 dS m-1 and the osmotic pressure is ~ 0.2 MPa 

(USDA-ARS 2008). This stress entails large losses in agriculture, since moderate levels of 

environmental salt cause important decreases in the yield of crops because the most important crops are 

glycophytes (sensitive to saline stress) (Cheeseman 2015). This problem has arisen firstly due to natural 

causes and secondly through human-induced changes, and soil salinization is expected to increase 

further owing to climate change (Munns and Tester 2008, Zaman et al. 2018). Therefore, there has been 

an increase in the scientific research with the objective of understanding mechanisms of salt tolerance 

in plants. Different ways to solve the salinity problem have been proposed, such as the establishment of 

halophytic plants (resistant to saline stress) as new crops or the improvement of the tolerance of the 

main crop species by crossing or transferring genes from halophytes (Cheeseman 2015).  

The accumulation of salt in the soil results in a plant stress that can be divided in two phases: (1) a rapid 

osmotic and water stress, caused by a decrease in water uptake (Sharma et al. 2012) and (2) a slower 

ionic and nutritional stress, due to the competition among saline ions (Na+, Cl-) and ionic forms of 

nutrients and/or the toxicity of saline ions (Munns and Tester 2008). Therefore, primary C and N 

metabolism in plant cells is altered (Ashraf et al. 2018) especially, NO3
- uptake and transport through 

roots is disrupted (Gallegos-Cedillo et al. 2016), the levels of many signalling molecules are modified 

(Zhang et al. 2016c), protein synthesis is reduced (and the transmembrane movement of water is altered 

(Patankar et al. 2019). Regarding tolerance mechanisms to deal with this stress, there are three types of 

plant response or tolerance (Munns and Tester 2008): (1) tolerance of osmotic stress with a primary 

response, namely the inhibition of root water uptake and a decrease in Lp (Boursiac et al. 2005), (2) Na+ 

exclusion from leaf blades, to ensure that Na does not reach a toxic concentration, and (3) intracellular 

compartmentalization of Na, to avoid a toxic accumulation within the cytoplasm. These tolerance 

mechanisms vary or are more or less efficient depending on whether the plant is a halophyte or 

glycophyte (Munns 2002, Himabindu et al. 2016).  

Therefore, saline stress is associated with nutritional stress caused by a deficit in the uptake of 

essential nutrients from the soil, because excessive concentrations of Na+ and Cl- impair the uptake of 

beneficial ions (K+ and Ca2+) (Acosta-Motos et al. 2017). Furthermore, a balanced K+/Na+ ratio inside 

metabolically-active tissue and an adequate Ca2+ status, which is part of the signalling mechanism of 

Na+ exclusion (Chakraborty et al. 2018), are important factors for salt tolerance. Hence, nutrient 

transporters have a key role in the response and tolerance mechanisms employed against saline stress. 
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The most studied transporters in this regard are K+ (HAK, AKT, KT, and KUP families) and Na+ (SOS, 

NHX, and HKT families) specific transporters, which control the cellular ion homeostasis and salt 

tolerance (Chakraborty et al. 2018). As a response to salt stress, the genes of these transporters are up- 

(Wang et al. 2017) or down-regulated (Chen et al. 2017a) depending on plant type or in relation to the 

degree of tolerance.  

Apart from these elements, saline stress also affects the homeostasis of other ions, such as Ca2+, 

Mg2+, or NO3
-, and the plant response in this sense is also important to confer salt tolerance. Hence, 

different studies, mainly in A. thaliana, have shown that CAX transporters (H+/Ca2+ antiporters located 

in the tonoplast) are precisely modulated under salt stress - with CAX expression being higher or lower 

in response to salinity, depending on the isoform - to provide tolerance (reviewed in Bickerton and 

Pittman 2015). Regarding Mg2+, Chen et al. (2017b) reported that a Mg transporter (OsMGT1) was 

involved in enhancing the activity of OsHKT1;5 in the stelar tissues of the root mature zone; specifically, 

the Mg2+ transported by OsMGT1 was the enhancer of this activity. In the tolerance of this stress, 

OsHKT1;5 plays an essential role, restricting Na+ accumulation in the shoots by excluding Na+ from the 

xylem (Cotsaftis et al. 2012). The exact mechanism of its activation is unknown but Mg2+ could be 

required for the stereo-structure of the OsHKT1;5 protein (Chen et al. 2017b). As for NO3
-, there is a 

family of specific transporters (NRT). As indicated above, NO3
- uptake is altered under saline stress; 

this will involve these transporters, specifically NRT2, whose genes are mainly expressed in the roots 

(Wang et al. 2003). For example, NRT2;1 genes are down-regulated under high salinity in different 

plants, such as Solanum pennelli L., S. esculentum L., B. juncea, and A. thaliana (Yao et al. 2008, Goel 

and Singh 2015, Taochy et al. 2015, Abouelsaad et al. 2016). Also, as NRT2.1 is involved in promoting 

lateral root (Remans et al. 2006), a reduction in the mRNA content of NRT2.1 could subsequently reduce 

nitrate uptake under salt stress. 

As indicated above, salinity stress is directly related to the water status of plants; specifically, 

water transport rates are quickly reduced. Therefore, aquaporins play an important role in the response 

to this stress (Chaumont et al. 2005, Kapilan et al. 2018) and in the tolerance mechanisms (Afzal et al. 

2016). Salinity affects the expression of aquaporins genes and produces biochemical changes in these 

proteins (Martínez-Ballesta et al. 2006); the changes occur to regulate water transport and to try to 

maintain the water homeostasis. It is difficult to establish a general pattern for the behaviour of 

aquaporins under saline stress. In some reports, general conclusions appear, such as that in A. thaliana 

there is a 60 to 75% decrease in the abundance of PIP and TIP transcripts in the medium-to-long term 

after salt treatment (100 mM NaCl) (Boursiac et al. 2005, Sutka et al. 2011, Afzal et al. 2016). However, 
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this effect varies according to the type of aquaporin, the duration and intensity of the stress, and the 

tolerance of the plant and tissue (Kapilan et al. 2018). In A. thaliana seedlings, clear differences in the 

response to salt stress, regarding aquaporins expression in aerial parts and roots, were revealed (Jang et 

al. 2004): for example, in aerial parts, after a short exposure to NaCl, PIP2;2 and PIP2;3 were up-

regulated and PIP2;6 down-regulated, and in roots PIP1;1, PIP1;2, PIP1;3, and PIP2;7 were up-

regulated and PIP1;5 down-regulated. Nevertheless, in other work, Pou et al. (2016) showed that PIP2;7 

expression was repressed in A. thaliana seedlings under salt stress; the main difference with respect to 

the previous work mentioned was the age of the plants, which in the first work was 2 weeks and in the 

second only 8 days. In the same way, Muries et al. (2011) showed that PIP1 and PIP2 were down-

regulated in roots of broccoli plants after NaCl treatment for 15 days, although the amount of PIP1 and 

PIP2 in PM increased. Nonetheless, the water transport capacity of the roots decreased after 15 days of 

saline stress. 

Overexpression of different aquaporins genes is widespread as a way to elucidate the role of 

these proteins in the response to salinity. In this sense, different works have shown that transgenic plants 

overexpressing certain aquaporins genes possessed higher salinity tolerance: for example, MaPIP2;7 

and MaPIP1;2 in banana plants (Musa acuminata L.) (Sreedharan et al. 2013, Xu et al. 2020), PdPIP1;2 

in date palm (Phoenix dactylifera L.) (Patankar et al. 2019), or ScPIP1;1 from jojoba (Simmondsia 

chinensis L.) and MsPIP2;2 from alfalfa (Medicago sativa L.) in A. thaliana (Li et al. 2019b, Wang et 

al. 2019).  

In addition to these subfamilies of aquaporins, others - such as the NIP subfamily - have been 

reported to have a role in salt tolerance. For instance, Gao et al. (2010) showed that the expression of 

TaNIP in winter wheat was up-regulated under salinity, while transgenic A. thaliana plants over-

expressing TaNIP had higher salt tolerance. The greater tolerance of these transgenic plants is due to 

the role of the overexpressed aquaporins in (1) the accumulation of compatible solutes to improve 

osmotic adjustment, since previous works have shown the role of certain aquaporins in the permeability 

of the vacuole membrane to small solutes; for example, NtTIPa in tobacco (Gerbeau et al. 1999), (2) the 

improvement of the antioxidant defence system, to reduce membrane damage, and the activation of 

immunity signalling pathways, since some aquaporins transport H2O2 into the cytoplasm (Boursiac et 

al. 2008, Tian et al. 2016), and (3) the decline in Na+ and K+ contents and the maintenance of a balanced 

K+/Na+ ratio, which is in consonance with the evidence that certain aquaporins are involved in Na+ 

uptake by roots (Byrt et al. 2017). 
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Regardless of the effect of salinity on aquaporins in terms of gene expression, this stress causes 

changes at the protein level and in the function and status of aquaporins. For example, changes in the 

cytosolic levels of pH and Ca2+ trigger modification in the aquaporins. It has been reported that in salt-

sensitive plants the cytosolic pH decreases (Kader et al. 2007), causing aquaporin closure due to a pH-

sensitive His residue that helps to maintain the aquaporin in a closed state (Törnroth-Horsefield et al. 

2006). Also, the reduction in cytosolic Ca2+ caused by salt stress seems to be associated with an 

inhibition of aquaporins (Martínez-Ballesta et al. 2008).  

The importance of nutrient and water transport under saline stress for the correct development 

of plants suggests that there could be a key relationship between some nutrient transporters and 

aquaporins in the maintenance of the cell homeostasis and in the improvement of salt tolerance in plants. 

In A. thaliana plants that over-expressed a NIP aquaporin, produced more salt-tolerant when the 

expression of SOS2 (a Na+-specific transporter) was suppressed (Gao et al. 2010). Cheng et al. (2004) 

found that SOS2 could regulate CAX1 (a H+/Ca2+ antiporter) negatively, so it is possible that NIP is 

involved in Ca2+ homeostasis, which is a salt stress response regulating the cytosolic pH (Pittman and 

Hirschi 2016). Another example of interaction is that of NRT2;1 (a NO3
- transporter) and PIP aquaporins 

in A. thaliana. Li et al. (2016) revealed modification of Lp mediated by NO3
- and NRT2;1, there being 

a positive correlation between Lp and NO3
-. The modification of Lp is through regulation of PIP 

aquaporins, which are mainly responsible for Lp and thus there is a direct relationship between PIPs and 

water transport. As we have indicated above, a reduction in NRT2;1 abundance in roots under salinity 

has been reported, which could cause a decrease in the content or functionality of PIP aquaporins, since 

NRT2;1 triggers a regulation of aquaporins at the transcriptional and post-transcriptional levels (Li et al. 

2016). A lower activity of PIP aquaporins would lead to a decrease in Lp, which is a plant response to 

salt stress (Boursiac et al. 2005). The work cited and the existing knowledge about saline stress and the 

response of plants to it allow us to conclude that the regulation of Lp as a response to salinity could 

depend on the external and internal NO3
- concentrations and the NRT2;1 activity, through regulation of 

PIP aquaporins. This last aspect would be in accordance with previous knowledge on the correlation 

between nitrogen and water uptake into plant roots (Clarkson 2000).  

 

 

Effect of low temperature on the interaction of nutrient transporters and aquaporins 

Extreme temperature is a major abiotic stress for plants and one of the main environmental factors that 

hinder plant growth and development and vegetation distribution (Jeon and Kim 2013). Due to climate 
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changes, weather punctuated by extreme temperature events will affect future agricultural production. 

In crop production areas, sudden low temperatures nowadays very often produce yield reduction (Lohani 

et al. 2019). Therefore, it is vital to understand how temperature can affect the transport of nutrients and 

water by plants, to optimize the production (Fig. 2). 

One of the most important nutrients whose transport is affected by low temperatures is nitrogen, 

for several reasons. Firstly, low temperatures modify the form (NH4
+ or NO3

-) in which nitrogen is found 

in soil. At low temperatures, nitrifying bacteria become inactivated, increasing the NH4
+/NO3

- ratio, 

NH4
+ being less mobile (Laanbroek 1990, Warren 2009). Also, NH4

+ uptake via the high-affinity 

transport system (HATS) has been reported to be reduced by low temperatures (Wang et al. 1993). Also, 

a study in B. juncea reported that low temperatures decrease the expression of the main transporters of 

NO3
- (NRT1;1, NRT1;2, NRT1;4, NRT1;5, NRT1;8, NRT2;1) and of an NH4

+ transporter (AMT2) (Goel 

and Singh 2015). A decrease in the temperature can also modify intracellular transport; for example, 

through the overexpression of the vacuolar transporter CAX1, via abscisic acid, which was found to raise 

the cytosolic free Ca2+ concentration (Catalá et al. 2003). 

Low temperatures have been reported to affect the uptake of micronutrients via a reduction in 

the expression of their transporters, as was the case of Mn in A. thaliana with the AtNRAMP1 transporter 

(Ihnatowicz et al. 2014). However, although there are many studies on micronutrients concentrations in 

plants grown under low-temperature stress (e.g., a recent study with sweet pepper that showed a decrease 

in Fe and Zn due to low temperatures; Ropokis et al. 2019), there are no studies about their transporters. 

Another important aspect affected by low temperatures is the root and leaf hydraulic conductivity, which 

is directly regulated by aquaporins (Aroca et al. 2005, Ahamed et al. 2012). Thus, many studies revealed 

a direct correlation among PIP1s and PIP2s abundance, high hydraulic conductance, and low-

temperature tolerance (Matsumoto et al. 2009, Lee et al. 2012, Ranganathan et al. 2016). In studies of 

isoforms, similarities between plants were observed. Thus, when low temperatures were applied to A. 

thaliana, there was down-regulation of root PIP1;1, PIP 1;2, PIP1;5, PIP2;2, PIP2;3, PIP2;4, and 

PIP2;7 expression, but PIP2;5 was up-regulated, while in the aerial part PIP1;1, PIP 1;2, PIP1;4, 

PIP1;5, PIP2;1, PIP2;2, PIP2;3, and PIP2;4 were down-regulated but PIP2;5 was up-regulated (Jang 

et al. 2004). Also, in roots of rice plants, the protein levels of the aquaporins PIP1;1, PIP1;2, PIP1;3, 

PIP2;1, PIP2;2, PIP2;3, PIP2;4, PIP2;5, PIP2;6, TIP1;1, TIP2;1, and TIP2;2 decreased and only PIP2;5 

had an increase in its protein level (Ahamed et al. 2012), indicating an important role of PIP2;5 in cold-

stress acclimation (Ahamed et al. 2012, Lee et al. 2012, Ranganathan et al. 2016).  
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There are a number of recent studies about the overexpression of aquaporins to increase the 

tolerance of low temperatures, such as the over-expression of TaAQP7, a PIP2 gene of wheat, in tobacco 

plants (Huang et al. 2014). Other recent studies have shown how the overexpression of PIP2;7 from 

Medicago falcata L. and banana increased cold tolerance in transgenic tobacco (Zhuo et al. 2016) and 

banana (Xu et al. 2020), respectively, evincing also the involvement of this aquaporin in the response 

to cold stress. Finally, studies with rice plants indicate that inhibition of water uptake at low temperatures 

is not associated directly with the abundance of aquaporins in the root membrane, but with the inhibition 

of their activity (Murai-Hatano et al. 2008), coming into play not only the decrease/increase in 

transcription or translation levels, but also a posttranslational regulation of aquaporins (Chaumont and 

Tyerman 2014). 

Nonetheless, the relationship among aquaporins, other nutrient transporters, and abiotic stresses 

like extreme temperature is poorly understood, notwithstanding the capacity of aquaporins to transport 

some elements like N (as urea or NH4
+), B (boric acid), Si (silicic acid), As (arsenite), or H2O2 (Bienert 

et al. 2008; Bienert and Chaumont 2011). Also, a decrease in nutrient transport and the generation of 

reactive oxygen species (ROS), like H2O2, is a typical response of plants to extreme temperatures (Giri 

et al. 2017; Hsu and Hsu 2019). There are some recent, pioneering studies of the relationships of 

aquaporins with other nutrient transporters under low-temperature stress. One of them shows a possible 

regulation of aquaporins PIP2;1 and PIP2;6 in the response to cold stress, through a calcium-dependent 

protein kinase, OsCPK17 (Almadanim et al. 2017); so, an increase in the vacuolar expression of a Ca2+ 

transporter like CAX1 could be related to aquaporins (Catalá et al. 2003). In another example, the tissue 

B concentration did not change in spite of the decrease in the protein level of BOR1 (a B transporter), 

while the levels of NIP5;1 remained stable (Giri et al. 2017) - suggesting that the B levels were 

maintained despite the stress due to the stability of the aquaporin. In a work performed with tomato, it 

was demonstrated that the P deficit (common in low-temperature situations) can be compensated by a 

greater concentration of Si (Zhang et al. 2019), which can be transported by some aquaporins in the 

form of silicic acid (Jian et al. 2006). Other studies related the transport of Si, in the form of silicic acid 

(Pandey et al. 2016), and Se nutrition (Pandey et al. 2015) to a decrease in the uptake of As through 

competitive inhibition; Si and Se mitigated its toxicity, because they share the transporter Lsi1, an 

aquaporin (Ma et al. 2007).  

 

 

Conclusions 
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The expression of both nutrient transporters and aquaporins genes should be regulated in the response 

of plants to environmental stress - such as nutrient deficiency, drought, salt stress, and low temperatures 

- so that they can cope with the stress. Therefore, although the interactions of both type of transporters 

deserve more investigation, attention should be paid to that the first signal which triggers the rest of the 

responses must be hydric. In this way, the involvement of aquaporins to the initial stress sensing needs 

to be taken into account to understand the integrated physiological responses.  

The results summarized in this review highlight some general responses. For instance, a 

deficiency of each macronutrient induces its own transporters expression but reduces the expression of 

plasma membrane aquaporins. In other way, deficiencies of micronutrients induce their tonoplast 

transporters for remobilization from the vacuole and also reduce aquaporins presence. Also, the fact that 

some aquaporins have been reported to transport mineral nutrients - such as NH4
+, B, and urea - to ensure 

nutrient availability under abiotic stress, should be taken into account.  

While the response of plants to drought and salinity depends on the specific mechanism and 

degree of tolerance of each species, for drought we can generalize that higher expression of transporters 

and aquaporins is observed in tolerant plants (Fig. 3). However, the complexity of salinity in all facets 

of the stress suggests several transport processes as key to the tolerance, decreasing Na uptake but 

increasing K and N uptake. Also, under saline stress, some aquaporins have been demonstrated to be 

important in water transport, for the correct development of plants (Fig. 4). Therefore, the link between 

nutrient transporters and aquaporins in the maintenance of the cell homeostasis should be studied in 

each particular case. Under low-temperature stress, a general decrease in the expression of aquaporins 

has been found but the fact that PIP2;5 or PIP2;7 was increased in all the studies assigns them a key 

role in the response.   

Understanding the interactions between aquaporins and mineral nutrients under environmental 

stress conditions will enable us to modulate the water and mineral nutrient uptake and assimilation to 

improve the water and nutrient use efficiency in plants. Therefore, much more research is needed to 

clarify the signaling and regulation of aquaporins and nutrient transport in tandem since only the 

modification of their joint response will improve tolerance. 
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Figure legends 

Fig. 1. Scheme of the interregulation of aquaporins and nutrient transporters under nutrients deficiency. 
Plasma membrane aquaporins PIPs reduced the expressions in response to N deprivation in coordination 
to NRT transporters. Several TIPs, participate in NH4

+
 an urea transport under N deficiency. Low-K 

conditions reduced expression of PIP2. A coordinated response to Ca deficiency reducing aquaporin 
and Ca2+ transporters gene expression is observed. Under S starvation some SULTR transporters 
exhibited the same expression patterns as some TIPs. Under Mg deficiency, some MRS transporter has 
the same expression patterns as some PIPs. Low P availability showed a decrease in the gene expression 
of PHT, PIPs and NIPs. Under under Fe deficiency, the inhibition of NRAMP transporters showed is 
related to some PIPs abundance. Under B deficiency some NIPs and TIPs participate in B transport. The 
interregulation of Cu, Zn, Mn and Mo transporters and aquaporins under Cu, Zn, Mn and Mo deficiency 
is unknown.  

 

Fig. 2. Scheme of the interregulation of aquaporins and nutrient transporters under cold stress in order 
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to provide higher tolerance. The regulation of aquaporins PIP2;1 and PIP2;6 in the response to cold 
stress, through a calcium-dependent protein kinase, OsCPK17 is related to the vacuolar expression of a 
Ca2+ transporter like CAX1. The decrease in the protein level of BOR1 (a B transporter) is replaced by 
the aquaporin NIP5;1 for maintaining the B levels. The P deficit and low As concentrations that appeared 
under cold stress can be compensated by higher concentrations of Si and Se transported through the 
aquaporin NIP2 or Lsi1. 

 

Fig. 3. Scheme of the interregulation of aquaporins and nutrient transporters under drough stress in order 
to provide higher tolerance. NO3

- and NH4
+ are signaling factors for PIP expression. DUR3, high-affinity 

urea transporter, and PIP, NIP, and TIP identified as low-affinity transporters, up-regulate TIP. Pi 
transporter is related positively with PIP. Transmembrane channels for K+ and PIPs are coordinately 
regulated. Ca2+ transporters regulate positively PIPs, TIPs, and NIPs isoforms. 

 

Fig. 4. Scheme of the interregulation of aquaporins and nutrient transporters under salinity stress in 
order to provide higher tolerance. Over-expressed a NIP aquaporin, and suppression of SOS2 provide 
higher tolerance. SOS2 regulate negatively CAX1 reducing cytosolic Ca2+ and regulating negatively 
PIPs aquaporins. But NIPs could reduce cytosolic regulating positively PIPs. Interaction of NRT2;1 and 
PIP aquaporins is positively correlated.  
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