Alvaro Goyanes

Alvaro Goyanes
FabRx Ltd., London · Pharmaceutical Development

PhD

About

87
Publications
28,611
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,703
Citations
Additional affiliations
September 2005 - March 2012
University of Santiago de Compostela
Position
  • PhD Student

Publications

Publications (87)
Article
Corticosteroids form an important component of drug-based therapeutic strategies in both Crohn's disease and ulcerative colitis. Here, we investigated the intestinal release behaviour of two commonly-used corticosteroids - prednisolone and budesonide - from various commercial modified-release formulations. We evaluated the release characteristics u...
Article
The aim of this study was to explore the potential of fused-deposition 3-dimensional printing (FDM 3DP) to produce modified-release drug loaded tablets. Two aminosalicylate isomers used in the treatment of inflammatory bowel disease (IBD), 5-aminosalicylic acid (5-ASA, mesalazine) and 4-aminosalicylic acid (4-ASA), were selected as model drugs. Com...
Article
This study investigates the extrusion-spheronization performance of some mixtures of co-processed microcrystalline cellulose and Eudragit® E (as excipients) and sorbitol (as soluble filler-disintegrant). Attention is focused on the dissolution rate of low water solubility drugs (hydrochlorothiazide is used as a model drug) from pellets prepared wit...
Article
Full-text available
Since their introduction, chewable dosage forms have gained traction due to their ability to facilitate swallowing, especially in paediatric, geriatric and dysphagia patients. Their benefits stretch beyond human use to also include veterinary applications, improving administration and palatability in different animal species. Despite their advantag...
Article
Full-text available
Recent advancements in next generation spacecrafts have reignited public excitement over life beyond Earth. However, to safeguard the health and safety of humans in the hostile environment of space, innovation in pharmaceutical manufacturing and drug delivery deserves urgent attention. In this review/commentary, the current state of medicines provi...
Article
Full-text available
Three-dimensional printing (3DP) has seen growing interest within the healthcare industry for its ability to fabricate personalized medicines and medical devices. However, it may be burdened by the lengthy empirical process of formulation development. Active research in pharmaceutical 3DP has led to a wealth of data that machine learning could util...
Article
Full-text available
Selective laser sintering (SLS) 3D printing is capable of revolutionising pharmaceutical manufacturing, by producing amorphous solid dispersions in a one-step manufacturing process. Here, 3D-printed formulations loaded with a model BCS class II drug (20% w/w itraconazole) and three grades of hydroxypropyl cellulose (HPC) polymer (-SSL, -SL and -L)...
Article
Full-text available
Inkjet printing (IJP) is an emerging technology for the precision dosing of medicines. We report, for the first time, the printing of the antifungal drug terbinafine hydrochloride directly onto nails for the treatment of onychomycosis. A commercial cosmetic nail printer was modified by removing the ink from the cartridge and replacing it with an in...
Article
3D printing (3DP), or additive manufacturing, has been actively investigated as one of the enabling technologies for the impending era of personalized medicines. However, existing 3DP technologies do not afford the speeds required for on-demand production of medicines in fast-paced clinical settings. Volumetric printing is a novel 3DP technology th...
Article
Digitalisation of the healthcare sector promises to revolutionise patient healthcare globally. From the different technologies, cyber tools including artificial intelligence, blockchain, virtual, and augmented reality, to name but a few, are providing significant benefits to patients and the pharmaceutical sector alike, ranging from improving acces...
Article
The infiltration of drugs into water is a key global issue, with pharmaceuticals being detected in all nearly aqueous systems at often alarming concentrations. Pharmaceutical contamination of environmental water supplies has been shown to negatively impact ecological equilibrium and pose a risk to human health. In this study, we design and develop...
Article
3D printing is a manufacturing technique that is transforming numerous industrial sectors. Within healthcare, it is empowering the small-scale development of personalised medicines that meet the individual needs of patients. 3D printing systems are being currently tested in specialised clinical settings by healthcare professionals, however, there i...
Article
Three-dimensional printing (3DP) is a transformative technology that is advancing pharmaceutical research by producing personalized drug products. However, advances made via 3DP have been slow due to the lengthy trial-and-error approach in optimization. Artificial intelligence (AI) is a technology that could revolutionize pharmaceutical 3DP through...
Article
Full-text available
Dry eye disease is a common ocular disorder that is characterised by tear deficiency or excessive tear evaporation. Current treatment involves the use of eye drops; however, therapeutic efficacy is limited because of poor ocular bioavailability of topically applied formulations. In this study, digital light processing (DLP) 3D printing was employed...
Article
Now more than ever, traditional healthcare models are being overhauled with digital technologies of Healthcare 4.0 being increasingly adopted. Worldwide, digital devices are improving every stage of the patient care pathway. For one, sensors are being used to monitor patient metrics 24/7, permitting swift diagnosis and interventions. At the treatme...
Article
Full-text available
For the last 40 years, praziquantel has been the standard treatment for schistosomiasis, a neglected parasitic disease affecting more than 250 million people worldwide. However, there is no suitable paediatric formulation on the market, leading to off-label use and the splitting of commercial tablets for adults. In this study, we use a recently ava...
Article
Full-text available
3D printing (3DP) is a progressive technology capable of transforming pharmaceutical development. However, despite its promising advantages, its transition into clinical settings remains slow. To make the vital leap to mainstream clinical practice and improve patient care, 3DP must harness modern technologies. Machine learning (ML), an influential...
Article
Three-dimensional printing (3DP) is a transformative technology that is advancing pharmaceutical research by producing personalized drug products. However, advances made via 3DP have been slow due to the lengthy trial-and-error approach in optimization. Artificial intelligence (AI) is a technology that could revolutionize pharmaceutical 3DP through...
Article
Full-text available
Three-dimensional (3D) printing is a revolutionary technology that is disrupting the pharmaceutical development by enabling the production of personalised printlets (3D printed drug products) on demand. By creating small batches of dose flexible medicines, this versatile technology offers significant advantages for clinical practice and drug develo...
Article
Powder bed fusion (PBF) is a 3D printing method that selectively consolidates powders into 3D objects using a power source. PBF has various derivatives; selective laser sintering/melting, direct metal laser sintering, electron beam melting and multi-jet fusion. These technologies provide a multitude of benefits that make them well suited for the fa...
Article
Full-text available
Optical biosensors are low-cost, sensitive and portable devices that are poised to revolutionize the medical industry. Healthcare monitoring has already been transformed by such devices, with notable recent applications including heart rate monitoring in smartwatches and COVID-19 lateral flow diagnostic test kits. The commercial success and impact...
Article
Artificial intelligence (AI) is redefining how we exist in the world. In almost every sector of society, AI is performing tasks with super-human speed and intellect; from the prediction of stock market trends to driverless vehicles, diagnosis of disease, and robotic surgery. Despite this growing success, the pharmaceutical field is yet to truly har...
Article
Three-dimensional (3D) printing is an innovative additive manufacturing technology, capable of fabricating unique objects in a layer-by-layer manner. Semi-solid extrusion (SSE) is a subset of material extrusion 3D printing, based on the sequential deposition of layers of gel or paste to create an object of a desired size and shape. In comparison to...
Chapter
The manufacture of pharmaceutical products is moving toward the production of smarter and more personalized drug delivery devices, more cost-effective, and with better outcomes for the patients. The era of “one-size-fits-all” approach is coming to an end, and three-dimensional printing (3DP) technology is forecast to revolutionize the medicine manu...
Article
Intravesical instillation therapy is an alternative approach to oral medications for the treatment of severe bladder diseases, offering high drug concentrations at the site of action while minimising systemic side effects. However, therapeutic efficacy is often limited because of the short residence time of the drug in the bladder and the need for...
Article
Full-text available
The aim of this study was to fabricate novel self-supporting tacrolimus suppositories using semisolid extrusion 3-dimensional printing (3DP) and to investigate their efficacy in an experimental model of inflammatory bowel disease. Blends of Gelucire 44/14 and coconut oil were employed as lipid excipients to obtain suppository formulations with self...
Article
Full-text available
3D printing (3DP) in the pharmaceutical field is a disruptive technology that allows the preparation of personalised medicines at the point of dispensing. The paediatric population presents a variety of pharmaceutical formulation challenges such as dose flexibility, patient compliance, taste masking and the fear or difficulty to swallow tablets, al...
Article
Precision medicine is a field with huge potential for improving a patient’s quality of life, wherein therapeutic drug monitoring (TDM) can provide actionable insights. More importantly, incorrect drug dose is a common contributor to medical errors. However, current TDM practice is time-consuming and expensive, and requires specialised technicians....
Article
Three-dimensional (3D) printing is transforming manufacturing paradigms within healthcare. Vat photopolymerization 3D printing technology combines the benefits of high resolution and favourable printing speed, offering a sophisticated approach to fabricate bespoke medical devices and drug delivery systems. Herein, an overview of the vat polymerizat...
Article
Over 5% of the world's population has disabling hearing loss, which affects approximately one third of individuals over 65 years. Hearing aids are commonly used in this population group, but prolonged use of these devices may cause ear infections. We describe for the first time, the use of 3D printing to fabricate hearing aids loaded with two antib...
Article
Artificial intelligence (AI) has the potential to reshape pharmaceutical formulation development through its ability to analyze and continuously monitor large datasets. Fused deposition modeling (FDM) 3-dimensional printing (3DP) has made significant advancements in the field of oral drug delivery with personalized drug-loaded formulations being de...
Article
Full-text available
Zero-order release formulations are designed to release a drug at a constant rate over a prolonged time, thus reducing systemic side effects and improving patience adherence to the therapy. Such formulations are traditionally complex to manufacture, requiring multiple steps. In this work, fused deposition modeling (FDM) 3D printing was explored to...
Article
Pharmaceutical three-dimensional (3D) printing is a modern fabrication process with the potential to create bespoke drug products of virtually any shape and size from a computer-aided design model. Selective laser sintering (SLS) 3D printing combines the benefits of high printing precision and capability, enabling the manufacture of medicines with...
Article
Full-text available
Ulcerative colitis is a global health problem, affecting millions of individuals worldwide. As an inflammatory condition localised in the large intestine, rectal delivery of immunosuppressive therapies such as tacrolimus is a promising strategy to maximise drug concentration at the site of action whilst minimising systemic side effects. Here, for t...
Article
Full-text available
Visual impairment and blindness affects 285 million people worldwide, resulting in a high public health burden. This study reports, for the first time, the use of three-dimensional (3D) printing to create orally disintegrating printlets (ODPs) suited for patients with visual impairment. Printlets were designed with Braille and Moon patterns on thei...
Article
In the past decade, prescriptions for opioid medicines have been exponentially increasing, instigating opioid abuse as a global health crisis associated with high morbidity and mortality. In particular, diversion from the intended mode of opioid administration, such as injecting and snorting the opioid, is a major problem that contributes to this e...
Article
Full-text available
The aim of this work was to explore the feasibility of using selective laser sintering (SLS) 3D printing (3DP) to fabricate orodispersable printlets (ODPs) containing ondansetron. Ondansetron was first incorporated into drug-cyclodextrin complexes and then combined with the filler mannitol. Two 3D printed formulations with different levels of manni...
Article
Three-dimensional printing (3DP) is a revolutionary technology in pharmaceuticals, enabling the personalisation of flexible-dose drug products and 3D printed polypills (polyprintlets). A major barrier to entry of this technology is the lack of non-destructive quality control methods capable of verifying the dosage of multiple drugs in polyprintlets...
Article
Full-text available
Following oral administration, gastric emptying is often a rate-limiting step in the absorption of drugs and is dependent on both physiological and pharmaceutical factors. To guide translation into humans, small animal imaging during pre-clinical studies has been increasingly used to localise the gastrointestinal transit of solid dosage forms. In c...
Article
The introduction of three-dimensional (3D) printing in the pharmaceutical arena has caused a major shift towards the advancement of modern medicines, including drug products with different configurations and complex geometries. Otherwise challenging to create via conventional pharmaceutical techniques, 3D printing technologies have been explored fo...
Article
Full-text available
Introduction: Three-dimensional (3D) printing is a relatively new, rapid manufacturing technology that has found promising applications in the drug delivery and medical sectors. Arguably, never before has the healthcare industry experienced such a transformative technology. This review aims to discuss the state of the art of 3D printing technology...
Article
Three-dimensional (3D) printing is revolutionising how we envision manufacturing in the pharmaceutical field. Here, we report for the first time the use of direct powder extrusion 3D printing: a novel single-step printing process for the production of printlets (3D printed tablets) directly from powdered materials. This new 3D printing technology w...
Article
Maple syrup urine disease (MSUD) is a rare metabolic disorder with a worldwide prevalence of 1 in every 185,000 live births. However, certain populations display a significant overexpression of the disorder where incidence is reported to be 1 in every 52,541 new-borns. The first-line therapy for MSUD involves a strict dietary leucine restriction an...
Article
Full-text available
Three-dimensional printing (3DP) has demonstrated great potential for multi-material fabrication because of its capability for printing bespoke and spatially separated material conformations. Such a concept could revolutionise the pharmaceutical industry, enabling the production of personalised, multi-layered drug products on demand. Here, we devel...
Article
Printing technologies have been forecast to initiate a new era of personalised medicine in pharmaceuticals. To facilitate integration, a non-destructive and robust method of product authenticity is required. This study reports, for the first time, the interface between 3D printing and 2D inkjet printing technologies in order to fabricate a drug-loa...
Article
Three-dimensional (3D) printing is revolutionising how we envision manufacturing in the pharmaceutical field. Here, we report for the first time the use of direct powder extrusion 3D printing: a novel single-step printing process for the production of printlets (3D printed tablets) directly from powdered materials. This new 3D printing technology w...
Article
Full-text available
Purpose The use of three-dimensional printing (3DP) in the development of pharmaceutical dosage forms is growing rapidly. However, the research is almost exclusively focussed on polymer-based systems with very little reported on 3D printing of lipid-based formulations. Thus, the aim of the work was to explore the feasibility of 3DP technology to pr...
Article
This work aimed to explore for the first time the use of cyclodextrins to prepare printlets of poorly soluble drugs, such as carbamazepine, which require fine dose adjustment and rapid release. Orodispersible (flash) and immediate release formulations were 3D printed via semisolid extrusion of wet masses of hydroxypropyl-β-cyclodextrin (HPβCD) and...
Article
Full-text available
Selective laser sintering (SLS) is a single-step three-dimensional printing (3DP) process that can be leveraged to engineer a wide array of drug delivery systems. The aim of this work was to utilise SLS 3DP, for the first time, to produce small oral dosage forms with modified release properties. As such, paracetamol-loaded 3D printed multiparticula...
Article
Full-text available
Purpose Three-dimensional printing (3DP) is a rapidly growing additive manufacturing process and it is predicted that the technology will transform the production of goods across numerous fields. In the pharmaceutical sector, 3DP has been used to develop complex dosage forms of different sizes and structures, dose variations, dose combinations and...
Chapter
The rise in three-dimensional (3D) printing in design and manufacturing, like any other, is the product of vision and implementation, pioneered by those who were brave enough to make it happen. In this chapter, the advancements of exponential developments driven by 3D printers themselves and its application in almost all areas of manufacturing and...
Article
Full-text available
Three-dimensional printing (3DP) has the potential to cause a paradigm shift in pharmaceuticals, enabling personalised medicines to be produced on-demand. To facilitate integration into healthcare, non-destructive characterisation techniques are required to ensure final product quality. Here, the use of process analytical technologies (PAT), includ...
Poster
Full-text available
Research aim: To implement 3D printing to prepare drug-loaded solid self-microemulsifying drug delivery system without a solid phase carrier in various geometrical shapes and to study the kinetics of dispersion and digestion.
Article
Additive manufacturing (3D printing) permits the fabrication of tablets in shapes unattainable by powder compaction, and so the effects of geometry on drug release behavior is easily assessed. Here, tablets (printlets) comprising of paracetamol dispersed in polyethylene glycol were printed using stereolithographic 3D printing. A number of geometric...
Article
Three-dimensional printing (3DP) is gaining momentum in the field of pharmaceuticals, offering innovative opportunities for medicine manufacture. Selective laser sintering (SLS) is a novel, high resolution and single-step printing technology that we have recently introduced to the pharmaceutical sciences. The aim of this work was to use SLS 3DP to...
Article
The pharmaceutical industry stands on the brink of a revolution, calling for the recognition and embracement of novel techniques. 3D printing (3DP) is forecast to reshape the way in which drugs are designed, manufactured, and used. Although a clear trend towards personalised fabrication is perceived, here we accentuate the merits and shortcomings o...
Article
Fused deposition modelling (FDM) is the most commonly investigated 3D printing technology for the manufacture of personalized medicines, however, high temperatures associated with the process limit its wider application. The objective of this study was to print low-melting and thermolabile drugs by reducing the FDM printing temperature. Two immedia...
Article
3D printing (3DP) is forecast to be a highly revolutionary technology within the pharmaceutical sector. In particular, the main benefits of 3DP lie in the production of small batches of medicines, each with tailored dosages, shapes, sizes and release characteristics. The manufacture of medicines in this way may finally lead to the concept of person...
Article
Selective laser sintering (SLS) is a three-dimensional printing (3DP) technology employed to manufacture plastic, metallic or ceramic objects. The aim of this study was to demonstrate the feasibility of SLS to fabricating novel solid dosage forms with accelerated drug release properties, and with a view to create orally disintegrating formulations....