
Alun Hubbard- Professor at UiT The Arctic University of Norway
Alun Hubbard
- Professor at UiT The Arctic University of Norway
About
243
Publications
70,106
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,930
Citations
Introduction
Skills and Expertise
Current institution
Additional affiliations
January 2014 - present
April 2007 - present
Publications
Publications (243)
A well-timed atmospheric river dropped enough snow on Greenland for its ice sheet to lose 8% less mass than expected.
The latent (LHF) and sensible (SHF) heat fluxes are key components of the surface mass and energy balance in the accumulation area of the Greenland Ice Sheet, making them critical for accurate sea level projections. While Eddy-Covariance(EC) systems provide accurate measurements of the turbulent surface transport of mass and energy in the low and m...
Plain Language Summary
Atmospheric rivers (ARs) are transient channels of intense water vapor that can account for up to 90% of the poleward moisture transport from mid‐latitudes. Though short‐lived, these events can deliver extreme amounts of heat and rainfall that are reported to accelerate ice mass loss across the Arctic. In this study, we explo...
The Arctic Ocean and adjacent seas are undergoing increased freshwater influx due to enhanced glacial and sea ice melt, precipitation, and runoff. Accurate delineation of these freshwater sources is vital as they critically modulate ocean composition and circulation with widespread and varied impacts. Despite this, the delineation of freshwater sou...
Mixed-phase clouds (MPCs) are key players in the Arctic climate system due to their role in modulating solar and terrestrial radiation. Such radiative interactions rely, among other factors, on the ice content of MPCs, which is regulated by the availability of ice-nucleating particles (INPs). While it appears that INPs are associated with the prese...
Mixed-phase clouds (MPC) are key players in the Arctic climate system due to their role in modulating solar and terrestrial radiation. Such radiative interactions critically rely on the ice content of MPC which, in turn, also depend on the availability of ice nucleating particles (INP). INP sources and concentrations are poorly understood in the Ar...
Radio Echo Sounding (RES) surveys conducted in May 2010 and April 2011 revealed a 2 km² flat area with increased bed reflectivity at the base of Isunnguata Sermia at the western margin of the Greenland Ice Sheet. This flat reflector was located within a localized subglacial hydraulic potential (hydropotential) minimum, as part of a complex and elon...
Dramatic supraglacial lake drainage events in Greenland and Antarctica are enabled by rapid hydrofracture propagation through ice over 1 km thick. Here we present a slower mode of hydrofracture, where hairline surface fractures intersect supraglacial streams, and hypothesize that penetration depth is critically limited by water supply and englacial...
Ice can sculpt extraordinary landscapes, yet the efficacy of, and controls governing, glacial erosion on geological timescales remain poorly understood and contended, particularly across Polar continental shields. Here, we assimilate geophysical data with modelling of the Eurasian Ice Sheet — the third largest Quaternary ice mass that spanned 49°N...
Ice loss from the Greenland ice sheet is one of the largest sources of contemporary sea-level rise (SLR). While process-based models place timescales on Greenland’s deglaciation, their confidence is obscured by model shortcomings including imprecise atmospheric and oceanic couplings. Here, we present a complementary approach resolving ice sheet dis...
Dramatic supraglacial lake drainage events in Greenland and Antarctica are enabled by rapid hydrofracture propagation through >1 km ice. Here, we present a slower mode of hydrofracture, where hairline surface fractures intersect supraglacial streams, and hypothesise that fracture penetration depth is critically limited by water supply and englacial...
Strong compressive and shear stresses generated by glacial loading and unloading have a direct impact on near‐surface geological processes. Glacial stresses are constantly evolving, creating stress perturbations in the lithosphere that extend significant distances away from the ice. In the Arctic, periodic methane seepage and faulting have been rec...
Information from former ice sheets may provide important context for understanding the response of today’s ice sheets to forcing mechanisms. Here we present a reconstruction of the last deglaciation of marine sectors of the Eurasian Ice Sheet, emphasising how the retreat of the Norwegian Channel and the Barents Sea ice streams led to separation of...
Whilst there has been a recent appreciation for the role of open‐system pingos in providing a fluid‐flow conduit through continuous permafrost that enables methane release, the formation and internal structure of these ubiquitous permafrost‐diagnostic landforms remains unclear. Here, we combine active‐source seismic measurements with electrical res...
The Barents Sea has experienced intense erosion throughout the Cenozoic due to uplift and repeated episodes of glaciation. This, in turn, has driven large pressure and temperature fluctuations in the sediment substrate along with rearrangement of thermogenic oil and gas accumulations. As a result, some hydrocarbon fields have relatively shallow dep...
Ice surface albedo is a primary modulator of melt and runoff, yet our understanding of how reflectance varies over time across the Greenland Ice Sheet remains poor. This is due to a disconnect between point or transect scale albedo sampling and the coarser spatial, spectral and/or temporal resolutions of available satellite products. Here, we prese...
Intensive study of the Greenland Ice Sheet's (GrIS) subglacial drainage has been motivated by its importance for ice dynamics and for nutrient/sediment export to coastal ecosystems. This has revealed consistent seasonal development of efficient subglacial drainage in the lower ablation area. While some hydrological models show qualitative agreement...
The Greenland Ice Sheet harbours a wealth of microbial life, yet the total biomass stored or exported from its surface to downstream environments is unconstrained. Here, we quantify microbial abundance and cellular biomass flux within the near-surface weathering crust photic zone of the western sector of the ice sheet. Using groundwater techniques,...
The loss of Arctic sea-ice has been implicated with severe cold and snowy mid-latitude winters. However, the mechanisms and a direct link remain elusive due to limited observational evidence. Here we present atmospheric water vapour isotope measurements from Arctic Finland during ‘the Beast from the East’—a severe anticyclonic outbreak that brought...
Every year, numerous field teams travel to remote field locations on the Greenland ice sheet to carry out polar research, geologic exploration, and other commercial, military, strategic, and recreational activities. In this region, extreme weather can lead to decreased productivity, equipment failure, increased stress, unexpected logistical challen...
The dynamics and paleo‐glaciology of ice sheet interiors during the last deglaciation are poorly constrained, hindering ice sheet model. We provide direct evidence of Fennoscandian Ice Sheet (FIS) interior behavior during deglaciation through surface exposure dating. Our results demonstrate early thinning of the FIS, prior to the Younger Dryas (YD,...
The evidence for periods of increased volcanic activity following deglaciation, such as following ice sheet retreat after the Last Glacial Maximum, has been examined in several formerly glaciated areas, including Iceland, Alaska, and the Andean Southern Volcanic Zone. Here we present new evidence supporting the theory that during episodes of coolin...
Iceland’s periglacial realm is one of the most dynamic on the planet, with active geomorphological processes and high weathering rates of young bedrock resulting in high sediment yields and ongoing mass movement. Permafrost is discontinuous in Iceland’s highlands and mountains over c. 800 m a.s.l, and sporadic in palsa mires in the central highland...
Release of greenhouse gasses is of major concern when it comes to climate change. Large amount of those gases are released through faults and fractures at the ocean floor, forming pockmarks at the surface. Understanding the formation of pockmarks and the fracture-fault network underlying them, is thus of first importance to apprehend the dynamics o...
Melting of the Greenland Ice Sheet (GrIS) is the largest single contributor to eustatic sea level and is amplified by the growth of pigmented algae on the ice surface, which increases solar radiation absorption. This biological albedo-reducing effect and its impact upon sea level rise has not previously been quantified. Here, we combine field spect...
Greenland's Dark Zone is the largest contiguous region of bare terrestrial ice in the Northern Hemisphere and microbial processes play an important role in driving its darkening and thereby amplifying melt and runoff from the ice sheet. However, the dynamics of these microbiota have not been fully identified. Here we present joint 16S rRNA gene and...
The Dark Zone of the western Greenland Ice Sheet is the most expansive region of contiguous bare terrestrial ice in the Northern Hemisphere. Microbial processes within the Dark Zone play an important role in driving extensive albedo reduction and amplified melting, yet the composition and function of those consortia have not been fully identified....
Melting of the Greenland Ice Sheet (GrIS) is the largest single contributor to eustatic sea level and is amplified by the growth of pigmented algae on the ice surface that increase solar radiation absorption. This biological albedo reducing effect and its impact upon sea level rise has not previously been quantified. Here, we combine field spectros...
Several recent studies from both Greenland and Antarctica have reported significant changes in the water isotopic composition of near‐surface snow between precipitation events. These changes have been linked to isotopic exchange with atmospheric water vapor and sublimation‐induced fractionation, but the processes are poorly constrained by observati...
Greenland Ice Sheet mass loss has recently increased because of enhanced surface melt and runoff. Since melt is critically modulated by surface albedo, understanding the processes and feedbacks that alter albedo is a prerequisite for accurately forecasting mass loss. Using satellite imagery, we demonstrate the importance of Greenland’s seasonally f...
Although a substantial ice cover has been identified within the mid-latitudes of Mars, there is uncertainty regarding the formation, current and former volume, and dynamic evolution of these ice masses. Here, we present the first comprehensive ice volume estimate of martian glacier-like forms (GLFs) from systematic population scale mapping and volu...
Glacial Lake Outburst Floods (GLOFs) have become increasingly common over the past century in response to climate change, posing risks for human activities in many mountain regions. In this paper we document and reconstruct the sequence of events and impact of a large GLOF that took place in December 2015 in the Chileno Valley, Patagonia. Hydrograp...
Temporal variations in ice sheet flow directly impact the internal structure within ice sheets through englacial deformation. Large‐scale changes in the vertical stratigraphy within ice sheets have been previously conducted on centennial to millennial timescales; however, intra‐annual changes in the morphology of internal layers have yet to be expl...
Subglacial hydrology modulates how ice sheets flow, respond to climate, and deliver meltwater, sediment and nutrients to proglacial and marine environments. Here, we investigate the development of subglacial lakes and drainage networks beneath the Fennoscandian and Barents Sea ice sheets over the Late Weichselian. Utilizing an established coupled c...
We present a 1:42,000 scale map of Isunguata Sermia, a land-terminating outlet glacier draining the western-sector of the Greenland Ice Sheet. Structure-from-Motion software applied to ∼3,600 aerial images collected by a fixed-wing unmanned aerial vehicle in July 2015 allowed us to produce a high resolution (0.3 m ground sampling distance (GSD)) or...
Active rock glaciers are ice and debris-cored landforms common in cold arid mountains. They have not been widely described in the Patagonian Andes of southern South America and here we provide the first rock glacier inventory for the Jeinimeni region to the east of the contemporary North Patagonian Icefield. Detailed analysis of available satellite...
This paper reviews the changing environments, developing landforms and terrestrial stratigraphy during the Early and Middle Pleistocene stages in Scotland. Cold stages after 2.7 Ma brought mountain ice caps and lowland permafrost, but larger ice sheets were short-lived. The late Early and Middle Pleistocene sedimentary record found offshore indicat...
The delivery of surface meltwater through englacial drainage systems to the bed of the Greenland Ice Sheet modulates ice flow through basal lubrication. Recent studies in Southeast Greenland have identified a perennial firn aquifer; however, there are few observations quantifying the input or residence time of water within the englacial system and...
The phase-sensitive radio-echo sounder (pRES) is a powerful new instrument that can measure the depth of internal layers and the glacier bed to millimetre accuracy. We use a stationary 16-antenna pRES array on Store Glacier in West Greenland to measure the three-dimensional orientation of dipping internal reflectors, extending the capabilities of p...
The North Pacific is a zone of cyclogenesis that modulates synoptic-scale atmospheric circulation, yet there is a paucity of instrumental and paleoclimate data to fully constrain its long-term state and variability. We present the first Holocene oxygen isotope record (δ18O diatom) from the Aleutian Islands, using siliceous diatoms preserved in Hear...
The Patagonian Icefields, which straddle the Andes below 46°S, are two of the most sensitive ice masses on Earth to climate change. However, recent mass loss from the icefields along with its spatial and temporal variability is not well-constrained. Here we determine surface elevation changes of Benito Glacier, a 163 km² outlet glacier draining the...
Supraglacial lakes on the Greenland Ice Sheet are expanding inland, but the impact on ice flow is equivocal because interior surface conditions may preclude the transfer of surface water to the bed. Here we use a well-constrained 3D model to demonstrate that supraglacial lakes in Greenland drain when tensile-stress perturbations propagate fractures...
Albedo-a primary control on surface melt-varies considerably across the Greenland Ice Sheet yet the specific surface types that comprise its dark zone remain unquantified. Here we use UAV imagery to attribute seven distinct surface types to observed albedo along a 25 km transect dissecting the western, ablating sector of the ice sheet. Our results...
Supraglacial lakes on the Greenland Ice Sheet are expanding inland, but the impact on ice flow is equivocal because interior surface conditions may preclude the transfer of surface water to the bed. Here, we use a well-constrained 3D model to demonstrate that supraglacial lakes in Greenland drain when tensile-stress perturbations propagate fracture...
Iceberg calving accounts for around half of all mass loss from both the Greenland and Antarctic ice sheets. The diverse nature of calving and its complex links to both internal dynamics and climate make it challenging to incorporate into models of glaciers and ice sheets. Here, we present results from a new open-source 3D full-Stokes calving model...
Outlet glaciers of the Greenland Ice Sheet transport ice from the interior to the ocean and contribute directly to sea level rise because because discharge and ablation often exceed the accumulation. To develop a better understanding of these fast flowing glaciers, we investigate the basal conditions of Store Glacier, a large outlet glacier flowing...
Iceberg calving accounts for around half of all mass loss from both the Greenland and Antarctic ice sheets. The diverse nature of calving and its complex links to both internal dynamics and climate make it challenging to incorporate into models of glaciers and ice sheets. Here, we present results from a new open-source 3D full-Stokes calving model...
Marine-terminating outlet glaciers of the Greenland ice sheet make significant contributions to global sea level rise, yet the conditions that facilitate their fast flow remain poorly constrained owing to a paucity of data. We drilled and instrumented seven boreholes on Store Glacier, Greenland, to monitor subglacial water pressure, temperature, el...
Marine-terminating outlet glaciers of the Greenland ice sheet make significant contributions to global sea level rise, yet the conditions that facilitate their fast flow remain poorly constrained owing to a paucity of data. We drilled and instrumented seven boreholes on Store Glacier, Greenland, to monitor subglacial water pressure, temperature, el...
Outlet glaciers of the Greenland Ice Sheet transport ice from the interior to the ocean and contribute directly to sea level rise because because discharge and ablation often exceed the accumulation. To develop a better understanding of these fast flowing glaciers, we investigate the basal conditions of Store Glacier, a large outlet glacier flowing...
Methane seepage from the upper continental slopes of Western Svalbard has previously been attributed to gas hydrate dissociation induced by anthropogenic warming of ambient bottom waters. Here we show that sediment cores drilled off Prins Karls Foreland contain freshwater from dissociating hydrates. However, our modeling indicates that the observed...
The continental margin off Prins Karls Forland, western Svalbard, is characterized by widespread natural gas seepage into the water column at and upslope of the gas hydrate stability zone. We deployed an ocean bottom seismometer integrated into the MASOX (Monitoring Arctic Seafloor-Ocean Exchange) automated seabed observatory at the pinch-out of th...
Significance
Meltwater runoff is an important hydrological process operating on the Greenland ice sheet surface that is rarely studied directly. By combining satellite and drone remote sensing with continuous field measurements of discharge in a large supraglacial river, we obtained 72 h of runoff observations suitable for comparison with climate m...
Meltwater and runoff from glaciers in High Mountain Asia is a vital freshwater resource for one fifth of the Earth's population. Between 13% and 36% of the region's glacierized areas exhibit surface debris cover and associated supraglacial ponds whose hydrological buffering roles remain unconstrained. We present a high-resolution meltwater hydrogra...
KEY POINTS/HIGHLIGHTS Two rapid ice-dammed lake drainage events gauged and ice dam geometry measured.
A melt enlargement model is developed to examine the evolution of drainage mechanism(s).
Lake temperature dominated conduit melt enlargement and we hypothesize a flotation trigger.
Glaciological and hydraulic factors that control the timing and me...
Supporting Information S1
Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and co...
High impact review papers describe and synthesize the current state-of-the-art, the open questions and controversies, and provide ideas for future investigations. They are written not only for a specific scientific discipline, but also for the broader Earth and space science community. They not only summarize the literature, but they also create a...
Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine-terminating glaciers. Here we present a new compilation of Greenland bed topography tha...
The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice s...
The Eurasian ice sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum with a span of over 4500 km and responsible for around 20 m of eustatic sea-level lowering. Whilst recent terrestrial and marine empirical insights have improved understanding of the chronology, pattern and rates of retreat of this vast ice sheet, a...
The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice s...
Calibration and validation of satellite-derived ice sheet albedo data require high-quality, in-situ measurements commonly acquired by up- and down-facing pyranometers mounted on automated weather stations (AWS). However, direct comparison between ground and satellite-derived albedo can only be justified when the measured surface is homogeneous at t...
Significance
Shallow Arctic Ocean gas hydrate reservoirs experienced distinct episodes of subglacial growth and subsequent dissociation that modulated methane release over millennial timescales.
Accounting for all the sources and sinks of methane is important for determining its concentration in the atmosphere. Andreassen et al. found evidence of large craters embedded within methane-leaking subglacial sediments in the Barents Sea, Norway. They propose that the thinning of the ice sheet at the end of recent glacial cycles decreased the pre...
Measurements of albedo are a prerequisite for modeling surface melt across the Earth's cryosphere, yet available satellite products are limited in spatial and/or temporal resolution. Here, we present a practical methodology to obtain centimeter resolution albedo products with accuracies of ±5% using consumer-grade digital camera and unmanned aerial...
SI Serov et al. www.pnas.org/cgi/content/short/1619288114
The Eurasian ice-sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum (LGM), after the Antarctic and North American ice sheets. Despite its global significance, a comprehensive account of its evolution from independent nucleation centres to its maximum extent is conspicuously lacking. Here, a first-order, thermomechan...
Surface albedo, a primary control on the amount of energy available for melt, has considerable spatial heterogeneity across the Greenland ice sheet ablation area. However, the relative importance of distinct surface types on albedo remains unclear. In this study, the causes of mesoscale (10² to 10³ m) albedo variability are assessed using high reso...
It has been argued that the infiltration and retention of meltwater within
firn across the percolation zone of the Greenland ice sheet has the
potential to buffer up to ∼ 3.6 mm of global sea-level rise
(Harper et al., 2012). Despite evidence confirming active refreezing
processes above the equilibrium line, their impact on runoff and proglacial
di...
Although a substantial reservoir of glacier ice has been identified in the mid-latitudes of Mars, debate still persists regarding the formation, current and former extent, and dynamic evolution of these ice masses. Here we present initial results from a higher-order, two-dimensional (2D) numerical model of ice flow for an empirically reconstructed...
Variations in the flow of ice streams and outlet glaciers are a primary control on ice sheet stability, yet comprehensive understanding of the key processes operating at the ice-bed interface remains elusive. Basal resistance is critical, especially sticky spots-localized zones of high basal traction-for maintaining force balance in an otherwise we...