Allison Y Hsiang

Allison Y Hsiang
Ludwig-Maximilians-University of Munich | LMU · GeoBio-Center

Ph.D.

About

40
Publications
11,312
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
434
Citations
Introduction
I am a computational evolutionary paleobiologist who is interested in developing novel methods and models in order to answer questions about macroevolutionary dynamics in deep time, morphological evolution, and phenotypic variability in response to environmental changes.
Additional affiliations
November 2016 - present
Swedish Museum of Natural History
Position
  • PostDoc Position
October 2014 - October 2016
Yale University
Position
  • PostDoc Position
September 2009 - June 2015
Yale University
Position
  • PhD Student

Publications

Publications (40)
Preprint
Full-text available
We apply deep metric learning for the first time to the prob-lem of classifying planktic foraminifer shells on microscopic images. This species recognition task is an important information source and scientific pillar for reconstructing past climates. All foraminifer CNN recognition pipelines in the literature produce black-box classifiers that lac...
Preprint
Full-text available
The ideal approach to Bayesian phylogenetic inference is to estimate all parameters of interest jointly in a single hierarchical model. However, this is often not feasible in practice due to the high computational cost that would be incurred. Instead, phylogenetic pipelines generally consist of chained analyses, whereby a single point estimate from...
Chapter
Full-text available
Unravelling the phylogenetic relationships among the major groups of living birds has been described as the greatest outstanding problem in dinosaur systematics. Recent work has identified portions of the avian tree of life that are particularly challenging to reconstruct, perhaps as a result of rapid cladogenesis early in crown bird evolutionary h...
Article
Full-text available
Planktonic foraminiferal species identification is central to many paleoceanographic studies, from selecting species for geochemical research to elucidating the biotic dynamics of microfossil communities relevant to physical oceanographic processes and interconnected phenomena such as climate change. However, few resources exist to train students i...
Preprint
Full-text available
Unravelling the phylogenetic relationships among the major groups of living birds has been described as the greatest outstanding problem in dinosaur systematics. Recent work has identified portions of the avian tree of life that are particularly challenging to reconstruct, perhaps as a result of rapid cladogenesis early in crown bird evolutionary h...
Preprint
Full-text available
Unravelling the phylogenetic relationships among the major groups of living birds has been described as the greatest outstanding problem in dinosaur systematics. Recent work has identified portions of the avian tree of life that are particularly challenging to reconstruct, perhaps as a result of rapid cladogenesis early in crown bird evolutionary h...
Article
Full-text available
Background: Earth's lower latitudes boast the majority of extant avian species-level and higher-order diversity, with many deeply diverging clades restricted to vestiges of Gondwana. However, palaeontological analyses reveal that many avian crown clades with restricted extant distributions had stem group relatives in very different parts of the wo...
Article
Full-text available
Marine microfossils record the environmental, ecological, and evolutionary dynamics of past oceans in temporally expanded sedimentary archives. Rapid imaging approaches provide a means of exploiting the primary advantage of this archive, the vast number of fossils, for evolution and ecology. Here we provide the first large scale image and 2D and 3D...
Article
Full-text available
Body size distributions can vary widely among communities, with important implications for ecological dynamics, energetics, and evolutionary history. Here we present a dataset of body size and shape for 12,035 extant Patellogastropoda (true limpet) specimens from the collections of the University of California Museum of Paleontology, compiled using...
Article
Full-text available
Large-scale, comparative studies of morphological variation are rare due to the time-intensive nature of shape quantification. This data gap is important to address, as intraspecific and interspecific morphological variation underpins and reflects ecological and evolutionary processes. Here, we detail a novel software package, AutoMorph, for high-t...
Article
Full-text available
Extant baleen whales (Cetacea, Mysticeti) are a disparate and species-rich group, but little is known about their fossil record in the northernmost Atlantic Ocean, a region that supports considerable extant cetacean diversity. Iceland's geographical setting, dividing North Atlantic and Arctic waters, renders it ideally situated to shed light on cet...
Article
Full-text available
With a glance, even the novice naturalist can tell you something about the ecology of a given ecosystem. This is because the morphology of individuals reflects their evolutionary history and ecology, and imparts a distinct ‘look’ to communities—making it possible to immediately discern between deserts and forests, or coral reefs and abyssal plains....
Conference Paper
Body size is often considered the most important quantitative trait of an individual organism. This is because it can be directly correlated with multiple life-history traits, both physiological (e.g., metabolic rate) and fitness-related (e.g., generation time, fecundity). With body size encapsulating such a significant quantity of biological infor...
Article
Full-text available
Background The highly derived morphology and astounding diversity of snakes has long inspired debate regarding the ecological and evolutionary origin of both the snake total-group (Pan-Serpentes) and crown snakes (Serpentes). Although speculation abounds on the ecology, behavior, and provenance of the earliest snakes, a rigorous, clade-wide analysi...
Article
Full-text available
The origin of the turtle shell has perplexed biologists for more than two centuries [1]. It was not until Odontochelys semitestacea [2] was discovered, however, that the fossil and developmental data [3-8] could be synthesized into a model [9] of shell assembly that makes predictions for the as-yet unestablished history of the turtle stem group. We...