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Abstract

Background Finite element models for estimation of intraoperative brain shift suffer from

huge computational cost. In these models, image registration and finite element analysis are

two time‐consuming processes.

Methods The proposed method is an improved version of our previously developed Finite

Element Drift (FED) registration algorithm. In this work the registration process is combined with

the finite element analysis. In the Combined FED (CFED), the deformation of whole brain mesh is

iteratively calculated by geometrical extension of a local load vector which is computed by FED.

Results While the processing time of the FED‐based method including registration and finite

element analysis was about 70 s, the computation time of the CFED was about 3.2 s. The

computational cost of CFED is almost 50% less than similar state of the art brain shift estimators

based on finite element models.

Conclusions The proposed combination of registration and structural analysis can make the

calculation of brain deformation much faster.
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1 | INTRODUCTION

Deformation of soft‐tissue due to the surgical operation is one of the

key challenges facing image‐guided neurosurgery because it causes a

misalignment between the actual position of pathology and its posi-

tion in preoperative images. Craniotomy‐induced brain shift is usually

the first distortion of preoperative anatomy. Intraoperative imaging is

widely used for surgical navigation but the imaging modalities that

can be used intraoperatively do not have sufficient quality to confi-

dently locate the lesions and critical normal areas. During the past

two decades, many studies were carried out that tried to warp high

quality preoperative images to the intraoperative position of the

brain. The earlier ones were based only on registering intraoperative

images to preoperative ones which may have been acquired by

another imaging modality.1–4 The more recent studies are focused

on using biomechanical models of the brain that are loaded by the

displacements extracted from intraoperative images in order to
wileyonlinelibrary.com
predict volumetric deformation of the brain.5–12 Nevertheless, efforts

continue for compensating soft‐tissue deformation based only on

image registration.13 A clinical study for comparison of methods14

indicates that biomechanical modeling can result in more accurate

estimation of brain shift.

The biomechanical model widely used is a linear finite element

model (FEM) in which the brain deformation is assumed to be infinites-

imally small, i.e. the equations of solid mechanics are integrated over

the initial brain geometry.5,7,12 However the use of a nonlinear FEM

to predict larger brain deformations has been of interest for several

researchers.8,10 Whiles the nonlinear biomechanical models facilitate

more accurate prediction of the brain deformation at the expense of

high computation time, the problems such as craniotomy‐induced

brain shift can be solved by a simple linear elastic model of brain

tissue.15

As well as accuracy and reliability of the brain shift compensation

methods, the adjustment of them to real‐time constraints of
Copyright © 2016 John Wiley & Sons, Ltd./journal/rcs 1
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neurosurgery has been gradually attended in several studies. It has

been reported in earlier studies that linear finite element models can

have lower computation times, around 80 s16 and 15 s.17 Joldes et al.10

reporteda reductionof timebyaboutoneorderofmagnitude (40s to4 s)

by implementing a specialized nonlinear finite element algorithm on a

graphic processing unit (GPU) instead of personal computer. In a more

recent study, Sun et al.18 reported a time of about one minute for

inverse biomechanical modeling based on an atlas of all possible brain

deformations created before the operation.

In the realistic conditions of an operating room, the overall proce-

dure of correcting brain shift includes many tasks other than biome-

chanical model updating, and their time requirements usually are not

reported (except some studies such as 18). The FEM is driven by the

sparse displacement vectors which result from registration of intraop-

erative data to preoperative images. Point‐based rigid registration

algorithms such as iterative closest point (ICP)19 have been widely

used to compute nodal displacements. Time requirements of rigid

registration methods are negligible but they support only low deforma-

tions. Non‐rigid point matching methods have been developed

recently and employed in several studies.5,12 Generally‐developed

non‐rigid registration algorithms20,21 are more complex and their com-

putation time rapidly increases with the number of points.21 Therefore,

the traditional methods in which the calculation of nodal displace-

ments and finite element analysis (FEA) are two distinct tasks may take

more time than reported times for prediction of brain shift.

In our previous work22 we followed the traditional method for

estimation of brain shift but with a new registration method, finite

element drift (FED). FED is a non‐rigid matching algorithm in which

the source points are nodes of a linear elastic model that are smoothly

moved toward the target points to maximize the likelihood in a Bayes-

ian framework. FED uses mechanical parameters of the model and is

more consistent with the underlying nature of the deformed object.

FED showed acceptable results in the calculation of local deformations

compared with the well‐known algorithm, coherent point drift (CPD).21

Using FED registration the local displacements of cortical surface and

internal vascular tree were calculated and applied to FEA software.

In the present work we propose a combination of registration with

FEA to shorten the procedure of calculating volumetric deformation.

Using this method any registration tasks related to different intraoper-

ative imaging modalities and the FEA can be performed concurrently. It

is expected that the proposed method can speed up the overall proce-

dure of estimating brain shift.

To validate our proposed method an animal study was performed.

This step is necessary before applying human experiments. Four dogs

were selected for head surgery and after doing craniotomy and data

acquisition they recovered safely. All our experiments on dogs were

carried out under European Union regulations; ‘Directive 86/609/

EEC’23 for the protection of animals used for experimental and other

scientific purposes.

In the rest of the paper, we first explain the method of combining

registration and FEA and then the procedures for preparing animals,

processing pre‐ and intra‐operative images, applying the method and

finally calculating target registration error as a measure of estimation

accuracy. Results obtained for the animal model will be presented in

detail and discussed.
2 | MATERIALS AND METHODS

2.1 | Proposed combined FED

2.1.1 | Background

Here we present a quick review of the FED registration algorithm. A

detailed description can be found in.22 The FED registration algorithm

is based on CPD method21 in which the alignment of two point sets is

considered as a probability density estimation problem, where one

point set represents the Gaussian mixture model (GMM) centroids

and the other one the data points. The maximum of GMM posterior

probability is obtained when the two point sets are matched. The

following notation is employed:

D: the dimension of point set (2 or 3)

x1,....,xN :points in first point set (data points)

y1,....,yM :points in second point set (GMM centroids)

T(ym, θ): transform T applied to ym, where θ is the set of transfor-

mation parameters

In the non‐rigid CPD method, the transformation of ym points is

defined as follows:

T Y; vð Þ ¼ Y þ v Yð Þ (1)

where Y is the matrix of all ym points, and v(Y) is a smooth function that

drifts ym points toward the xn points.

For FED method if ym points are considered as the nodes of a

linear elastic model (LEM), a small movement will be:

ΔY ¼ K−1F (2)

where YMD×1 ¼ yT1;…; yTM
� �T

is a column vector with M × D elements, K

is the stiffness matrix and F is the load vector. Proper constraints on

the LEM should be applied to generate a non‐singular K matrix. This

can be achieved when the number of supports or fixed nodes in the

model is greater than those of moving nodes. The transformation will

be as follows:

T ym;θð Þ ¼ ym þ K−1
m F (3)

whereK−1
m is a D × MDmatrix of rows of K−1 corresponding to ym. The F

vector, which minimizes the negative log‐likelihood, should satisfy the

following equation22:

∑N
n¼1∑

M
m¼1P

old mjxnð ÞK−1T
m xn−ym−K

−1
m F

� �
¼ 0 (4)

After computing for F, the best σ2 can be obtained by equating the

corresponding derivative of Q to zero:

σ2 ¼ 1
NpD

∑N
n¼1∑

M
m¼1 xn−ym−K

−1
m F

�� ��2 (5)

Equations 4 and 5 are the M‐step of the EM algorithm. In our

previous work,22 we did not present a direct solution of these

equations but in here we rewrite Equation 4 to a matrix format which

can be easily solved for load vector F:

K−1TPeX−K
−1Td Pe1ð ÞY−K−1Td Pe1ð ÞK−1F ¼ 0 (6)
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If we consider the posterior probabilities matrix Pwith elements of

pmn = Pold(m| xn), the matrix Pe is an extension of P in which pmn is

replaced by:

pe mnð Þ ¼ pmn * identity matrix of size D (7)

Thus Pe is a MD × ND matrix. d() denotes a diagonal matrix and

‘1’ is a column vector of ND ones. Also YMD×1 ¼ yT1;…; y
T
M

� �T
and

XND×1 ¼ xT1;…; x
T
N

� �T
are column vectors of source and target points,

respectively.

Equation 6 can be easily solved for F as:

Fi ¼ K× d Pe1ð Þ−1PeX−Y
� �

(8)

This equation is a straightforward solution for load vector F. The

subscript ‘I’ denotes iteration i of the FED algorithm.

2.1.2 | Overall procedure

Figure 1 shows a detailed schematic diagram of the overall procedure

proposed for calculating brain deformation by the CFED algorithm.

Preoperative MR and MR angiography (MRA) images are processed

to extract the main brain segments and vascular tree, respectively.

The 3D image of brain is meshed such that the points on vessels are

considered as nodes of the mesh. After constructing a stiffness matrix

of the whole brain mesh, some nodes to be registered by FED algo-

rithm to intra‐operatively captured point sets, are selected to build a

smaller matrix Kf. In our study, the nodes that were the source points

(Y) for FED were chosen as the nodes on vessels near pathology and

surface nodes in the craniotomy area. The sub‐matrix Kf is a portion

of the original matrix K and can be easily separated from it.

In the operating room, the point clouds should bemade using intra-

operative imaging modalities to be applied to FED algorithm as target

points. In our study these points were captured by scanning our previ-

ously proposed projected landmarks on cortical surface (Xs) and the

points on deformed vascular tree that were extracted by the localized
FIGURE 1 Schematic view of overall procedure and CFED algorithm
2D Doppler ultrasound images (Xd). In each iteration of the FED algo-

rithm the optimum load vector Fi is computed and then extended to

all nodes of the mesh. The displacements of all mesh nodes are itera-

tively calculated using this vector and K. The deformed brain mesh

can be used to warp preoperative images in a navigation system.

2.1.3 | Building stiffness matrices

After smoothing the 3D image and meshing it, the stiffness matrix of

the whole mesh is constructed. We used the direct stiffness method

(DSM) of structural analysis which is by far the most common imple-

mentation of the finite element method.24,25 In particular, all the main

commercial finite element analysis codes are based on DSM. The

stiffness matrix (K) will be a real symmetric matrix. For a 3D mesh with

N nodes the matrix K will have 3 N × 3 N elements.

After constructing stiffness matrix of the mesh, some nodes that

should be registered with the FED algorithm can be selected to build

a smaller matrix Kf. This matrix is a portion of the original matrix K

and can be easily separated from it. According to the rules of DSM, if

two or more sets of isolated nodes are picked for FED (as our approach

to combine internal vessels and surface displacements) the matrix Kf

may be composed of two separate square matrices placed diagonally

and other elements are zeroes (Figure 2).

2.1.4 | Geometrically extending FED result to whole mesh

The matrix K in Equation 8 is the same Kf which is picked up from the

whole mesh matrix K. For geometrically extending the registration

results to the whole mash, the y points which are the moving nodes

of the FE mesh are loaded by F and all other nodes are considered

untouched. Therefore the load vector can be extended to all mesh

nodes by inserting zeroes for the remaining nodes. Therefore the

displacement of all mesh nodes can be calculated as:

ΔYti ¼ K−1Fti (9)

where Fti is the extended load vector for the i'th iteration of CFED and

Yt is the vector of all mesh nodes. Using this equation the brain



TABLE 1 The age, weight of dogs and type of object inserted inside
the brain

ID age (years) weight (kg) target type

Dog1 3.5 19.4 3 mL water

Dog2 0.9 17.2 3 mL blood (hematom)

Dog3 2.5 20.3 coated TNG pills

Dog4 5 22.5 coated TNG pills

FIGURE 2 An example of stiffness matrices of whole mesh (K) and
FED‐related nodes (Kf). Kf contains two sets of isolated nodes (Kf1
and Kf2)
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deformation is smoothly computed in each iteration of CFED. Because

the matrix K−1 is considered to be invariant for low deformations15 of a

LEM, calculation of ΔYt will be fast. Also the K is a real symmetric

matrix which can be easily inverted using Cholesky decomposition at

the initial step of the algorithm.
2.1.5 | Speed improvement

After implementation of the CFED algorithm in the MATLAB environ-

ment we tried to optimize its speed. Application of some approxima-

tions can reduce the computational complexity of the method. The

fast Gaussian transform (FGT) and low‐rank matrix approximation

which were proposed by the CPD authors21 were used to speed up

CFED. The codes provided for these methods in21 were applied to

the CFED algorithm and their effects on speed and accuracy were

tested. Obviously the speed increases at the expense of a slight reduc-

tion of accuracy. We named the algorithm with these two modifica-

tions the fast CFED.
2https://www.healthcare.siemens.com/magnetic‐resonance‐imaging/0‐35‐to‐
1‐5t‐mri‐scanner/magnetom‐avanto
2.2 | Brain phantom

The captured data sets from the brain phantom in different deforma-

tion states in our previous work22 were accurately recalled and

reprocessed. The primary goal was a comparison of computation times

and accuracy of the CFED method compared with the previously used

FED‐based method. The mesh size and the number of nodes included

in FED registration were the same for both approaches and all data

sets. The mesh had 7152 tetrahedral elements and 220 nodes were

candidates for FED. There were five series of data for each inflation

volume, 5 and 10 mL. Smoothing and meshing the volume were

performed in MATLAB software for both methods. The time required

for FED registration plus FEA was considered as the total computation

time of the previous method that should be compared with the compu-

tation time of the new CFED algorithm. The finite element analysis
1http://www.calculix.de/
software was an open‐source code, Calculix1 that was customized

for our study.

Points on the center line of tubes inside the phantom were consid-

ered as target points and mean displacement of them was defined as

target shift. The absolute shift and the accuracy of shift estimation

were calculated by rigid registration of post‐inflation MR images to

pre‐inflation ones and deformed brain meshes respectively.
2.3 | Animal model

We had one set of animal data that was gathered from our experi-

ments on a dog.22 We named that dog Dog1 and three more dogs that

were used for the present study as Dog2, Dog3 and Dog4. Before each

operation the skull of the animal was drilled to insert a tumor‐like

object inside the brain tissue as the target of brain shift estimation.

Table 1 shows the age and weight of dogs and the target type utilized

for each of them. The spherical pills of trinitroglycerin (TNG) that were

used for Dog3 and Dog4 created bright circles in MR images and could

be easily segmented. The pills were coated with a waterproof layer

that would not dissolve during the operation.

The preoperative MR images were taken with a SIEMENS Avanto2

1.5 T scanner, and a standard T1‐wieghted scanning sequence at a

voxel resolution of 0.78 × 0.78 × 0.8 mm was applied. Also acquisition

of 3DTOF MRA images were performed without injection of any

agents. In the operating room, a stereo camera was calibrated and

utilized for acquiring 3D positions of reference frames on tools,

ultrasound (US) probe and also projected landmarks over the cortex

surface. It was the same Micron Tracker of Claron, Inc., under Parsiss

Image‐Guided Navigation3 which was used in the previous studies

conducted by our group.26,27 Before craniotomy, the head of the

animal was rigidly registered to preoperative MR images.

After craniotomy and duratomy, a checkerboard pattern was

projected on the visible surface of the cortex and cross‐points of the

projected pattern were scanned by a stereo camera to calculate their

3D positions. Also 2D Doppler US images were acquired by a probe

that was swept over parenchyma and tracked by the camera. A

detailed description of the surface scanning method and other proce-

dures of data acquisition can be found in our previous work.22 For

Dog2 due to its unstable conditions in heart rate and blood pressure,

the Doppler US imaging did not give meaningful data and only surface

data was used. After recording intraoperative data, the animal with an
3Parseh Intelligent Surgical Systems Parsiss Company, Tehran, Iran.

www.parsiss.com.

http://www.calculix.de
https://www.healthcare.siemens.com/magnetic-resonance-imaging/0-35-to-1-5t-mri-scanner/magnetom-avanto
https://www.healthcare.siemens.com/magnetic-resonance-imaging/0-35-to-1-5t-mri-scanner/magnetom-avanto
http://www.parsiss.com


TABLE 2 The number of tetrahedral elements, surface nodes in craniotomy area, nodes on vascular tree, remaining points on the scanned surface
after preprocessing and finally the points on the deformed vascular tree

ID
Mesh

elelementss Surface nodes Vascular nodes
Nodes around
the target

Points on
deformed surface

Points on deformed
vascular tree

Dog1 3718 170 102 147 1630 233

Dog2 3220 152 84 115 1380 NA

Dog3 4082 210 136 77 1900 387

Dog4 3890 194 122 84 1720 425

FIGURE 3 A, Meshed brain of Dog1; surface
(red) and vascular (blue) nodes picked up for
FED. B, The overlapped mesh before (green)
and after (yellow) running the proposed
method

TABLE 3 Mean errors of shift estimation using FED‐based, CFED and
fast CFED methods and computation time of each method in two
inflation cases of the baloon inside the phantom, 5 and 10 mL

Mean error (mm) Computation time (s)

5 ml 10 ml 5 ml 10 ml

FED‐based 1.31 ± 0.31 1.43 ± 0.36 78 ± 8 105 ± 12

CFED 1.24 ± 0.26 1.36 ± 0.30 20 ± 3 31 ± 5

Fast CFED 1.38 ± 0.33 1.50 ± 0.41 5.3 ± 0.9 7.1 ± 1.3
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opened skull was directed to the MR imaging machine to acquire

images that were used for validating our brain shift estimator.

Using 3DSlicer software,28 the preoperative MR images processed

to segment brain to its principal parts. A reference database of dog

anatomy29 was used to perform manual segmentation carefully. The

software developed by our group26,27 was used to filter the outliers

and duplicated points from the 3D point cloud of the cortical surface.

Also the same methods described in our previous study22 were applied

to MRA and Doppler US images to extract minimum vasculature

around the tumor.

The surface of the 3D image of the brainwas smoothed such that an

approximately uniform surface mesh was obtained. The meshing of vol-

ume started from the surface. The points corresponding to the vascular

tree were used as nodes of the mesh. Using this method, there was no

need to find nearest nodes to vessels, as performed in our previous

study.22 Points which were placed more closely to others, less than

10% of the mean nodal distance, were omitted to obtain an approxi-

mately uniform mesh. The final size of mesh for each brain, the number

of nodes in the craniotomy area, nodes on the vascular tree and nodes

placed around the target are shown inTable 2. Also thenumber of points

that were extracted from intraoperative images and processed to repre-

sent the deformed surface and vessels can be found in Table 2.

Threemethodswere applied to each data set of animals to compute

the deformation of the brain; a previously used FED‐basedmethodwith

FED registration and FEA tasks, the proposed CFED and the fast CFED

method. To reach a better record for the previously used method, we

combined surface and vessels registrations in one FED task, as applied

in the new method. Figure 3 shows the meshed brain of Dog1 and the

nodes marked as inputs to FED. Also an overlapped image of the mesh

before and after running the new method is shown in this figure.

We defined the distance between the gravity centers of the tumor

before and after craniotomy as brain shift. The absolute shift and the

accuracy of shift estimation were calculated by rigid registration of
post‐craniotomy MR images to preoperative ones and deformed brain

mesh respectively.
3 | RESULTS

The machine which was used to process data was a desktop computer

with Core i7 (4790 K) CPU with up to 4.4 GHz speed, 16GB RAM and

1 TB hard disk drive. Except FEA software, other codes were imple-

mented in MATLAB.
3.1 | Phantom study

The absolute shifts that were induced by 5 and 10 mL inflation of

internal balloon were measured as 7.1 ± 0.4 and 9.5 ± 0.7, respectively.

Mean errors of shift estimation after processing by previous

FED‐based, new CFED and fast CFED methods as well as computation

time of each method are shown in Table 3.

The results show that computation time of CFED method was less

than 25% to 30% of the previous FED‐based method. Also the estima-

tion errors were decreased by up to 5% by the new algorithm. We will

discuss this further achievement in the discussion section. The results

of fast CFED indicate one order of magnitude reduction in
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computation time with a negligible loss of accuracy. Figure 4 shows

box plots of results that are shown in Table 3. The results indicate that

when the deformation increased due to the inflation, the estimation

error and time of process slightly increased.
3.2 | Animal model study

The measured and mean errors of estimating brain shift using three

named methods as well as their computation times are shown in

Table 4. The combination of surface and vessels data was used to

calculate craniotomy induced brain shift except for Dog2 because

Doppler US data were unusable. Figure 5 shows a box plot representa-

tion of the results in Table 4.

Comparison of mean errors in Table 4 indicates that the CFED

method outperforms the previous FED‐based method by up to 5% in

average registration error. The main achievement is that this modifica-

tion has led to reduction of the total computation time by 70%. The

results clearly prove that the fast CFED method can be utlized in a

real‐time procedure which is the current need for image guided neuro-

surgery systems. As shown the brain deformation can be computed in

an average time of 3.2 s which is much faster than both FED‐based and

CFED methods. The error growth with fast CFED averages less than

0.2 mm, which does not exceed 3% of the total brain shift.
4 | DISCUSSION

The main goal of this study was to improve the speed of calculation of

brain deformation by simplification of the structural analysis in
(A)

FIGURE 4 Box plots of A, mean error of shift estimation and B, computat

TABLE 4 Mean error of brain shifts estimation

Measured
brain shift
(mm)

Mean estimation error (mm

FED‐based CFED

Dog1 6.7 1.55 1.47

Dog2 4.4 1.64 1.56

Dog3 7.2 1.36 1.28

Dog4 7.5 1.72 1.66

Average 6.5 ± 1.46 1.57 ± 0.15 1.49 ± 0.16
combination with image registration. In our previous work the two pro-

cesses of registration and finite element analysis were performed sep-

arately. This caused a heavy computational cost thus making the

algorithm not suitable for real‐time analysis in the operating room. In

this study we managed to combine the registration process with struc-

tural analysis leading to a much faster algorithm for brain shift

calculation.

Also the experimental study in previous work was performed only

onone animal data, but for the present study three newdogs underwent

our experimental test in order to evaluate the proposed CFED method

more precisely. The computation time of the finite element analysis in

the CFED method was reduced but the FED registration was found to

be a time‐consuming process. For further improvement of overall speed

of the algorithm, we used some computational tricks to further reduce

the complexity of FED. The computation times of the fast version of

the CFED method are comparable with reported times for similar state

of the art brain shift estimators. Among recent studies onbrain deforma-

tion prediction only a few reported computation times. Joldes et al.10,30

reported a time less than 4 s to perform a finite element analysis of a

mesh with about 17000 elements. Sun et al.18 proposed an inverse

modeling based on a pre‐computed atlas of all possible brain shifts. It

took 1 min for registration and 1 min for inverse modeling with their

method. A competitive comparison of the computational cost of our

approach and thesemost recent studies is shown in Table 5. The compu-

tational cost of fast CFED is almost 50% less than the FEM‐based

methodproposed in30while the time requirement for image registration

was not included in their records. The proposedmethod18 has less com-

putational cost because the deformation calculations had been per-

formed for about 12 h before operation.
(B)

ion time of FED‐based, CFED and fast CFED methods

) Computation time (s)

Fast CFED FED‐based CFED Fast CFED

1.61 76 22 3.1

1.80 48 14 2.7

1.44 85 26 3.5

1.75 74 24 3.5

1.65 ± 0.16 70 ± 16 21.5 ± 5 3.2 ± 0.4



(A) (B)

FIGURE 5 Box plots of A, mean error of shift estimation and B, computation times of FED‐based, CFED and fast CFED methods

TABLE 5 Comparison of computaional cost of fast CFED with other methods

CPU: speed (GFLOPS* ) Elements Time (s) Cost (GFLOPS × s/ elements)

Joldes et al. (2010)30 Nvidia Tesla c870 GPU: (~384) 16 825 3.54 0.081

Sun et al. (2014)18 Intel Core i5: (~21) 100 000 120 0.025

Fast CFED Intel Core i7: (~44) 3728 3.2 0.038

*GFLOPS : Giga floating point operation per second
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The proposed CFED method has made several assumptions which

should be noted. The first assumption is the linearity of the model. It

might be widely thought that every patient‐specific finite element

model must suffer from uncertainties of non‐linear mechanical proper-

ties of the brain tissue. The results of a parametric study15 show that

for deformations such as craniotomy‐induced brain shift which do

not include topology changes (e.g. cutting, tissue removal) or surgical

tool forces, one can use the simplest linear elastic model (LEM) with

any reasonable value of Young's modulus and Poisson's ratio close to

0.5. Therefore it can also be assumed that the stiffness matrix (K) of

our LEM is invariant during the iterations of CFED. On the other hand

the model can be considered geometrically linear because the source

points (nodes) smoothly drifted towards target points leading to small

geometric changes in each iteration. This could be the reason for a

little accuracy improvement. However the accuracy improvement is

interpreted by averaging the measurements of brain shift. It should

be mentioned that the accuracy of computing absolute brain shift is

limited by the voxel size of MRI (0.78 mm).

Another assumption we made is that the nodes which become a

candidate for FED are close to each other and the generated mesh

connects them. Therefore the Kf matrix can be easily separated from

K. If such nodes are sparsely placed in the mesh, the Kf contains

unwanted nodes. Although the larger matrix may reduce the speed

of the registration algorithm the FED considers undesired nodes as

outliers and the total process is not affected.

Some procedures related to capturing intraoperative data, filtering

noise and outliers, 3D visualization of Doppler US and many other

preprocesses that were mentioned in our previous work22 are time‐

consuming tasks. The total time required for these procedures may be

greater than the time of biomechanical modeling.18 Other limitations

such as the light adjustment in operating room for a reliable surface

scan or capturing useful Doppler US images from vasculature around

the pathology remain in our proposed method and should be solved
before clinical application. However our animal study indicates that

the proposed fast CFED with a combination of intraoperative imaging

modalities can result in quick and reliable estimation of brain shift.

5 | CONCLUSIONS

In the present study, we attempted to solve the biggest problem of

excessive time consumption in the FEM‐based methods, that desig-

nated to estimate the intraoperative brain shift. Our approach was a

combination of registration and finite element analysis that could

speed up the entire process. Our previously proposed FED registration

method and the FEA are both based on a linear elastic model and we

combined them in an iterative algorithm.

Our experiments on a phantom and an animal model indicated that

the CFED method reduced the computational cost by almost 70%.

Besides speed enhancement, the smooth movement of loading nodes

can preserve linearity of the model and consequently makes the

structural analysis more accurate. The results showed an improvement

about 5% in final accuracy. Using some approximations, a fast version

of CFED was developed which can compute brain deformation in a

time less than 3.2 s with negligible degradation of accuracy.

This pre‐clinical study is an initial attempt to introduce FEM‐based

methods as real‐time applications usable in surgical navigation.
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