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ABSTRACT 
 
In this paper we present a group theoretic description of just 
intonation. All possible musical intervals belonging to 5-limit 
just intonation can be represented by the mathematical group 
{ 2p3q5r|p,q,r ∈Z} . Considering only the intervals within one 

octave, an isomorphism with the 2-dimensional lattice Z2 can  

be made. Plotting the intervals on the lattice according to the 
isomorphism, we can identify certain connected and convex sets 
of elements that represent the major and minor diatonic scale 
and the 12-tone chromatic scale. These sets of elements remain 
convex and the area each set spans remains invariant under 
lattice transformations. The fact that the major, minor and 
chromatic scale arise naturally from our representation of 5-
limit just intonation triggers discussion about the origin of 
scales and might suggest that those scales have a mathematical 
origin. With this, we challenge the framework of the 12-tone 
system.  
 
Our representation of 5-limit just intonation is compared with 
Balzano's `thirds-space' in which he builds the intervals of the 
12-tone scale from major and minor thirds also using group 
theory. This comparison gives a new insight on the 
compromises regarding intonation that are made when 
introducing a 12-tone temperament.  

1. INTRODUCTION 

Any musical interval can be expressed in terms of a frequency 
ratio. Since any positive integer a  can be written as a unique 

product ne
n

ee pppa ...21

11=  of positive integer powers ei of 

primes p1 <p2 <…<  pn , any frequency ratio can be expressed as  

rqp 532 …            Zrqp ∈,, . (1) 

For example 2-131=(3/2) represents a perfect fifth and 2-251 
(=5/4) a major third. Tuning according to whole number ratios 
is referred to as just-tuning. If the highest prime that is taken 
into account in describing a set of intervals is n, then we speak 
about just intonation to the n limit.  
 
In this paper we will use mathematical group theory to describe 
just intonation and our main focus is on just intonation to the 5-
limit. We will make a representation of all intervals in this 
intonation within one octave, from which we will derive the 

major and minor diatonic scale as well as the chromatic scale. 
We present this group theoretic description of just intonation 
systems as a realistic and natural framework of music, and with 
this we challenge the framework of the 12-tone system. Since 
this 12-tone system has become so familiar in Western music, it 
is sometimes even used by music theorists as a framework to 
explore the resources of a pitch system like the diatonic scale 
and modulation possibilities ([1], [8]). We compare our 
representation with Balzano's group theoretic description of a 
12-fold system.  
 
The paper is organized as follows. In section 2 the basics of 
mathematical group theory are explained and 5-limit just 
intonation is described by the group P3. The intervals of 5-limit 
just intonation within one octave can be plotted on a 2-
dimensional lattice from which several scales can be derived. In 
section 3 the lattice is plotted with respect to different basis 
vectors, and then compared to the note name system and 
Balzano's representation of a 12-tone system.  

 
2. GROUP THEORETIC AND 

GEOMETRIC INTERPRETATION OF 
JUST INTONATION 

Considering powers of the first two primes, we can create all 
positive numbers and ratios that are not multiples of 5 or a 
higher prime.  
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We can write:  
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with u=p+q and v=q . If we consider all numbers resulting from 
equation (2) to be frequency ratios, we see now that those 
intervals can all be built from a certain number of octaves (2/1) 
and fifths (3/2). This is called Pythagorean tuning, and is a 
special form of just intonation. This set of numbers (2) together 
with the operation of multiplication is a mathematical group. 
Definition: A group consists of a non-empty set G and a binary 
operation on G (usually written as composition with the symbol 

� ) satisfying the following conditions:  



• The binary operation is associative: 

)()( zyxzyx ���� = for any Gzyx ∈,, . 

• There is a unique element Ge ∈ , called the identity 

element of G , such that xex =�  and xxe =�  

for any. Gx ∈  

• For every Gx ∈  there is a unique element 

Gx ∈−1
 , called the inverse of x , with the 

property that exxxx == −− �� 11
. 

Using group theory we can make an abstraction of several 
tuning systems. We will call (2) the group P2 (since all elements 
are powers of the first two primes) and write:  

=2P { qp )
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The group has unit element 1 and the inverse of an element a  

is 
1−a . It is an abelian group (i.e. the elements commute) with 

an infinite number of elements.  
 
The group P3  (taking into account the first three primes) can be 
defined by { 2p3q5r|p,q,r ∈Z}  or, equivalently by  
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so that the elements can be seen as all intervals built from 
octaves (2/1), perfect fifths (3/2) and major thirds (5/4). More 
groups like this can be defined, taking into account multiples of 
7 and higher primes. All groups represent a form of just tuning. 
Usually, this is referred to as 'just tuning to the 5-limit' for P3, 
'just tuning to the 7-limit' for P4  and so on (always referring to 
the highest prime used). Every defined group is a subgroup1 of 
the group which takes into account higher primes.  

...}532{}32{}2{ ⊂⊂⊂ rqpqpp
     Zrqp ∈,,    (6) 

1P      2P⊂       3P⊂                ...⊂    (7) 

In this paper our focus is on P3 which represents the intervals in 
5-limit just-intonation. First of all, we notice that the group P3 is 
isomorphic to the group Z3. For the proof, see appendix A. 
Hence we can represent the elements of P3 in a 3-dimensional 
lattice labeled by the elements of Z3. For simplification 
however, we want to consider only the intervals lying within 
one octave. That means, considering the elements of P3 lying 
within the interval [1,2). To accomplish this, we make a map 

2
3: ZP →ϕ that divides P3 in equivalence classes of (the 

same) intervals over all octaves. This means for example that 
3/2 is in the same equivalence class as 6/2, 1/2, 12/2 and so on. 
The map is given by  

                                                
1 A subgroup H of G is a subset of  G which itself forms a group under 
the composition law of G. 
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This map is a group homomorphism since  

)()()( yxxy ϕϕϕ =   for all                   3, Pyx ∈  (9) 

The kernel of the map is { 2p|p ∈Z}  which are the elements that 
are projected on the unit element (0,0) of Z2. The quotient-group  
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is the group of cosets2 of the subgroup P1 ={ 2p|p ∈Z}  . We write  
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which means that every element of 
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every coset we can choose one representative that lies within the 

interval [1,2) (one octave). The group 
1
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since the map ϕ is a homomorphism and { 2p|p ∈Z}  is its 

kernel. Figure 1 shows the representatives of the elements of 

3̂P  ordered according to the 2-D lattice of Z2. 

 

 
 

Figure 1: Space of thirds and fifths. Major scale in Pythagorian 
tuning indicated by lines. Major scale in just-intonation 
indicated by dashed lines. 
 

                                                
2 Given a subgroup H of a group G, the (left) coset of an element g ∈ G, 
written gH is defined as the set of elements obtained by multiplying all 
the elements of H on the left by g.
 



 
The lattice is unbounded but only part of it is shown. Notice that 
(for r=0) on the q-axis the (representatives of the) group 

1

2
2̂ P

P
P =  can be found. In this figure two important scales 

can be found. The major scale in Pythagorean tuning is 
represented by the seven elements connected by lines (figure 1). 
An often used definition for the major scale in just intonation to 
the 5-limit is the scale in which each of the major triads I, IV 
and V is taken to have frequency ratios 4:5:6 (see for example 
[3]). Table 1 shows the ratios of the just major scale with 
respect to the fundamental.  

Note  do  re  mi  fa  so  la  ti  do  

Ratio  1:1  9:8  5:4  4:3  3:2  5:3  15:8  2:1 

Table 1: Frequency ratios between the different notes of the 
major scale and the fundamental 'do'. 

 
In figure 1 these ratios are indicated by dashed lines connecting 
the points.  
 
If we consider the area spanned up by these points we conclude 
that this is a convex area. We will use the following definition 
of a discrete convex set: Consider a lattice L. The set S is a 
convex subset of L if:  

Syx ∈∀ ,           ]1,0[∈∀α        

SyxLyx ∈−+�∈−+ )1()1( αααα      (13) 

meaning that, if drawing a line between any two points of the 
set, the points laying on that line, should also be in the set. 
Therefore, the points in Z2 labeled by the ratios from the major 
scale are a convex subset of Z2, as well as the points labeled by 
the ratios of Pythagorean tuning. Since convexity of a set is a 
special property we might wonder if this could tell us anything 
about these scales. We will later come back to this.  
 
We see from figure 1 that all intervals (in the 5-limit just-
intonation) can be built from perfect fifths and major thirds (and 
transposing octaves back). The q-axis represents the number of 
perfect fifths, the r-axis the major thirds. From the figure we can 
for example see that two perfect fifths and one major third up 
(and one octave down) gives an augmented fourth of ratio 
45/32. Interval addition can be seen here as vector addition (all 
vectors with their origin in (0,0) ∈  Z2). In figure 2 is shown 
that a perfect fifth added to a major seventh results in an 
augmented fourth.  
 
 
 

 
 

Figure 2: Space of intervals, the letters p, M, m, A and D mean 
perfect, major, minor, augmented and diminished respectively. 
 
 
Putting figure 2 on top of figure 1, it becomes clear which 
frequency ratios belong to which intervals. Note that the 
inverses of the intervals lie exactly at the other side of the center 
1 (point symmetry).  

3. DIFFERENT REALIZATIONS OF 
'THIRDS SPACE' 

In this section we will show the representation of a different 

isomorphism between 
1

3
3̂ P

P
P = and 

2Z and concentrate on 

several scales which appear in this representation as special 
subsets. We will compare our representation with the one 
Balzano ([1]) made using equal temperament in a group 
theoretic description as well as with the familiar note name 
system. This will result in a new view on the compromises 
made when our note name system and when a 12 tone 
temperament was introduced.  
 
There are several ways to make an isomorphism between 

1

3
3̂ P

P
P =  and 

2Z . The group 
2Z has generating subset 

{ (1,0), (0,1)} . This means that all elements from Z2 can be 
represented as linear combinations of basis vectors (1,0) and 
(0,1). In figure 1 these elements (or vectors) are associated with 
the intervals 3/2 and 5/4 meaning that all intervals in this figure 
can be built from perfect fifths and major thirds (and octaves, to 
get back to the representatives from the coset that lie in the 
interval [1,2) ). These generating elements are (here) not unique. 
We can for example write:  
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with u,v,w,k,l,m ∈ Z and k=u+v+2w, l=v+w, m=v, such that 
(u,v,w) � (k,l,m) is a bijective map (i.e. a one to one 
correspondence), proving that the intervals from P3 can also be 
built from octaves (2/1), major thirds (5/4) and minor thirds 
(6/5). One could ask what all possibilities for 'building blocks' 
for P3 would be. This problem is equivalent to finding all 
possibilities of generating subsets of Z2. It turns out that the area 
of the parallelogram made by the two (alternative) basis vectors 



(or generating elements) should be one, in order to be able to 
represent every element of Z2 as a linear combination of those 
vectors. This is equivalent to saying that the determinant of the 
matrix with the basis vectors as columns should be one. For the 
proof, see appendix B. There exists an infinite number of 
possibilities to choose a basis of Z2. By choosing the map given 
by (8) we accomplished that the basis vectors corresponded to 
the perfect fifth and major third. This choice is motivated from 
the fact that these intervals (which together form a major triad) 
are seen as the building blocks of western music. Using the 
same argument but from the perspective that triads are built 
from major and minor thirds, we can just as well choose the 
map:  
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In figure 3 the space, now constructed from major and minor 
thirds is shown. We will refer to this as the thirds space.  
 

 
 

 
Figure 3: Space of major and minor thirds. 
 
 
Now we want to compare this figure with the notes associated 
with it. Considering all intervals with respect to C (which is 
corresponding to 1∈P3) we obtain figure 4. We can immediately 
see that our note name system is not sufficient to name every 
single interval. From figure 3 we see that, going three major 
thirds up and four minor thirds up (and two octaves down), we 
are not back on the note we started from - which is suggested by 
figure 4 - but one syntonic comma (81/80) higher (for 
information on commas, see for example [6]). Therefore, in 
figure 4 every note differs one or more syntonic commas from 
another note with the same name. For example, comparing the 
ratios 9/8 and 10/9, both corresponding to a D in figure 4 gives 
us a difference in pitch of 9/8x10/9=81/80 which is equal to 
21.51 cents3.  

                                                
3 An interval x/y has a width of 1200 2log(x/y) 

 

 
 

Figure 4: Note names in the space of major and minor thirds. 
 
 
Let us compare figure 3 with the figure Balzano obtained by 
describing notes in 12-tone (equal) temperament in a cyclic 
group [1]. The octave divided into 12 semitones can be 
described by the set { 0,1,2,3,4,5,6,7,8,9,10,11} . This is a group 
by defining the binary operation as addition, the identity 
element as 0 and the inverse of an element n as 12-n. This group 
is called C12 and is a cyclic group. Balzano showed that there 
exists an isomorphism between C12 and the direct product of its 
subgroups C3 ={ 0,4,8}  (augmented triad; built from major 
thirds) and C4 ={ 0,3,6,9}  (diminished seventh chord; built from 
minor thirds): 

4312 CCC ×≅ . (16) 

The resulting 'thirds-space' is shown in figure 5.  
 

 
 

 

Figure 5: representation of Balzano's thirds-space: 43 CC × . 

 



3.1 Comparison and Interpretation  

All three figures 3, 4 and 5 show different realizations of the 
same structure: one step to the right means a major third up, one 
step up means a minor third up. Our frequency ratios space is an 
infinite space to all directions; the note-name space can be 
rolled up in one direction by identifying corresponding note 
names with each other; the C3 x C4 space can be rolled up in 
two directions (along the sides of the square (see figure 5), to 
become a torus) because the 12-tone system treats 
enharmonically equivalent notes as the same element. The four 
2's just inside and outside the square in figure 5 represent the 
same note in the C3 x C4 space, but four different frequency 
ratios in the frequency ratio space (figure 3). It surprisingly 
turns out that two of these frequencies differ more than one 
semitone from each other. The four frequency ratios 
corresponding to the four 2’s are, from left to right, from top to 
bottom: 144/125, 9/8, 10/9, 625/576. The note names of these 
frequency ratios (compared to C) are Ebb, D, D, C## 
respectively. We just saw that the two D's differ one syntonic 
comma (=21.51 cents) from each other. The difference in cents 
between Ebb and D (10/9), and between D (9/8) and C## is 
62.57 cents. The difference between Ebb and D (9/8), and 
between D (10/9) and C## is 41.06 cents. Finally the difference 
between Ebb and C## is 103.62 cents, which is more than one 
(equal tempered) semitone! That means two equal elements 
from Balzano's diagram can refer to two elements from 5-limit 
just intonation that differ 103.62 cents from each other.  
 
Note that in the thirds-space (fig. 3, 4) the Ebb , D, D and C## 
lie relatively close to one another, while for example the 
familiar comma of Pythagoras, which measures only 24.07 
cents though also audible, doesn't even fit in the figures. (For 
more reading on commas, see for example [6].) The syntonic 
comma shows here that the note name system is not as accurate 
as needed. Furthermore, the difference between enharmonically 
equivalent notes shows that the (equal) tempered 12-tone 
system is sometimes a pretty bad approximation to just-tuning.  
Of course, this is not new information, but these three 
realizations of ordered musical intervals (figures 3, 4, 5) can 
give a different insight on the compromises that are made 
introducing note names or equal temperament. In all 
temperaments compromises have been made, since not all 
intervals from just intonation can be included. Equal 
temperament represents the intervals from the just tuned major 
scale (table 1) by an approximation acceptable for the ear. 
However, it can happen in music that consecutive notes (not 
necessary in the same voice) are enharmonically equivalent. 
Using equal temperament, they are played as the same note, in 
just intonation the notes differ at most 103.62 cents from each 
other as is illustrated by figures 3 and 5. This places the 
acceptable equal temperament in another daylight.  
 
Balzano found the diatonic major scale as connected region in 
figure 5 as a special property of the thirds-space. In our space of 
major and minor thirds we find a similar structure. Taking the 
ratios for the just major scale as written in table 1, one can see 
that these ratios form a connected region indicated by thick lines 
(figure 6), in the same position Balzano found the major scale in 
figure 5. Using definition (13), we see that the major scale is a 
convex set as well. Calculating also all intervals (in frequency 
ratios) with respect to every other note in table 1 (for example 

the interval between so and la in this table is 10/9), many more 
intervals are obtained. Precisely these intervals can be found in 
a larger connected and convex set in figure 6, indicated by lines.  
 

 
 

Figure 6: Space of major and minor thirds. See text for details. 
 
 
The minor scale appears as a connected and convex set as well. 
Taking as a definition for the (natural) minor scale in just 
intonation the scale in which each of the minor triads I, IV and 
V have frequency ratios 10:12:15 (that is1:6/5:3/2), the intervals 
with respect to the fundamental are: 1, 9/8, 6/5, 4/3, 3/2, 8/5, 
9/5, 2. We can find these intervals in figure 6 in a connected 
region indicated by dashed lines. Calculating all intervals (with 
respect to every note in the scale) of the minor scale, we can 
find those ratios as a connected region in figure 6, it is the same 
region as the one resulting from the major scale. The harmonic 
minor scale requires only a change of the interval 9/5 to 15/8, 
the melodic minor scale requires a change of 8/5 to 5/3 as well. 
Both scales stay convex sets in the thirds space.  
The chromatic scale in just intonation as defined according to 
[7] and found in most textbooks4 can also be found as a 
connected and convex set in the thirds space, see figure 7.  
 

                                                
4 Sometimes the minor seventh in the chromatic scale is defined as 16/9 
instead of 9/5. In both cases the resulting set is convex in our 
representation.
 



 
 
 

Figure 7: Space of major and minor thirds. 
 
 
This might be a reason for many researchers and musicians to 
believe that 12 tones are a special set, and a possible 
explanation for the existence of the 12-tone chromatic scale.  
  
We have shown that other bases can be chosen to represent the 
same set. It is important to find out whether a convex set in one 
basis is still a convex set after a basis transformation as, 
otherwise, convexity of a set would not be a special property. 
Using the definition for a convex set as given in equation (13), 
and applying a linear transformation T:  

),()1()())1(( yTxTyxT αααα −+=−+  (17) 

 shows that the transformed set is still a convex set. This means 
that all the convex regions we found in our thirds space are 
convex regions in any space that is created by a basis 
transformation applied to the thirds space. The area of these 
convex sets is also invariant under basis transformations since 
every convex set can be split into a finite number of triangles 
and the area of an arbitrary triangle is invariant under basis 
transformations when the determinant of the transformation 
matrix is one5. These two special properties of a set, convexity 
and invariance of area put into question the origin of the scales 
described by these sets. A lot of research has been done on the 
origin of scales, see for example [2]. However, there is not a 
unique explanation as to how scales have developed which is 
widely accepted. Balzano ([1]) finds the diatonic scale as an 

                                                
5 This can easily be verified by using the formula for the area A of a 
triangle given its coordinates (x1, y1), (x2, y2) and (x3, y3): 
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unique pitch set emerging from 12 tone temperament. In the 
same way, we find here the diatonic scale now emerging from 
just intonation. More specifically, we find the diatonic major 
and minor scale, and all intervals appearing in these scales in 
connected and convex sets (figure 6). The chromatic 12 tone 
scale, which Balzano uses as a structure from which to derive 
the diatonic scales, also appears as a special set from within a 
system of just intonation (figure 7).  

4. CONCLUSIONS 

In this paper we presented a group theoretic description of just 
intonation. In studying 5-limit just intonation we considered 
only the intervals within one octave and could therefore create 
an isomorphism with Z2. The intervals from 5-limit just 
intonation were plotted on a two dimensional lattice and from 
that representation we derived the major and minor diatonic 
scales and chromatic 12-tone scale in a connected and convex 
set. We proved that these sets would still be convex and would 
span up an equal area if a basis transformation of the lattice 
would be applied. This might suggest that both the diatonic 
scales and the chromatic scale originate from just intonation.  
 
The lattice representation of 5-limit just intonation, with major 
and minor thirds as generating elements, was referred to as 
thirds space. We compared our thirds space with the thirds 
space Balzano created using 12 notes in an octave, and with the 
familiar note name system. Although the representation of note 
names is an unbounded region as well, it is not able to describe 
the notes of just intonation accurately. The comparison between 
the just intonation system and Balzano's system could give a 
new insight as to the compromises in intonation made by 
introducing a 12 tone system. One element in Balzano's thirds 
space refers to at least four6 different frequency ratios from P3. 
This indicates that two notes that are the same in a 12-tone 
system, can differ as much as 103.62 cents from each other.  
 

 

APPENDIX A: ISOMORPHISM 
BETWEEN 3P  AND 3Z  

Since Z is a group under addition, the set Z3 can be represented 
as a three dimensional space of all points (p,q,r) where p,q,r ∈ 
Z, and is a group under vector addition with unit element 
(0,0,0). The group operation is vector addition, which means  

)',','()',','(),,( rrqqpprqprqp +++=�  (19) 

The group P3 is isomorphic with Z3. This means that there is a 
one to one correspondence between the elements of the groups. 

The isomorphism is given by the map φ :  

                                                
6 There are 12 elements in Balzano's group C12 whereas P3 has an 
infinite number of elements. In the text we only pointed out four 
different ratios corresponding to one element in C12 , but there are many 
more.
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To prove that the two groups are isomorphic to one another we 

have to show that the map φ is a group homomorphism:  
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(where •  is the group operation in P3), and prove that φ is 

injective:  
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and surjective:  
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First we prove that φ is a homomorphism:  
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We prove injectivity of the map φ by the knowledge that every 

element from P3 can be written as a unique product of the first 
three primes.  
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We prove surjectivity of the map φ  by the definition of an 

element from P3. The elements in P3 are defined as 
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APPENDIX B: ALTERNATIVE BASES 
FOR 2Z  

The lattice Z2 is a subgroup and discrete subspace of the vector 
space R2. They share the same basis: e1=(1,0), e2=(0,1). We can 
choose another basis for Z2:  
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For simplicity we will use  
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and its inverse  
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We want to prove the statement we made in the text:  
{(a,b),(c,d)} is a basis of Z2  ⇔ Det(A)=1.  

First assuming that Det(A)=1, we know that 
1−A consists of 

integer elements7: e,f,g,h ∈ Z . Then,  
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�����=���

��������
�����=−

10

011

hf

ge

db

ca
AA  (29) 

implies that  

,10

1
e

d

c
f

b

a
e =���

��� !=���
��� !+���

��� !
     (30) 

.21

0
e

d

c
h

b

a
g =""#

$%%&'=""#
$%%&'+""#

$%%&'
     (31) 

And if e1 and  e2 are elements of the space spanned up by (a,b) 
and (c,d), any element of Z2 is in that space, so  

},{ (()
*++,-(()

*++,-
d

c

b

a
 is a basis of 

2Z  (32) 

To go the other way around, we assume 

},,,|),(),,{( Zdcbadcba ∈ is a basis of Z2, therefore:  

,1 ../
01123+../

01123=
d

c
f

b

a
ee      (33) 

.2 ../
01123+../

01123=
d

c
h

b

a
ge      (34) 

                                                

7 Because for an 2x2 matrix 445
67789=

db

ca
A : 

::;
<==>?

−
−

=−

ab

cd

ADet
A

)(

11
 



with Zhgfe ∈,,, , which is equivalent to  

���
��������

�����=���
�����

db

ca

hf

ge

10

01
 (35) 

 
and therefore  

.1)()( 1 =− ADetADet  (36) 

Since all elements of 
1−A and A  are elements of Z, and 

therefore )( 1−ADet and )(ADet should both be elements 

of Z there is no other possibility for )(ADet than to be equal 

to 1 (or -1).  

1)( ±=ADet  (37) 

For more details on linear algebra, see for example [4].  
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