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ABSTRACT

In this paper we present a group theoretic description of just
intonation. All possible musical intervals belonging to 5-limit
just intonation can be represented by the mathematical group
{2P3%5|p,q,r OZ}. Considering only the intervals within one

octave, an isomorphism with the 2-dimensional lattice Z% can

be made. Plotting the intervals on the lattice according to the
isomorphism, we can identify certain connected and convex sets
of elements that represent the major and minor diatonic scale
and the 12-tone chromatic scale. These sets of elements remain
convex and the area each set spans remains invariant under
lattice transformations. The fact that the major, minor and
chromatic scale arise naturally from our representation of 5-
limit just intonation triggers discussion about the origin of
scales and might suggest that those scales have a mathematical
origin. With this, we chalenge the framework of the 12-tone
system.

Our representation of 5-limit just intonation is compared with
Balzano's "thirds-space' in which he builds the intervals of the
12-tone scale from major and minor thirds dso using group
theory. This comparison gives a new insght on the
compromises regarding intonation that are made when
introducing a 12-tone temperament.

1. INTRODUCTION

Any musical interval can be expressed in terms of a frequency
ratio. Since any positive integer @ can be written as a unique

product & = plel plez ...pne” of positive integer powers g of
primes p; <p; <...< p,, any frequency ratio can be expressed as

2°395" ... p,q,r Z. @

For example 2°13'=(3/2) represents a perfect fifth and 25
(=5/4) a mgor third. Tuning according to whole number ratios
is referred to as just-tuning. If the highest prime that is taken
into account in describing a set of intervals is n, then we speak
about just intonation to the n limit.

In this paper we will use mathematical group theory to describe
just intonation and our main focus is on just intonation to the 5-
limit. We will make a representation of al intervals in this
intonation within one octave, from which we will derive the

major and minor diatonic scale as well as the chromatic scale.
We present this group theoretic description of just intonation
systems as aredlistic and natural framework of music, and with
this we challenge the framework of the 12-tone system. Since
this 12-tone system has become so familiar in Western music, it
is sometimes even used by music theorists as a framework to
explore the resources of a pitch system like the diatonic scale
and modulation posshilities ([1], [8]). We compare our
representation with Balzano's group theoretic description of a
12-fold system.

The paper is organized as follows. In section 2 the basics of
mathematical group theory are explained and 5-limit just
intonation is described by the group Ps. The intervals of 5-limit
just intonation within one octave can be plotted on a 2-
dimensional lattice from which several scales can be derived. In
section 3 the lattice is plotted with respect to different basis
vectors, and then compared to the note name system and
Bal zano's representation of a 12-tone system.

2. GROUP THEORETIC AND
GEOMETRIC INTERPRETATION OF
JUST INTONATION

Considering powers of the first two primes, we can create all
positive numbers and ratios that are not multiples of 5 or a
higher prime.

3409
2P39=11,2346,....—,—,—,... qUZ (2
{1 23’8 } p.q @
We can write:
3 3
2P31 =219 (2)1 = 24(2)Y )
(2) (2)

with u=p+q and v=q . If we consider all numbers resulting from
equation (2) to be frequency ratios, we see now tha those
intervals can al be built from a certain number of octaves (2/1)
and fifths (3/2). This is caled Pythagorean tuning, and is a
speciad form of just intonation. This set of numbers (2) together
with the operation of multiplication is a mathematical group.
Definition: A group consists of a non-empty set G and a binary
operation on G (usualy written as composition with the symbol
o) satisfying the following conditions:



*  Thebinary operation is associative:

(Xoy)eoz=Xo(yo2)forany X,Yy,z0G.

*  Thereisauniqueelement €[] G, called the identity
dementof G, suchthat X0 €= X and €0 X = X
forany. X G

+  Forevery X G thereisaunique element
X OG , cdledtheinverse of X , with the
property that Xe X 1 =X To X =e.

Using group theory we can make an abstraction of severa
tuning systems. We will call (2) the group P, (since al e ements
are powers of the first two primes) and write:

3
F’2={2”(§)q |p,a0Z}. )

The group has unit element 1 and the inverse of an element a

isa™. Itisan abdian group (i.e. the elements commute) with
an infinite number of elements.

The group P; (taking into account the first three primes) can be
defined by { 2°3%|p,q,r OZ} or, equivalently by

3,4,5
R ={2"C)" () Ipariz} ©)

so that the elements can be seen as dl intervals built from
octaves (2/1), perfect fifths (3/2) and mgor thirds (5/4). More
groups like this can be defined, taking into account multiples of
7 and higher primes. All groups represent a form of just tuning.
Usudly, this is referred to as jjust tuning to the 5-limit' for Ps,
just tuning to the 7-limit' for P, and so on (always referring to
the highest prime used). Every defined group is a subgroup® of
the group which takes into account higher primes.

(2P} O{2°3} O{2°3°5'} O... p,gr0Z ©
P OP, OP ... )

In this paper our focus is on P; which represents the intervalsin
5-limit just-intonation. First of all, we notice that the group Ps is
isomorphic to the group Z°. For the proof, see appendix A.
Hence we can represent the elements of P; in a 3-dimensiona
lattice labeled by the elements of z®. For simplification
however, we want to consider only the intervals lying within
one octave. That means, considering the elements of P; lying
within the interva [1,2). To accomplish this, we make a map

@:P, - Z%tha divides P; in equivalence dasses of (the

same) intervals over al octaves. This means for example that
3/2 isin the same equivalence class as 6/2, 1/2, 12/2 and so on.
The map isgiven by

A subgroup H of G isasubset of G whichitself formsa group under
the composition law of G.

3.4,
2P(2)Y)" - (q.r 8
¢ (2) (4) (a,r) ®)
This map is agroup homomorphism since

P(xy) = #(X)g(y) foral xyUPR,

The kernd of the map is {2°|p 0Z} which are the elements that
are projected on the unit element (0,0) of Z2 The quotient-group

- P
Py= (19)
{2°|p0Z}
isthe group of cosets® of the subgroup P, ={2°|p 0Z} . We write

P

D, =3 ={xP, | xOP} (11)

~U

P
which means that every element of —2 jsan equivalence class
1

of elements {2’)(2)” (%)"3 |a, B fixed, pOZ}.From
every coset we can choose one representative that lies within the
interval [1,2) (one octave). The group E is isomorphic to
. 1
{2°] I:‘IO3 0z} e

since the map @ is a homomorphism and {2’|p 0z} is its
kernel. Figure 1 shows the representatives of the elements of
P, ordered according to the 2-D lattice of Z°.
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Figure 1: Space of thirds and fifths. Major scale in Pythagorian
tuning indicated by lines. Mgor scae in just-intonation
indicated by dashed lines.

2 Given asubgroup H of agroup G, the (left) coset of an element g L1 G,
written gH is defined as the set of € ements obtained by multiplying all
the elements of H on theleft by g.



The lattice is unbounded but only part of it is shown. Notice that
(for r=0) on the g-axis the (representatives of the) group

P2 = & can be found. In this figure two important scales
1

can be found. The major scale in Pythagorean tuning is
represented by the seven elements connected by lines (figure 1).
An often used definition for the major scalein just intonation to
the 5-limit is the scale in which each of the mgor triads I, IV
and V is taken to have frequency ratios 4:5:6 (see for example
[3]). Table 1 shows the ratios of the just major scale with
respect to the fundamental.

e [e0 [re [ [ [s0 fia [0 ]
a1 98 [54 [+ [32 53 18 21

Table 1: Frequency ratios between the different notes of the
major scale and the fundamental 'do’.

In figure 1 these ratios are indicated by dashed lines connecting
the points.

If we consider the area spanned up by these points we conclude
that thisis a convex area. We will use the following definition
of a discrete convex set: Consider a lattice L. The set Sis a
convex subset of L if:

Ox,ydS Oa O[04
ax+(l-a)yOL=ax+(1-a)ydS (13

meaning that, if drawing a line between any two points of the
set, the points laying on that line, should also be in the set.
Therefore, the points in Z2 labeled by the ratios from the major
scale are a convex subset of Z2 as well as the points labeled by
the retios of Pythagorean tuning. Since convexity of a set is a
speciad property we might wonder if this could tell us anything
about these scales. We will later come back to this.

We see from figure 1 that al intervals (in the 5-limit just-
intonation) can be built from perfect fifths and mgor thirds (and
transposing octaves back). The g-axis represents the number of
perfect fifths, the r-axis the major thirds. From the figure we can
for example see that two perfect fifths and one mgor third up
(and one octave down) gives an augmented fourth of ratio
45/32. Interval addition can be seen here as vector addition (all
vectors with their origin in (0,0) L Z?. In figure 2 is shown
that a perfect fifth added to a major seventh results in an
augmented fourth.

Ad Al A5 ﬁ'l

I\V? Al
p3 B2 5 (] W3

D5 2 fia il 13 fisfy pt

o3 i ot

D4 D3 Ol Bk}

Figure 2: Space of intervals, the letters p, M, m, A and D mean
perfect, mgor, minor, augmented and diminished respectively.

Putting figure 2 on top of figure 1, it becomes clear which
frequency ratios belong to which intervals. Note that the
inverses of theintervalslie exactly at the other side of the center
1 (point symmetry).

3. DIFFERENT REALIZATIONS OF
'THIRDS SPACE!

In this section we will show the representation of a different

~ P
isomorphism between P, = —2 and Z?and concentrate on

1
several scales which appear in this representation as specia
subsets. We will compare our representation with the one
Balzano ([1]) made using equa temperament in a group
theoretic description as well as with the familiar note name
system. This will result in a new view on the compromises
made when our note name system and when a 12 tone
temperament was introduced.

There are several ways to make an isomorphism between
_h

pl
{(1,0), (0,1)}. This means tha al elements from Z> can be
represented as linear combinations of basis vectors (1,0) and
(0,2). In figure 1 these elements (or vectors) are associated with
the intervals 3/2 and 5/4 meaning that al intervalsin this figure
can be built from perfect fifths and major thirds (and octaves, to
get back to the representatives from the coset that lie in the
interval [1,2) ). These generating el ements are (here) not unique.
We can for example write:

A and Z%. The group Z?has generating subset

5 6 5,,6
2”3"5"" - 2u+v+2w Myviw e Py 2k N Eym 14
(4) (5) (4) (5) (14

with u,v,w,k,I,m O Z and k=u+v+2w, I=v+w, m=v, such that
(uv,w) = (k,I,m) is a bijective map (i.e. a one to one
correspondence), proving that the intervals from P; can also be
built from octaves (2/1), mgjor thirds (5/4) and minor thirds
(6/5). One could ask what al possihilities for 'building blocks'
for P; would be. This problem is equivaent to finding all
possihilities of generating subsets of Z2 It turns out that the area
of the parallelogram made by the two (aternative) basis vectors



(or generating elements) should be one, in order to be able to
represent every element of Z2 as a linear combination of those
vectors. This is equivalent to saying that the determinant of the
matrix with the basis vectors as columns should be one. For the
proof, see appendix B. There exists an infinite number of
possihilities to choose a basis of Z2. By choosing the map given
by (8) we accomplished that the basis vectors corresponded to
the perfect fifth and major third. This choice is motivated from
the fact that these intervals (which together form a major triad)
are seen as the building blocks of western music. Using the
same argument but from the perspective that triads are built
from major and minor thirds, we can just as wel choose the

map:
o 2yaSy
¢2(ﬁ(§ (a.r) (15

In figure 3 the space, now constructed from major and minor
thirds is shown. We will refer to this as the thirds space.
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Figure 3: Space of magjor and minor thirds.

Now we want to compare this figure with the notes associated
with it. Considering al intervals with respect to C (which is
corresponding to 100P3) we obtain figure 4. We can immediately
see that our note name system is not sufficient to name every
single interval. From figure 3 we see that, going three major
thirds up and four minor thirds up (and two octaves down), we
are not back on the note we started from - which is suggested by
figure 4 - but one syntonic comma (81/80) higher (for
information on commas, see for example [6]). Therefore, in
figure 4 every note differs one or more syntonic commas from
another note with the same name. For example, comparing the
ratios 9/8 and 10/9, both corresponding to a D in figure 4 gives
us a difference in pitch of 9/8x10/9=81/80 which is equa to
21.51 cents’.

3 Aninterval x/y hasawidth of 1200 2log(x/y)
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Figure4: Note namesin the space of major and minor thirds.

Let us compare figure 3 with the figure Balzano obtained by
describing notes in 12-tone (equal) temperament in a cyclic
group [1]. The octave divided into 12 semitones can be
described by the set {0,1,2,3,4,5,6,7,8,9,10,11}. Thisis a group
by defining the binary operation as addition, the identity
element as 0 and the inverse of an dement n as 12-n. This group
is called Cy; and is a cyclic group. Balzano showed that there
exists an isomorphism between Cy, and the direct product of its
subgroups C; ={0,4,8} (augmented triad; built from major
thirds) and C, ={0,3,6,9} (diminished seventh chord; built from
minor thirds):

C, 0C,xC,. (16)
The resulting thirds-space' is shown in figure 5.
]
1 5 9 1 5 & 1
1T hal: 2 &6 102 & 10
thi 1ds T 11({3 T 11]3
C, +4 2 (0 4 B |0 4
1 5| 1 5|9
10 2 |6 10 2 |6 10
7113 7 113 7
==

majol thivds C,

Figure 5: representation of Balzano's thirds-space: C; X C,, .



3.1 Comparison and Interpretation

All three figures 3, 4 and 5 show different realizations of the
same structure: one step to the right means a mgjor third up, one
step up means a minor third up. Our frequency ratios spaceis an
infinite space to dl directions; the note-name space can be
rolled up in one direction by identifying corresponding note
names with each other; the C;3 x C, space can be rolled up in
two directions (along the sides of the square (see figure 5), to
become a torus) because the 12-tone system treats
enharmonically equivalent notes as the same element. The four
2's just insde and outside the square in figure 5 represent the
same note in the C; x C4 space, but four different frequency
ratios in the frequency ratio space (figure 3). It surprisingly
turns out that two of these frequencies differ more than one
semitone from each other. The four frequency ratios
corresponding to the four 2's are, from left to right, from top to
bottom: 144/125, 9/8, 10/9, 625/576. The note names of these
frequency ratios (compared to C) are Ebb, D, D, C##
respectively. We just saw that the two D's differ one syntonic
comma (=21.51 cents) from each other. The difference in cents
between Ebb and D (10/9), and between D (9/8) and C## is
62.57 cents. The difference between Ebb and D (9/8), and
between D (10/9) and C## is 41.06 cents. Findly the difference
between Ebb and C## is 103.62 cents, which is more than one
(equal tempered) semitone! That means two equal elements
from Balzano's diagram can refer to two elements from 5-limit
just intonation that differ 103.62 cents from each other.

Note that in the thirds-space (fig. 3, 4) the Ebb , D, D and C##
lie relatively close to one another, while for example the
familiar comma of Pythagoras, which measures only 24.07
cents though also audible, doesn't even fit in the figures. (For
more reading on commas, see for example [6].) The syntonic
comma shows here that the note name system is not as accurate
as needed. Furthermore, the difference between enharmonically
equivalent notes shows that the (equal) tempered 12-tone
system is sometimes a pretty bad approximation to just-tuning.
Of course, this is not new information, but these three
redizations of ordered musical intervals (figures 3, 4, 5) can
give a different insight on the compromises that are made
introducing note names or equal temperament. In all
temperaments compromises have been made, since not al
intervals from just intonation can be included. Equa
temperament represents the intervals from the just tuned major
scale (table 1) by an approximation acceptable for the ear.
However, it can happen in music that consecutive notes (not
necessary in the same voice) are enharmonicaly equivalent.
Using equa temperament, they are played as the same note, in
just intonation the notes differ at most 103.62 cents from each
other as is illustrated by figures 3 and 5. This places the
acceptable equal temperament in another daylight.

Balzano found the diatonic major scale as connected region in
figure 5 as a specia property of the thirds-space. In our space of
major and minor thirds we find a similar structure. Taking the
ratios for the just mgjor scale as written in table 1, one can see
that these ratios form a connected region indicated by thick lines
(figure 6), in the same position Balzano found the major scale in
figure 5. Using definition (13), we see that the major scale is a
convex set as well. Caculating also al intervals (in frequency
ratios) with respect to every other note in table 1 (for example

the interval between so and lain this table is 10/9), many more
intervals are obtained. Precisdy these intervals can be found in
alarger connected and convex set in figure 6, indicated by lines.
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Figure 6: Space of major and minor thirds. See text for details.

The minor scale appears as a connected and convex set as well.
Taking as a definition for the (naturd) minor scale in just
intonation the scale in which each of the minor triads I, IV and
V have frequency ratios 10:12:15 (that is1:6/5:3/2), the intervals
with respect to the fundamenta are: 1, 9/8, 6/5, 4/3, 3/2, 8/5,
9/5, 2. We can find these intervals in figure 6 in a connected
region indicated by dashed lines. Calculating al intervas (with
respect to every note in the scae) of the minor scale, we can
find those ratios as a connected region in figure 6, it is the same
region as the one resulting from the major scale. The harmonic
minor scale requires only a change of the interval 9/5 to 15/8,
the melodic minor scale requires a change of 8/5 to 5/3 as well.
Both scales day convex sets in the thirds space
The chromatic scale in just intonation as defined according to
[7] and found in most textbooks® can also be found as a
connected and convex set in the thirds space, seefigure 7.

4 Sometimes the minor seventh in the chromatic scale is defined as 16/9
ingead of 9/5. In both cases the resulting set is convex in our
representation.
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Figure 7: Space of magjor and minor thirds.

This might be a reason for many researchers and musicians to
believe that 12 tones are a specid set, and a possble
explanation for the existence of the 12-tone chromatic scde.

We have shown that other bases can be chosen to represent the
same st. It is important to find out whether a convex set in one
basis is sill a convex set after a bads transformation as,
otherwise, convexity of a set would not be a specia property.
Using the definition for a convex set as given in equation (13),
and applying alinear transformation T:

T(ax+(1-a)y) =aT(x)+(1-a)T(y), @7

shows that the transformed set is still a convex set. This means
that dl the convex regions we found in our thirds space are
convex regions in any space that is created by a basis
transformation applied to the thirds space. The area of these
convex sets is aso invariant under basis transformations since
every convex set can be split into a finite number of triangles
and the area of an arbitrary triangle is invariant under basis
transformations when the determinant of the transformation
matrix is one®. These two specia properties of a set, convexity
and invariance of area put into question the origin of the scales
described by these sets. A lot of research has been done on the
origin of scales, see for example [2]. However, there is not a
unique explanation as to how scales have developed which is
widely accepted. Balzano ([1]) finds the diatonic scale as an

5 This can easly be verified by usng the formula for the area A of a
triangle given its coordinates (X, Y1), (X2, y2) and (X, ys):

TR
A:EDet X, Y, 1
X3 Y3 1

unique pitch set emerging from 12 tone temperament. In the
same way, we find here the diatonic scale now emerging from
just intonation. More specificdly, we find the diatonic major
and minor scale, and all intervals appearing in these scales in
connected and convex sets (figure 6). The chromatic 12 tone
scale, which Balzano uses as a structure from which to derive
the diatonic scaes, also appears as a specid set from within a
system of just intonation (figure 7).

4. CONCLUSIONS

In this paper we presented a group theoretic description of just
intonation. In studying 5-limit just intonation we considered
only the intervals within one octave and could therefore create
an isomorphism with Z2 The intervals from 5-limit just
intonation were plotted on a two dimensional lattice and from
that representation we derived the major and minor diatonic
scales and chromatic 12-tone scale in a connected and convex
set. We proved that these sets would till be convex and would
span up an equd area if a basis transformation of the lattice
would be applied. This might suggest that both the diatonic
scales and the chromatic scale originate from just intonation.

The lattice representation of 5-limit just intonation, with major
and minor thirds as generating elements, was referred to as
thirds space. We compared our thirds space with the thirds
space Balzano created using 12 notes in an octave, and with the
familiar note name system. Although the representation of note
names is an unbounded region as well, it is not able to describe
the notes of just intonation accurately. The comparison between
the just intonation system and Balzano's system could give a
new insight as to the compromises in intonation made by
introducing a 12 tone system. One element in Balzano's thirds
space refers to at least four® different frequency ratios from Ps.
This indicates that two notes that are the same in a 12-tone
system, can differ as much as 103.62 cents from each other.

APPENDIX A: ISOMORPHISM
BETWEEN P, AND Z°

Since Z is a group under addition, the set Z® can be represented
as a three dimensiona space of al points (p,q,r) where p,q,r O
Z, and is a group under vector addition with unit element
(0,0,0). The group operation is vector addition, which means

(p.a,r)e(p.q.r)=(p+p,q+q,r+r) @19

The group P is isomorphic with Z3. This means that there is a
one to one correspondence between the elements of the groups.

Theisomorphismisgiven by themap ¢:

6 There are 12 dements in Bazano's group Cio whereas P; has an
infinite number of eements. In the text we only pointed out four
different ratios corresponding to one eement in Cy5, but there are many
more.



01 (p.qr)0Z° - (2p(§)‘*(§)f)ma @

To prove that the two groups are isomorphic to one another we
have to show that the map ¢ isagroup homomorphism:

¢((p+p.q+q,r+r’) =
@(p.qg,r))s A(p'.q',r"))

(where ® is the group operation in P;), and prove that ¢is
injective:

(21

(a,b,c),(d,e, fYOZ?3:

A(a,b,c)) =¢((d,e f)) = (22)
(a,b,c) =(d,e f)
and surjective:
OyOPR,,[{ab,c)0Z%: ¢(a,b,c)) =y (23)
First we prove that ¢ is ahomomorphism:
¢((p+p.q+a,r+r’))
=207 Sy Oy
2 4 24)

=273y 2y e 20 By Oy
=27 )R 2"
=@(p.a.r)e A(p.q.r"))

We prove injectivity of the map ¢ by the knowledge that every

element from P; can be written as a unique product of the first
three primes.

¢((ab,c)) =¢((d.e f)) =
a 3 b 5 c — nd 3 e 5 f
2 (E) (Z) =2 (E) (Z) =
a-d 3 b—e 5 c—f
2 (E) (Z) =1=(abo=(def) 4

We prove surjectivity of the map ¢ by the definition of an
element from P;. The dements in P; are defined as

{ZP(g)q(g)Wp,q,r (0Z}. So there is aways an
element (P, 0, 1) 0 Z % such that

A(p.a.r) = zp(g)‘*(g)f .

APPENDIX B: ALTERNATIVE BASES
FOR Z°2

The lattice Z2is a subgroup and discrete subspace of the vector
space R? They share the same basis: ,=(1,0), ,=(0,1). We can
choose another basis for 72

allc b dDZDeta C;tO 26
{b,dlamc, Detl } (26

For smplicity we will use
a Cc
A= :
o3
ar=[® 9
f h)

We want to prove the statement we made in the text:

{(ab),(cd)} isabasisof Z2 < Det(A)=1.

First assuming that Det(A)=1, we know that A~ consists of
integer elements”: ef,gh 0Z. Then,

(27)
anditsinverse

(28)

s
Gl o
N

And if g and e, are lements of the space spanned up by (a,b)
and (c,d), any element of Z%isin that space, so

A S isabassot 22
{b,d}lsa s

To go the other way around, we assume
{(a,b),(c,d) | a,b,c,d [0 Z} isabesis of Z2, therefore:

()
Roan

a C
7 Because for an 2x2 matrix A = :
b d

. 1 ( d —cj
A=
Det(A)\-b a

(32

(33

(34)




with €, f,g,h[0Z, whichisequivalent to

S O

and therefore
Det(A™)Det(A) =1. (36)

Since al dements of A and A are elements of Z, and
therefore Det(A™) and Det(A) should both be elements

of Z there is no other possibility for Det(A) than to be equal
to 1 (or -1).

Det(A) = +1 (37)

For more details on linear algebra, see for example [4].
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