Alice Davy

Alice Davy
French National Centre for Scientific Research | CNRS · Center for Developmental Biology

PhD

About

62
Publications
6,537
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,980
Citations
Additional affiliations
January 2007 - November 2015
French National Centre for Scientific Research
Position
  • Group Leader
January 2007 - present
French National Centre for Scientific Research
Position
  • Centre national de la recherche scientifique
May 2001 - December 2006
Fred Hutch Cancer Center
Position
  • PostDoc Position

Publications

Publications (62)
Article
Full-text available
Eph:ephrin signaling plays an important role in embryonic development as well as tissue homeostasis in the adult. At the cellular level, this transduction pathway is best known for its role in the control of cell adhesion and repulsion, cell migration and morphogenesis. Yet, a number of publications have also implicated Eph:ephrin signaling in the...
Article
Full-text available
Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in...
Article
Full-text available
Graphical Abstract Highlights d Description of Eph-B transcriptional response in neural stem cells d Eph activation decreases the expression and activity of DHFR d Inhibition of DHFR decreases H3K4 methylation and impairs self-renewal of NSCs d Decreased H3K4 methylation locks NSCs in a pro-differentiation state In Brief Fawal et al. present eviden...
Article
Full-text available
Background: During mammalian cerebral cortex development, different types of projection neurons are produced in a precise temporal order and in stereotypical numbers. The mechanisms regulating timely generation of neocortex projection neurons and ensuring production in sufficient numbers of each neuronal identity are only partially understood. Re...
Preprint
Full-text available
The mammalian neocortex is composed of different subtypes of neurons which are generated during embryogenesis by sequential differentiation of neural progenitors. While molecular mechanisms that control neuronal production in the developing neocortex have been extensively studied, the dynamics and absolute numbers of the different progenitor and ne...
Preprint
Methionine, an essential amino acid that has to be provided by nutrition, and its metabolite S-Adenosyl methionine (SAM) are indispensable for cell proliferation, stem cell maintenance and epigenetic regulation, three processes that are central to embryonic development. Previous studies using chronic dietary restriction of methyl donors prior to an...
Article
Full-text available
One-carbon/folate (1C) metabolism supplies methyl groups required for DNA and histone methylation, and is involved in the maintenance of self-renewal in stem cells. Dihydrofolate reductase (DHFR), a key enzyme in 1C metabolism, is highly expressed in human and mouse neural progenitors at the early stages of neocortical development. Here, we have in...
Article
Full-text available
Background: The apical surface (AS) of epithelial cells is highly specialized; it is important for morphogenetic processes that are essential to shape organs and tissues and it plays a role in morphogen and growth factor signaling. Apical progenitors in the mammalian neocortex are pseudoepithelial cells whose apical surface lines the ventricle. Whe...
Preprint
One-carbon/folate (1C) metabolism supplies methyl groups required for DNA and histone methylation, and is involved in the maintenance of self-renewal in stem cells. Dihydrofolate reductase (DHFR), a key enzyme in 1C metabolism, is highly expressed in Human and mouse neural progenitors at the early stages of neocortical development. Here, we investi...
Preprint
Full-text available
The apical surface of epithelial cells is highly specialized, it is important for morphogenetic processes that are essential to shape organs and tissues and it plays a role in morphogen and growth factor signaling. Apical progenitors in the mammalian neocortex are pseudoepithelial cells whose apical surface lines the ventricle. Whether changes in t...
Preprint
Full-text available
During development, cortical neurons are produced in a temporally regulated sequence from apical progenitors, directly, or indirectly through the production of intermediate basal progenitors. The balance between these major progenitors types is determinant for the production of the proper number and types of neurons and it is thus important to deci...
Article
Chromosome 13q deletions encompassing EFNB2, which encodes the transmembrane protein ephrin-B2, are likely to cause syndromic forms of sensorineural hearing loss of unclear origin. Thus, unravelling the pathogenic mechanisms could help to improve therapeutic strategies. In the cochlea, adjacent non-sensory epithelial cells are connected via gap jun...
Article
Full-text available
Brain tumors are a heterogeneous group of benign and malignant tumors arising from the brain parenchyma and its surrounding structures, with in general a poor clinical outcome due to high recurrence. One of the underlying causes for this somber prognostic is the presence of brain tumor initiating cells (BTIC) endowed with self-renewal potential, mu...
Article
Full-text available
The mammalian neocortex is composed of different subtypes of projection neurons which are generated sequentially during embryogenesis by differentiation of neural progenitors. While molecular mechanisms that control neuronal production in the developing neocortex have been extensively studied, the dynamics and absolute numbers of the different prog...
Preprint
Background: During mammalian cerebral cortex development, different types of projection neurons are produced in a precise temporal order and in stereotypical numbers. The mechanisms regulating timely generation of neocortex projection neurons and ensuring production in sufficient numbers of each neuronal identity is only partially understood. Resul...
Article
Full-text available
Balancing self-renewal with differentiation is crucial for neural stem cells (NSC) functions to ensure tissue development and homeostasis. Over the last years, multiple studies have highlighted the coupling of either metabolic or epigenetic reprogramming to NSC fate decisions. Metabolites are essential as they provide the energy and building blocks...
Article
The corpus callosum is the largest commissure in the brain, whose main function is to ensure communication between homotopic regions of the cerebral cortex. During fetal development, corpus callosum axons (CCAs) grow toward and across the brain midline and then away on the contralateral hemisphere to their targets. A particular feature of this circ...
Preprint
Full-text available
Metabolic pathways, once seen as a mere consequence of cell states, have emerged as active players in dictating different cellular events such as proliferation, self-renewal and differentiation. Several studies have reported a role for folate-dependent 1-carbon (1C) metabolism in stem cells, however, its exact mode of action and how it interacts wi...
Article
Full-text available
Background In the vertebrate spinal cord, motor neurons (MN) are generated in stereotypical numbers from a pool of dedicated progenitors (pMN) whose number depends on signals that control their specification but also their proliferation and differentiation rates. Although the initial steps of pMN specification have been extensively studied, how pMN...
Preprint
Full-text available
STATEMENT This article by Laussu et al. describes a role for Eph:ephrin signaling in controlling the identity of neural progenitors in the ventral spinal cord. Early specification of progenitors of the ventral spinal cord involves the morphogen Sonic Hedgehog which induces distinct progenitor identities in a dose-dependent manner. Following these i...
Article
CDKN1C encodes the cyclin-CDK inhibitor p57(Kip2) (p57), a negative regulator of the cell cycle and putative tumor suppressor. Genetic and epigenetic alterations causing loss of p57 function are the most frequent cause of Beckwith-Wiedemann syndrome (BWS), a genetic disorder characterized by multiple developmental anomalies and increased susceptibi...
Article
Full-text available
Background During sensori-motor circuit development, the somas of motoneurons (MN) are distributed in a topographic manner in the ventral horn of the neural tube. Indeed, their position within the lateral motor columns (LMC) correlates with axonal trajectories and identity of target limb muscles. The mechanisms by which this topographic distributio...
Article
Background: During sensori-motor circuit development, the somas of motoneurons (MN) are distributed in a topographic manner in the ventral horn of the neural tube. Indeed, their position within the lateral motor columns (LMC) correlates with axonal trajectories and identity of target limb muscles. The mechanisms by which this topographic distributi...
Article
Full-text available
In mammals, cochlear sensory hair cells that are responsible for hearing are postmitotic and are not replaced after loss. One of the most promising strategies to regenerate hair cells is to identify and inhibit the factors preventing the conversion of adjacent non-sensory supporting cells into hair cells. Here we demonstrate that mammalian hair cel...
Article
Full-text available
Eph:ephrin signaling plays an important role in embryonic development as well as tissue homeostasis in the adult. At the cellular level, this transduction pathway is best known for its role in the control of cell adhesion and repulsion, cell migration and morphogenesis. Yet, a number of publications have also implicated Eph:ephrin signaling in the...
Article
Full-text available
Eph receptors and their ephrin ligands play critical roles in the development of the nervous system, however, less is known about their functions in the adult brain. Here, we investigated the function of ephrinB1, an ephrinB family member that is mutated in CranioFrontoNasal Syndrome. We show that ephrinB1 deficient mice (EfnB1(Y/-) ) demonstrate s...
Article
Full-text available
Axon fasciculation is one of the processes controlling topographic innervation during embryonic development. While axon guidance steers extending axons in the accurate direction, axon fasciculation allows sets of co-extending axons to grow in tight bundles. The Eph:ephrin family has been involved both in axon guidance and fasciculation, yet it rema...
Article
Full-text available
Apical neural progenitors are polarized cells for which the apical membrane is the site of cell-cell and cell-extracellular matrix adhesion events that are essential for maintaining the integrity of the developing neuroepithelium. Apical adhesion is important for several aspects of the nervous system development, including morphogenesis and neuroge...
Article
Cardiac tissue cohesion relying on highly ordered cardiomyocytes (CM) interactions is critical because most cardiomyopathies are associated with tissue remodeling and architecture alterations. Eph/ephrin system constitutes a ubiquitous system coordinating cellular communications which recently emerged as a major regulator in adult organs. We examin...
Article
Full-text available
The erythropoietin-producing hepatocellular (Eph) receptors form the largest family of receptor tyrosine kinases. Upon interaction of the Eph receptors with their ligands the ephrins, signaling cascades are initiated downstream of both receptor and ligand, a feature known as bidirectional signaling. The Eph receptors and ephrin ligands mediate impo...
Article
Genetic studies have shown that ephrin-B2 and its cognate EphB4 receptor are necessary for normal embryonic angiogenesis. Moreover, there is overwhelming evidence that ephrin-B2 is involved in tumor vascularization, yet its role in adult angiogenesis has been difficult to track genetically. Here, we report the generation of transgenic mice that ove...
Article
Tranverse section of a E10.5 mouse embryo showing the dorsal aorta immunostained for CD-31 (red) and DRAQ5TM (blue).
Article
Full-text available
In development, tissue regeneration or certain diseases, angiogenic growth leads to the expansion of blood vessels and the lymphatic vasculature. This involves endothelial cell proliferation as well as angiogenic sprouting, in which a subset of cells, termed tip cells, acquires motile, invasive behaviour and extends filopodial protrusions. Although...
Article
Full-text available
Eph receptors and ephrins exhibit complex and highly dynamic expression patterns during embryonic development. In addition, changes in their expression levels are often associated with pathological situations in adults. Yet, little is known about the mechanisms regulating their expression. Here we report that the expression of ephrin-B1 is controll...
Article
Eph receptor tyrosine kinases and their membrane-bound ligand ephrins form an essential cell communication system. Both ephrin classes have been shown to localize within cell surface lipid rafts, yet regulate different biological processes. In order to provide insight into this distinct behavior, we examined ephrin-A5 and B1 localization and signal...
Article
Full-text available
Maintaining a balance between self-renewal and differentiation in neural progenitor cells during development is important to ensure that correct numbers of neural cells are generated. We report that the ephrin-B-PDZ-RGS3 signaling pathway functions to regulate this balance in the developing mammalian cerebral cortex. During cortical neurogenesis, e...
Article
Full-text available
Bidirectional signaling has emerged as an important signature by which Ephs and ephrins control biological functions. Eph/ephrin signaling participates in a wide spectrum of developmental processes, and cross-regulation with other communication pathways lies at the heart of the complexity underlying their function in vivo. Here, we review in vitro...
Article
Full-text available
The genes encoding tyrosine kinase receptors EphB2 and EphB3 are beta-catenin and Tcf4 target genes in colorectal cancer (CRC) and in normal intestinal cells. In the intestinal epithelium, EphB signaling controls the positioning of cell types along the crypt-villus axis. In CRC, EphB activity suppresses tumor progression beyond the earliest stages....
Article
Genetic studies in the mouse have implicated ephrin-B2 (encoded by the gene Efnb2) in blood vessel formation, cardiac development and remodeling of the lymphatic vasculature. Here we report that loss of ephrin-B2 leads to defects in populations of cranial and trunk neural crest cells (NCC) and to defective somite development. In addition, we show t...
Article
Full-text available
Mutations in X-linked ephrin-B1 in humans cause craniofrontonasal syndrome (CFNS), a disease that affects female patients more severely than males. Sorting of ephrin-B1-positive and -negative cells following X-inactivation has been observed in ephrin-B1(+/-) mice; however, the mechanisms by which mosaic ephrin-B1 expression leads to cell sorting an...
Article
Full-text available
Eph receptors and ephrins have captured the interest of the developmental biology community in recent years for their pleiotropic functions during embryogenesis. Loss-of-function studies using various animal models have demonstrated the involvement of Ephs and ephrins in many aspects of embryogenesis including segmentation, neural crest cells migra...
Article
Full-text available
Integration of diverse signaling pathways is essential in development and homeostasis for cells to interpret context-dependent cues. BMP and MAPK signaling converge on Smads, resulting in differential phosphorylation. To understand the physiological significance of this observation, we have generated Smad1 mutant mice carrying mutations that preven...
Article
Full-text available
Eph receptors and ephrin ligands are key players in many developmental processes including embryo patterning, angiogenesis, and axon guidance. Eph/ephrin interactions lead to the generation of a bidirectional signal, in which both the Eph receptors and the ephrins activate downstream signaling cascades simultaneously. To understand the role of ephr...
Article
The molecular mechanisms underlying the regulation of neurotransmission has been an open question for many years. Here, we have examined an interaction between caveolin1 and SNAREs (soluble N-ethylmalemide-sensitive factor attachment protein receptor) which may contribute to the cellular mechanisms underlying changes in synaptic strength. Previousl...
Article
Full-text available
Protein kinase C (PKC) is a family of serine/threonine kinases involved in the transduction of a variety of signals. There is increasing evidence to indicate that specific PKC isoforms are involved in the regulation of distinct cellular processes. In glioma cells, PKC alpha was found to be a critical regulator of proliferation and cell cycle progre...
Article
Full-text available
Primary human fibroblasts have a finite replicative lifespan in culture that culminates in a unique state of growth arrest, termed senescence that is accompanied by distinct morphological and biochemical alterations. Senescent cell responses to extracellular stimuli are believed to be altered at a point after receptors are bound by ligand, leading...
Article
The ephrins are membrane-tethered ligands for the Eph receptor tyrosine kinases, which play important roles in patterning of the nervous and vascular systems. It is now clear that ephrins are more than just ligands and can also act as signalling-competent receptors, participating in bidirectional signalling. We have recently shown that ephrin-A5 si...
Article
It is now clear that the plasma membrane is not homogeneous but contains specific subcompartments characterized by their unique lipid and protein composition. Based on their enrichment in various signaling molecules, these microcompartments are now recognized to be sites of localized signal transduction for several extracellular stimuli. At least t...
Article
Full-text available
Eph receptor tyrosine kinases and their corresponding surface-bound ligands, the ephrins, provide cues to the migration of cells and growth cones during embryonic development. Here we show that ephrin-A5, which is attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidylinositol-anchor, induces compartmentalized signaling with...

Network

Cited By