ABSTRACT

Objectives: To study the biochemical and molecular hepatotoxicity induced by aluminium chloride (AlCl₃) and the protective role of saffron and honey against such toxicity.

Methods: This study was performed in the Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia between July and August 2009. Two mice strains, BALB/c and C57BL/6 (20 animals from each strain), were used and randomly divided into 4 groups: control group; AlCl₃ group; AlCl₃+saffron group; and AlCl₃+honey group. Changes in liver biochemical markers such as gamma-glutamyl transpeptidase (GGT), alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bilirubin and lipid peroxidation levels were estimated. Induced and suppressed mRNA in the liver homogenate was scanned followed by up- and down-regulated genes were isolated, cloned, and sequenced.

Results: There was a significant increase in the cholesterol levels, triglycerides, GGT, ALT, AST, ALP, lipid peroxidation, and presence of hyperglycemia in the AlCl₃ group compared to the control. However, treating those animals exposed to AlCl₃ by saffron and honey improved the disrupted liver biochemical markers and alleviated the increase of lipid peroxidation. Seven down-regulated genes (3 BALB/c and 4 C57BL/6) and 5 up-regulated genes (2 BALB/c and 3 C57BL/6) were observed. Aa2-245 gene was observed as being up-regulated in AlCl₃+saffron and AlCl₃+honey groups in the BALB/c strain.

Conclusion: The use of saffron and honey minimized the toxic effect of AlCl₃ in the liver by alleviating its disruptive effect on the biochemical and molecular levels.

Saudi Med J 2010; Vol. 31 (10): 1106-1113

From the Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia.

Received 17th July 2010. Accepted 30th August 2010.

Address correspondence and reprint request to: Dr. Ali A. Shati, Department of Biology, College of Science, King Khalid University, PO Box 10253, Abha 61321, Kingdom of Saudi Arabia. E-mail: shati100@yahoo.com
A luminum (Al) is a constituent of cooking utensils, medicines, deodorants, and food additives. This has led to its easy access into the human body. Sources of Al include corn, yellow cheese, salt, herbs, spices, tea, cosmetics, cookware, and containers. Exposure to Al can disrupt many enzymes. For example, salts of Al may inhibit the action of acid and alkaline phosphatases, phosphodiesterase, and phosphooxidase. In addition, exposure to Al can affect the triglyceride metabolism and triglyceride concentrations in the body. It has been reported that Al exposure causes impairments in glucose utilization, free radical-mediated cytotoxicity, lipid peroxidation, reduced cholinergic function, impact on gene expression, and altered protein phosphorylation. Aluminum has been found to cause oxidative stress in the plasma and the tissues of male rabbits. The mechanism of Al induced toxicity has been attributed to its ability to potentiate the activity of iron ion \([Fe(\cdot)]\) and \(Fe^+\) ions in such a way as to cause oxidative damage. Molecular changes such as DNA damages and gene suppression or expression may happen to hepatic cells when the model animal exposed to toxic materials. Recently, ribonucleolytic activity, which is fundamental for the biological activities of proteins, has been found in many proteins with known biological activities. Aluminum has been reported to affect the activities of translation machinery components in mouse liver in vivo and in vitro as Al can bind to phosphorylated bases on DNA, induce considerable changes in chromatin structure and disrupt protein synthesis, and catabolism. Herbal/natural products represent one of the most common forms of complementary and alternative medicines. They are readily available and can be purchased from supermarkets and pharmacies. As these products can be taken without supervision or medical prescription, they must be safe for human health. Many natural product extracts have been found to have a variety of pharmacological and antioxidant effects. For example, *Crocus sativus* L., commonly known as saffron, is a plant cultivated in various parts of the world including Iran, China, Spain, Italy, and Greece. Phytochemical studies of saffron have shown that the main chemicals responsible for its color are crocins, which are a series of mono and di-glucosyl esters of crocetin, a polyene dicarboxylic acid (8,8-diapocarotene-8, 8-dioic acid). On the contrary to the majority of carotenoids’ families, these compounds are extensively used in the food industries as food colorants due to their unique water-soluble behavior. Many studies have indicated that crocins have various pharmacological effects such as protecting hepatocytes, inhibition of tumor cell proliferation, and protection against cardiovascular diseases. Among the mechanisms underlying their various protective actions, the antioxidant activity has been hypothesized as being responsible for the various pharmacological effects of crocins. Honey syrup of wild honey is another natural product produced by the honeybees and constitutes of a natural supersaturated sugar solution, which is mainly composed of a complex mixture of carbohydrates. It also includes certain minor components such as enzymes, proteins, vitamins, flavonoids, phenolic acids, amino, and organic acids. However, the composition of honey depends on the plant species visited by the honeybees and the environmental, processing and storage conditions. Honey has been traditionally used for a range of different purposes and has a great potential to serve as a natural food antioxidant. Enzymes in honey serve as antioxidants by helping the removal of free radicals and protection against oxidative damages. Honey consumption has been reported to be effective in increasing the total plasma antioxidants in humans. As there has been no study has investigated the biochemical and molecular roles of water saffron extract and honey syrup against hepatotoxicity induced by aluminium chloride (AlCl₃), this study aimed to explore the biochemical and molecular changes induced by AlCl₃ in the liver of 2 mice strains. In addition, the protective effects of water saffron extract and honey syrup on hepatotoxicity induced by AlCl₃ was investigated.

Methods. Natural products extracts. Dried red stigmas of saffron were obtained from a local supermarket in the city of Abha, Saudi Arabia. Saffron was immersed in distilled water (500 mg ml⁻¹) for 24 hours, filtered, and prepared every 4 days. Wild honey was collected from the Aseer region, which is in the southern province of Saudi Arabia. It was diluted with distilled water (500 mg ml⁻¹) and made into syrup. It was also prepared every 4 days. Both saffron and honey extracts were intraperitoneally injected at 500 mg kg⁻¹ body weight once a day for the experimental period (45 days).

Animal grouping. This study was carried out in the Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia between July and August 2009. Twenty BALB/c and 20 C57BL/6 mice weighing approximately 35-40 g were used in the experiment. Animals were obtained from the Animal House, College of Science, King Khalid University, Abha, Saudi Arabia. Ethical approval was obtained from the College of Science Ethical Committee, King Khalid University and the experiment was performed according to the International Guidelines for the Care and Use of Laboratory Animals. Animals of each mice strains were given food and water ad libitum and randomly divided into 4 groups (n=5 in each group). Control group: mice were given normal saline (0.9%
sodium chloride [NaCl]) for the experimental period. AlCl₃ group: mice were daily intraperitoneally injected with 40 mg kg⁻¹ body weight of AlCl₃ (pH, 6.8) freshly prepared every 4 days for the experimental period. AlCl₃+saffron group: mice were daily co-administered intraperitoneally with 40 mg kg⁻¹ body weight AlCl₃ and water extract of saffron (200 mg kg⁻¹ body weight) for the experimental period. AlCl₃+honey group: mice were daily co-administered intraperitoneally with 40 mg kg⁻¹ body weight AlCl₃ and honey syrup (500mg kg⁻¹ body weight) for the experimental period. At the end of the experimental period, the mice were slaughtered and blood samples were collected. Liver tissues were weighed and homogenized in phosphate buffer solution pH 7.4 and stored at -80°C until used.

Samples and biochemical parameters: Butyryl cholinesterase and L-γ-glutamyltransferase activities were measured in sera according to Knedel and Bottger and Szasz respectively. Activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in sera were assayed according to Reitman and Frankel. Alkaline phosphatase (ALP) activity was measured at 405 nm by the formation of paranitrophenol from para-nitrophenyl-phosphate as a substrate using the method of Walter and Grade. Total bilirubin was assayed using the method of Walter and Grade. Furthermore, the contents of serum glucose, cholesterol, and triglycerides were measured using the methods of Trinder, Wieland and Seidel, and Fossati and Prencipe. Liver thibarbituric acid reactive substances (TBARS) were assayed using the method of Okhawa et al.

Isolation of total RNA from supernatant of liver homogenates and cDNA synthesis: A 100μl of animal supernatant of liver homogenate was subjected to RNA extraction using QIAGEN-QIAamp RNA blood mini kit according to the manufacturer’s procedures (QIAGEN, Hilden, Germany). Reverse transcription reactions were performed using an oligo dT primer. The 25μl reaction mixture was prepared with 2.5μl of 5X buffer with magnesium chloride (MgCl₂), 2.5μl of 2.5mM deoxynucleosides (dNTPs), 1μl of 10pmol primer, 2.5μl RNA and 0.2μl reverse transcriptase enzyme (100U μl⁻¹). Polymerase chain reaction (PCR) amplification was performed in a thermacycler (Eppendorf) program at 95°C for 5 minutes, 42°C for one hour, 72°C for 10 minutes and soak at 4°C.

Differential display for detection of up-down regulated genes: The cDNA was subjected to a second PCR using 18S rRNA forward primer as an arbitrary primer (5’-GCA AGT CTG GTG CCA GCC-3’). The PCR reaction was performed as follows: a 25μl reaction mixture was prepared with 2.5μl 10x Taq DNA polymerase buffer (10 mM Tris HCl [pH 8.3]), 25mM potassium chloride [KCl], 2.5μl 50mM MgCl₂, 2μl primer (40 pmol μl⁻¹), and 0.25μl of Taq polymerase (AmpliTaq, Perkin-Elmer, 5μ μl⁻¹), 2.5μl from the cDNA, 2.5μl dNTPs 4mM, and 12.75μl of dH₂O. The PCR reaction was performed in 9700 thermal cycler (Perkin-Elmer) and the PCR conditions were performed as follows: initial denaturation at 95°C for 5 minutes, followed by 40-cycles (94°C for 1 minute, 53°C for 1 minute and 72°C for 2 minutes; final extension, 72°C for 10 minutes). Electrophoresis was performed at 80 Volts with 0.5x TBE buffer in 1.5% agarose gel. Gel was stained in 0.5μg ml⁻¹ (w/v) ethidium bromide solution and destained in deionized water. Finally, gel was visualized and photographed by using a gel documentation system.

Cloning of the up and down regulated DNA band: The resultant PCR product was excised from the gel and purified using a QIA quick gel extraction kit (QIAGEN Inc., Germany). The purified PCR product was cloned using TA-Cloning kit (Invitrogen, USA). The screened recombinant plasmid was subjected to DNA sequencing using M13 universal primer (Macrogen Company, Korea).

Sequence analysis and GenBank accession numbers: A blast search was performed for the DNA sequence obtained and this sequence was then submitted to the GenBank under the accession number, HM042681.

Phylogenetic analysis for the obtained gene: Pair-wise and multiple DNA sequence alignments were carried out using CLUSTALW (1.82). A bootstrap neighbor-joining tree was generated using MEGA438 from CLUSTALW alignments.

Statistical analysis: Statistical analyses were performed using the Statistical Package for the Social Sciences for Windows (SPSS, version 10.0, Chicago, IL, USA). Data are presented as means with their standard deviations. Statistical evaluation of the data was performed using one-way Analysis of Variance followed by a post-hoc least significant difference (LSD) test. P-values less than 0.05 were considered to be statistically significant.

Results. Biochemical tests: A significant increase in butyryl cholinesterase, ALP, GGT, AST and bilirubin levels was found in the AlCl₃ groups compared to their matched control groups in both mice strains (Table 1). The aqueous extract of saffron and the honey syrup showed a significant alleviation in the increased levels of butyryl cholinesterase, ALP, GGT, AST and bilirubin levels in both mice strains (Table 1). There was a hyperglycemia and a significant increase in both total cholesterol and triglycerides levels in the AlCl₃ groups compared to their matched control groups in both mice strains. The aqueous extract of saffron and honey syrup showed a significant improvement in the levels of...
glucose, triglycerides and total cholesterol in both mice strains (Table 2). An increase in lipid peroxidation in liver homogenates of the AlCl₃ groups in both mice strains was indicated by the high significant increase in TBARS (Table 3). The protective effect of the aqueous extract of saffron and honey syrup shows a decrease in the level of TBARS of both mice strains in the AlCl₃+saffron and the AlCl₃+honey group in both mice strains (Table 3).

DNA-based molecular techniques: The up and down regulated genes in the examined animal liver homogenates showed that more than 36 band patterns were obtained by using the 18S primer as an arbitrary primer. Approximately 12 different up- and down-regulated genes were observed among the 36 genes (Figure 1). The up and down regulated genes had different molecular weights, ranging from 1.1Kbp to 50bp. Five different genes were observed within the BALB/c mice strain (3 down-regulated and 2 up-regulated) and 7 different genes were demonstrated in the C57BL/6 mice strain (4 down-regulated and 3 up-regulated) (Figure 1). A band with a molecular weight of 0.5kbp (up-regulated) from the AlCl₃ group compared with AlCl₃+honey and AlCl₃+saffron groups; *p<0.05, †p<0.01, ‡p<0.001.

Table 1 - Liver function enzymes, butyryl cholinesterase (UL⁻¹), L-γ-glutamyltransferase (GGT) (UL⁻¹), aspartate transferase (AST), alanine aminotransferase (ALT) (UL⁻¹) activities, alkaline phosphatase (ALP) (UL⁻¹), and bilirubin level (mg dl⁻¹) in different mice groups (BALB/c and C57BL/6).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>BALB/c</th>
<th>C57BL/6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>AlCl₃</td>
</tr>
<tr>
<td>Butyryl cholinesterase</td>
<td>1282.7 ± 72.5</td>
<td>7167.3 ± 43.8</td>
</tr>
<tr>
<td>GGT</td>
<td>5.6 ± 0.5</td>
<td>14.6± 2.1</td>
</tr>
<tr>
<td>ALT</td>
<td>5.5 ± 0.5</td>
<td>19.8± 1.9</td>
</tr>
<tr>
<td>AST</td>
<td>9.6 ± 1.1</td>
<td>15.4± 1.1</td>
</tr>
<tr>
<td>Total bilirubin</td>
<td>0.5 ± 0.1</td>
<td>2.2± 0.1</td>
</tr>
<tr>
<td>ALP</td>
<td>63.1 ± 2.8</td>
<td>92.3± 1.4</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD. Control group compared with AlCl₃, AlCl₃+honey, and AlCl₃+saffron groups; *p<0.05, †p<0.01, ‡p<0.001.

Table 2 - Serum glucose (mg dl⁻¹), total cholesterol (mg dl⁻¹), and triglycerides (mg dl⁻¹) levels in different mice groups (BALB/c and C57BL/6).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>BALB/c</th>
<th>C57BL/6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>AlCl₃</td>
</tr>
<tr>
<td>Glucose</td>
<td>39.7± 2.9</td>
<td>100.2± 13.4</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>98.6 ± 1.3</td>
<td>121.2± 1.2</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>69.8 ± 1.4</td>
<td>113.7± 3.4</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD. Control group compared with AlCl₃, AlCl₃+honey, and AlCl₃+saffron groups; *p<0.05, †p<0.01, ‡p<0.001.

Table 3 - Concentration of liver thiorbituric acid reactive substances (TBARS) (nmol mg⁻¹) in different mice groups (Balb/c and C57BL/6).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>BALB/c</th>
<th>C57BL/6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>AlCl₃</td>
</tr>
<tr>
<td>TBARS</td>
<td>125.9 ± 12.7</td>
<td>218.2± 5.3</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD. Control group compared with AlCl₃, AlCl₃+honey, and AlCl₃+saffron groups; *p<0.05, †p<0.01, ‡p<0.001.

www.smj.org.sa Saudi Med J 2010; Vol. 31 (10) 1109
A family 4). When the Aa2-245 was compared with other ribonuclease genes, the results postulated that the Aa2-245 was closely related to the ribonuclease RNAase gene isolated from Mus musculus (294774570 and 133893012) with a similarity of 65% (Figure 2).

Discussion. Aluminum exposure can result in its accumulation in the liver and hence it can be toxic to hepatic tissue at high concentrations. Changes in aminotransferase activities could be expected to occur in association with a pathology involving the necrosis of the liver. Serum AST and total bilirubin increases in such cases, and escape to the serum from the injured hepatic cells. The serum ALT level is also useful in indicating the existence of liver diseases as it is present in the liver in large quantities. It increases in the serum when cellular degeneration or destruction of the liver happens. The obtained results are consistent with previous findings by El-Demerdash and Moshtaghie et al. That ALP levels were significantly decreased in the liver while increased in serum following Al exposure. The decrease of the liver ALP may be due to binding of Al to DNA and RNA and inhibiting the activity of ALP. Moreover, Rahman et al. and Gaskill et al. suggested that the increase in the activities of ALP in different tissues might also be due to the increased
permeability of plasma membrane or cellular necrosis, indicating the stress condition of the treated animals. Gaskill et al. reported that the release of ALT and GGT from the cytoplasm of hepatic cells could have occurred secondary to cellular necrosis. In the present study, the activities of ALT and AST and GGT significantly increased in the serum of AlCl3 groups in both mice strains. This may be due to the leakage of these enzymes from the cytoplasm of the liver cells into the general circulation and/or liver dysfunction and disturbance in the biosynthesis of these enzymes, with an alteration in the permeability of the liver membrane. The high increase of the bilirubin levels in AlCl3 groups in both mice strains may be due to the fact that Al exposure can result in Al accumulation in the liver and this metal can be toxic to the hepatic tissue at high concentrations and may lead to high increase of the bilirubin level.

Differences in activity of plasma cholinesterase are correlated with variations in the risk factors for cardiovascular and metabolic disease and may be under genetic control. Plasma cholinesterase (EC 3.1.1.8; butyryl-cholinesterase, pseudocholinesterase) has been widely investigated due to being a marker of exposure to organophosphate chemicals and the relationships between low activity and the delayed metabolism of the muscle relaxant succinylcholine. The decrease in butyryl cholinesterase may be associated with the dysfunction of the liver after the administration of AlCl3. Hyperglycemia may be induced as a result of the increased glucose production and decreased glucose utilization. The increase in blood glucose may be a sign of disrupted carbohydrate metabolism owing to increased breakdown of liver glycogen. In addition, oxidative stress has been proposed as a major pathogenic link to both insulin resistance and the dysfunction of the pancreatic beta cell by the formation of amyloid proteins, which not only prevents the release of insulin into the circulation, but also destroys the insulin-secreting beta cells. Growing evidence indicates that chronic or acute overproduction of reactive oxygen species plays an important causal or contributing role in the development of many diseases and the protective effects of crocin or crocetin against cardiovascular, liver, and tumor diseases has been repeatedly demonstrated in various studies. This effect may explain the antioxidant capacities of saffron that improved the disrupted liver biochemical markers happened in AlCl3+saffron groups in this study.

Lipid peroxidation, as one of the major signs of oxidative damage, has been found to have an essential role in the toxicity of numerous xenobiotics. Furthermore, various chronic diseases, especially cardiovascular disease and cancer are associated with oxidative damage to biomolecules such as lipids, DNA, and proteins. It was found that Al at sub-lethal levels induced lipid peroxidation and thus altered the physiological and biochemical properties of many biological systems. The antioxidant properties of honey syrup and the water extract of saffron may have lead to alleviation of the disturbances in all biochemical parameters. In addition, the antioxidant effect of saffron and honey led to scavenging the free radical associated with the injection of AlCl3 in both mice strains, and a decrease in the oxidative stress as shown by the increase of thiobarbituric acid reactive substances. The antioxidant properties of both tested natural treatments may have prevented the leakage of hepatic enzymes as shown by the decrease in butyl cholinesterase, GGT, AST, ALT, ALP, and bilirubin.

The regenerative liver gene or the ribonuclease genes ribonuclease (RNAase 4) was induced in AlCl3+honey and AlCl3+saffron groups in BALB/c mice. Zaho et al. reported that the presence of 4 members of the pyrimidine-specific ribonuclease superfamily was demonstrated in rat liver. The up-regulation of RNAase 4 gene may lead to resisting the toxic effect of the Al on the liver cells. Ardelt et al. have also stated that cytotoxic RNAases, as exemplified by Onconase, represent a new class of antitumor agents with an entirely different mechanism of action than the drugs currently used in clinics. Further studies on animal models including human tumors grafted onto severe combined immune deficient (SCID) mice, and clinical trials are needed to explore the clinical potential of cytotoxic RNAases. It has been reported that the excretion of Al in urine was significantly increased after the intake of analgesics containing Al, which confirming the increased absorption and hence increased exposure to Al as a result of such medication. The up-regulation of the renin expression by Al is a strong indication of the influence of Al on the renin–angiotensin–aldosterone-system, resulting in possible induction of essential hypertension.

One limitation of this study is that we tested the effect of co-administration of saffron extract and honey syrup with AlCl3. Therefore, further studies should test pre-and post-administration of those natural products with AlCl3 in order to discover whether they have therapeutic or protective effect against Al hepatotoxicity.

In conclusion, Al has adverse effects on human health. Our results reported that AlCl3 is capable of causing marked alterations in some biochemical parameters and inducing oxidative damage in the liver. The administration of the water extract of saffron and honey syrup with AlCl3 has minimized its hazards. In addition, the water extract of saffron was proved to be beneficial in decreasing the levels of free radicals in the livers of both mice strains. The molecular changes
showed that Al causes a great deal of liver cell damage and both saffron and honey syrup resist these degenerative changes by induction the structure and function genes. One of these genes is Aa2-245, the ribonuclease, RNAase A family 4, ribonucleases which is widely found in living organisms and has been suggested to be involved in RNA metabolism and the regulation of gene expression.

References

Role of saffron and honey on aluminum hepatotoxicity ... Shati & Alamri

50. Shen XC, Qian ZY. Effects of crocetin on antioxidant enzymatic activities in cardiac hypertrophy induced by norepinephrine in rats. *Pharmacaz* 2006; 61: 348-352.

Related topics

