ON CLASSICAL, BAYESIAN AND FUZZY HYPOTHESES TESTING

A. Mohammadpour1,2, and A. Mohammad-Djafari1
(1) L2S, CNRS Supélec Univ. Paris-sud, Gif-sur-Yvette, France
(2) Amirkabir University of Technology, Tehran Polytechnic, Iran

Let X_1, \cdots, X_n be independent and identically distributed with density function $f(x|\theta)$, where θ is a one dimensional parameter. Consider testing simple versus simple hypotheses

$$
\begin{align*}
H_0 &: \theta = \theta_0 \\
H_1 &: \theta = \theta_1,
\end{align*}
$$

where θ_0 and θ_1 are fixed numbers, based on a random sample. One can find the best solution for this problem in the different frameworks as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>θ</th>
<th>Critical region (by)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic</td>
<td>fixed and unknown parameter</td>
<td>Neyman-Pearson</td>
<td>p.243</td>
</tr>
<tr>
<td>Bayesian</td>
<td>random variable with known prior</td>
<td>Likelihood Ratio</td>
<td>p.227</td>
</tr>
<tr>
<td>Empirical</td>
<td>random variable with unknown prior</td>
<td>Likelihood Ratio</td>
<td>p.483</td>
</tr>
</tbody>
</table>

Now consider fuzzy hypotheses

$$
\begin{align*}
H_0 &: \theta \simeq \theta_0 \quad (\theta \text{ is approximately } \theta_0) \\
H_1 &: \theta \simeq \theta_1 \quad (\theta \text{ is approximately } \theta_1),
\end{align*}
$$

where $\theta \simeq \theta_i$, $i = 0, 1$ are expressed by two membership functions $m_0(\theta), m_1(\theta)$ in fuzzy community and by two prior probability laws $\pi_0(\theta)$ and $\pi_1(\theta)$ in Bayesian community. A few authors had tried to find the best test for testing fuzzy hypotheses, [1,2,4]. In this paper we show that the best test for fuzzy hypotheses in the Bayesian framework is simply equivalent to Neyman-Pearson Lemma in the classical statistics.

Key Words: Classic, Bayes and empirical Bayes test, fuzzy hypotheses, Neyman-Pearson lemma, likelihood ratio test.

References: