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This manuscript presents a survey on new challenges in wireless communication systems and discusses
recent approaches to address some recently raised problems by the wireless community. At first a his-
torical background is briefly introduced. Challenges based on modern and real life applications are then
described. Up to date research fields to solve limitations of existing systems and emerging new tech-
nologies are discussed. Theoretical and experimental results based on several research projects or studies
are briefly provided. Essential, basic and many self references are cited. Future researcher axes are briefly
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1. Historical facts and applications

The recent spread of cellular systems (smart sensors, mobile
phones, base stations, satellites, surveillance devices, traffic radars,
etc.) has increased the complexity of processing algorithms and
pushed the existing technologies to their limits. Detailed analysis
of the raised issues and/or deep discussion of any of the proposed
solutions is nearly impossible in a single article. Nevertheless, the
objectives of this paper are to shed light on the main applications,
present recent research fields and summarize some of our ob-
tained results in various research projects and studies.

Before discussing recent applications and the limitations of
existing technologies, we would like to mention the dusk of
wireless communication systems. At the beginning, there was a
research study divided into 4 parts to discuss “the physical lines of
force” published in 1861 by a Professor of the King's college in
London. The author of this study was the imminent scientist J.C.
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Maxwell [1-4]. In his early study, Maxwell predicted the existence
of “Electromagnetic Waves”. Few years later (1887), a German
physicist, H. Hertz, proved the existence of such waves. After that,
it took Marconi less than 10 years to invent the first radio trans-
mission system in 1896 and to patent his idea one year later [5].
The first radiotelephone service was introduced in the US at the
end of the 1940s [6]. However, the first standard of radio mobile
was introduced in the s1970s of the last century.

In the first transmission system of Marconi, the considered
antennas were bigger than the building of Marconi's laboratory
and the electrical circuits of the transmitter occupied the whole
room. However, engineers and researchers have been very creative
in the invention of new applications, shrinking the electronic cir-
cuitry and improving and diversifying proposed services. Since the
beginning of the last century, telecommunication societies have
proposed a great number of commercial services. In the beginning,
wireless transmission systems were related to huge applications
such as radio and TV broadcasting, military radars, and maritime
radars. Analog transmission systems were very popular till the
beginning of the 1980s of last century. These technologies became
very limited to handle all the needs of modern societies.

Actually, our every day life is full of applications related to
wireless communications. The list of such applications and
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services are very long and it cannot be restricted to the following
major applications of wireless communication systems: mobile
phone, tablets, portable media player, radios and televisions,
wireless remote devices, several communication protocols (such
as: Wifi, Wimax, Zigbee, etc.), robotics, smart cars and smart roads
[7], smart Grid [8], many biomedical devices use wireless tech-
nologies, satellites, etc. Radars are also used in various purposes
such as: land radars for airplanes surveillance in civil or military
goals, security road traffic, meteorology, ground Penetrating Radar,
Astronomy,' Airborne Warning and Control System (AWACS),” etc.

2. New challenges in wireless communications

Using the standards for frequency allocation published by
3 different standard bodies (International Telecommunication
Union (ITU) [6], European Conference of Postal and Tele-
communications Administrations (CEPT) [12], Inter-American Tel-
ecommunication Commission (CITEL) [13]) and some information
from NASA [14], the main applications with the allocated wave-
lengths and the frequencies of major electromagnetic waves (EM)
are illustrated in Fig. 1.> The relationship between the wavelength
of an EM with respect to its frequency is given by:

_C_3*10%m/s

F~ F(in Hz)

Fig. 1 clearly shows that the spectrum is very congested and
that there exists no room for new applications and services. We
should also mention that Short Message Service (SMS) which is
relatively a recent application for mobile phones has been gen-
erating benefits around 110 billions US$/year worldwide [15]. This
fact proves that the communication markets is massive. According
to the independent, a UK newspaper on Tuesday 7 October 2014,
“There are officially more mobile devices than people in the world.
The world is home to 7.2 billion gadgets, and they're multiplying
five times faster than we are”. Besides, customers become more
exigent. Communication industries try to cope with the increasing
number of customers and their exigencies. The First Generation
(1G) of a mobile phone has been introduced in the market be-
tween 1970 and 1984. 1 G could only handle basic voices and it
was based on analog protocol, i.e. Frequency Division Multiple
Access (FDMA). The speed of this standard was around 2.4 Kbps
[6]. Almost a decade later, the 2nd Generation (2G) was introduced
(1980-1999) to improve the coverage and the capacity. 2G con-
siders two different standards: Time Division Multiple Access
(TDMA)/Code Division Multiple Access (CDMA) and it reaches a
transmission rate of 64 Kbps. At the beginning of the 1990s, the
third generation (3G) was introduced to deal with voices and data
(multimedia, text, the Internet, etc.). It was based on CDMA and
had a bit rate of 2 Mbps. The fourth generation (4G) has been
deployed since the beginning of this century and it is using an

! It is worth mentioning that the huge antenna on Earth belongs to the USA
radio telescope, the Arecibo observatory in Puerto Rico, which is the world's largest
single-aperture telescope (above 300 m). “It is used in three major areas of re-
search: radio astronomy, atmospheric science, and radar astronomy.” [9]. We
should also mention the new and great project of the Square Kilometer Area (SKA)
[10].

2 “The E3 look-down radar has a 360' view of the horizon, and at operating
altitudes with a range of more than 320 km. The radar can detect and track air and
sea targets simultaneously.” [11].

3 Where 1latto=1a=10"18, 1femto=1f=10"15 1pico=1p=10"12,
1 Angstrom = 1 A = 10-19m, the diameter of an hydrogen atom is estimated to be
1A, 1nano=1n=10"° 1micro=1p=1u=10"5  1mili=1m=1073,
lcenti=1c=10"2, 1Kilo=1K=103 1Mega=1M=105 1Giga=1G =109,
1Tera=1T=10'2, 1Peta=1P=10', 1Exa=1E=10'8, 1Zetta=12Z=102,
1Yotta=1Y = 1024,

Internet Protocol (IP) and Long-Term Evolution (LTE) standard. 4G
is mainly optimized for data that can reach around 100 Mbps.
Actually, many standard bodies are developing the fifth Generation
(5G). This generation should reach around 1 Gbps and it should be
adapted to handle the Internet of Things (IOT). The IOT is a major
challenge for our communications networks. In fact, IOT will allow
the communication among devices, which will be massively de-
ployed in [16]: smart cars, smart roads, smart cities, smart houses
and buildings (in the context of homes and building automation),
security and safety (surveillance, alarm, site networking), and in-
dustrial M2M communication. It is anticipated that in 2020, there
will be around 50 Billion connections. According to Cisco [17],
“Fifty billion things will connect to the Internet of Everything in
just a few years. The value this could create for service providers
by 2022 is US$1.7 trillion”. Fig. 2 presents the dilemma of the tel-
ecommunication industries, where the increasing of the custo-
mers' number will definitely impact the spectrum bands which are
already congested.

3. Prosper research fields

To resolve the problems of wireless communications, re-
searchers and engineers from all around the world are actively
prospering new research fields and proposing new technologies. It
is worth mentioning that the creation of new technologies can
help solving some issues. Indeed, the broadcasting of digital ter-
restrial television (DTTV) instead of the old analog television one
liberates some spectrum bands, called the “White Spaces”, as the
DTTV consumes smaller bandwidths comparing to the ones re-
quired in the analog case. The technology progress is out of the
scope of our manuscript and it will not be considered hereinafter.
In this section, the major new axes of research related to wireless
communication systems and networks are considered.

3.1. Smart and cognitive radios

Cognitive radios (CRs) can scan and analyze their environment
and adapt their transmission/reception parameters to better con-
vey and protect transmitted data [18,19]. CR can be mainly divided
into two categories: smart individual radios and smart networks
(largely considered as cognitive radios). A smart radio can dyna-
mically be auto-programmed and configured. Smart networks
optimize the total use of available physical resources among its
members. Fig. 3 presents the three main functions of a smart radio.
In the case of a cognitive radio, the main decision function can be
made in the central unit while the scanning and the analysis
procedures can be done in each individual unit (a transmission
unit can be affected to a primary or a secondary user). In order to
optimally share the physical resources, CR classifies the transmit-
ters (the users) into two categories: primary and secondary users.
A primary user (PU) is the user holding a license of a defined
spectrum. He is allowed to use his bandwidth any time as far as he
is respecting the cover area and the transmission power. As many
primary users do not broadcast all the time, their protected
bandwidths are not used optimally. Therefore, an opportunistic
user (i.a. a secondary user (SU)) can use the best available band-
width as far as his signal does not interfere with the signal of PU at
any time. This process is discussed further in Section 3.4.

As CR should scan their environment and get adapted to it;
they should have the capability to identify, classify and analyze
signals in the context of non-data aided. In previous Commu-
nication Intelligence (COMINT) projects and research studies,
several algorithms to estimate unknown parameters of intercepted
signals were proposed. An intercepted signal can be detected using
a spectrum analysis or an energy detector. However, this operation
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one should at first precisely estimate the carrier frequency of such

signal, see Fig. 4 published in [21].
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Fig. 2. Wireless communication dilemma.
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Many algorithms have been implemented and tested.

Fig. 4. Estimation of carrier wave frequency.

In [22], an algorithm consisting of two steps was proposed, see
Fig. 5:

® A preliminary estimation can be performed using Welch spec-
tral estimation algorithm, see [23].

® By minimizing a cost function based on the probability density
function (PDF), p(x) of the signal x(t), and Reny's entropy with a
parameter 0 < a # 1 [24]:

a __ 1 0 a
HR_l—a log(/_mp (x)dx)

It is well known that lim,_,H§ = Hs and that H,é’ < Hs < H};
where 0 <f<1, y>1and Hg= — /R p ) log(p(x)) dx stands
for Shannon's entropy [25].

In some situations, one cannot intercept a message that well
identifies the signal. In [26], we proposed an algorithm to estimate
the carrier wave frequencies of two Binary Phase Shift Keying
(BPSK)* mixed signals using one observed signal. Our algorithm
maximizes two objective functions based on High Order Statistics
(HOS) [27]. Fig. 6 shows the performance of our algorithm called
62 — HOS comparing to the well known classic frequency esti-
mation algorithm (i.e; MUItiple Slgnal Classification (MUSIC) al-
gorithm) [28].

Once the carrier frequency has been estimated, then one should
estimate the Symbol Period. Using Time Frequency Representation
[29,30], TER(t, f) = /T S(t + 3)s*(t - Hh(x)e"%7* dr, We proposed
many estimators based on various concepts [31], see Fig. 7:

e TFR derivative: Der(t) = zf’v’: JTFRe1(f) = TR ()]
Vector Product of two TFR slices: VP (t) = N;Ni1 Sin(a, 1)

A modified Shannon Entropy: Ent(t):ﬁzfmz1 TFR¢(f)

log; o TFR;(f) —
t

Kullback's Divergence: Div(t) = Z'}”Zl TFR:(f) 10310(m)

e [nstantaneous mean frequency: CV (t) = TFR(, f.) = TFR £

Since the end of the 1980s, many researchers have been in-
vestigating the automatic identification and recognition of

4 BPSK signals are widely used in satellite communications as in double-talk
scenario.

100 symb., 5 sampl./symb.
104 — ' : : r

Var([d.]

10—10

10—12

10-14 . : : ' :
0 5 10 15 20 25 30
SNR [dB]

Fig. 5. Two-step algorithm for the estimation of carrier wave frequency (horizontal
axis represents the signal to noise ratio, vertical axis showing the variance of the
estimation error, for further details see [22]).

modulated communication signals [32]. A classification procedure
can be used to separate intercepted signals into different mod-
ulation families (PSK, QAM, FSK, OFDM, TCM). While a recognition
step is needed to estimate modulation subclasses (8 PSK, 4 PSK).
Both of them, classification and recognition algorithms, are based
on Features or Patterns analysis. Using second order statistics, we
modified in [21] a classification scheme proposed in [32], see
Fig. 8.

Further experimental results showed that the algorithm pro-
posed in [21] is very sensitive to SNR, the estimation of the Symbol
period or the Symbol number. Using Time Frequency Re-
presentation, we proposed another classification algorithm [31],
see Fig. 9. To reach this goal, extra features have been proposed:

e A modified Power Spectral Density (PSD) has been used to
conduct a preliminary classification. This feature is very sensi-
tive to SNR.

e A power function based on PSD to discriminate intercepted
signals into two sets: Mono-Modal (PSK, QAM) and Multi-Modal
(FSK, OFDM)

1 f=fe +Whize
Emean = Wi PSD(f)Z
size f=fc = Whkize
Wiz = WSZ"” < M - f. is the width of the estimation window and
fc is the carrier wave frequency.

® A Power Derivative Function is used to classify PSK and QAM
signals.

We should mention that TFR (Time-Frequency Representation)
approaches suffer mainly two drawbacks:

e Computing efforts (processing time, needed memory).
e High sensitivity to modulation parameters (i.e. symbol period,
synchronization, transmission channel, etc.).

For these reasons, we proposed a classification algorithm based
on HOS [33]. We should mention here that good results have been
obtained with a low SNR, i.e. SNR=5 dB. The main idea of that
algorithm consists in using (Principal Analysis Component) algo-
rithm in order to project 8 features based on HOS of instantaneous
amplitudes and phases onto a decision plan. An automatic mod-
ulation recognition of MPSK signals using constellation rotation
and its 4-th order cumulant has been presented in [34], see Fig. 10.

http://dx.doi.org/10.1016/j.optlaseng.2016.03.027
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Estimation of Symbol Period using TFR.
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Fig. 7. Estimation of symbol period using TFR.
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Fig. 8. The new proposed feature Cory is used to discriminate between MPSK and
MEFSK signals. Vertical axis represents a frequency feature Cory based on modified
correlation function, see [21].

3.2. Software defined radio (SDR)

Cognitive Radio and Software Defined Radio are strongly re-
lated to the pioneer works published by Mitola in [35]; for further
details on this subject, we advise readers to read that reference
and its cited references. Software Defined Radio (SDR) is the new
mode of radio transmission system where the majority of elec-
tronic parts (amplifier, detector, filters, MODEM, equalizer, mixer,
etc.) of a conventional system are replaced by software codes
[36,37]. SDR and cognitive radio are essential concepts for the Joint
Tactical Radio System (JTRS) [38] and the Joint Tactical Networking
Center [39]. The Software Communication Architecture (SCA)
standard is a main international standard for SDR. SCA uses the
Common Object Request Broker Architecture (CORBA) as middle-
ware to allow the integration and the cooperation among various
systems and softwares. CORBA is based on Object Request Broker
(ORB) to ensure the communication among different applications.
Design New and complex waveforms such as the Future Multiband
Multiwaveform Modular Tactical Radio (FM3TR) or P25 [40].

http://dx.doi.org/10.1016/j.optlaseng.2016.03.027
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3.3. Smart antenna and software defined antenna

Smart Antenna and Software Defined Antenna (SDA) allow the
wireless devices to adapt the antenna to its environment for dif-
ferent modes and frequencies. While the main idea of SDA [41] is
similar to the one of SDR, the concepts are quite different [42]. In
this section, we only emphasize the signal processing along with
beam forming approaches to realize smart antennas.

The first radar detection techniques were based on the spec-
trum and Fourier-based-methods. Later on, high-resolution
methods have been proposed such as ARMA modeling, Prony
methods, MUSIC (Multiple Signal Classification) or ESPRIT (Esti-
mation of Signal Parameters via Rotational Invariance Technique).
In [43], we explored several algorithms based on HOS criteria and
Independent Component Analysis (ICA) to enhance the Direction
of Arrival (DOA) of radars' detection. Fig. 11 shows clearly that in
some scenarios classic MUSIC algorithm can be compared to
MUSIC4 (based on 4th order statistics). Indeed, MUSIC4 was suc-
cessful in locating the three targets while classic one could not.

Smart antenna can be developed using digital beam forming
algorithms. Beam forming algorithms are divided into two main
categories: Blind and non-blind algorithms. Generally, blind algo-
rithms are more complex than non-blind ones and they cannot

Fig. 11. DOA estimation by MUSIC-4, in blue, and MUSIC-2, in green, with AWGN
and a SNR=0 dB, in the case of 5 sensors and 3 sources. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)

reach the performance of non-blind ones. In the literature, one can
find several non-blind approaches, such as [44-47]: Least Mean
Squares (LMS) algorithms, Recursive Least Squares (RLS), XLMS,
Extended Kernel Recursive Least Squares Algorithm, etc. We pro-
posed two new beam-forming algorithms [48-50]: LLMS and
RLMS. RLMS algorithm is an Adaptive Array Beam forming using a
combined RLS-LMS Algorithm, see Fig. 12.

In [49], the performance of RLMS Adaptive Beam forming Al-
gorithm is analyzed when it is implemented with Finite Precision.
In [51], our LLMS Adaptive Array Beamforming Algorithm was
adapted for Concentric Circular Arrays. Fig. 13 shows the perfor-
mance of RLS comparing to RLS with respect to SNR.

It is well known that non-blind beam forming algorithms re-
quire a reference signal to reach the convergence. On the other
hand, these algorithms can estimate their channels and they can
then generate their own references. To test this idea, we conducted
several simulations. In these simulations, we assumed that a re-
ference signal was generated during a fixed period of time To. We
tried to reduce Ty as possible, then we evaluated the convergence
of the algorithms. Fig. 14 showed that for some Ty, RLMS algorithm
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performs better than LMS or RLS that were unable to reach the
convergence once the reference signal was lost.

3.4. Compressive sensing and dynamic spectrum access (DSA)

It was mentioned before that Cognitive or Smart Radio Systems
can detect unused bandwidths attributed to licensed users (Pri-
mary User : PU) to allocate them to unlicensed users (Secondary
User: SU). In this case, secondary users should have a dynamic
access to available spectrum bandwidths.

Fig. 15 represents an overview of time-frequency plan to con-
sider the following scenario where we have 5 primary users (PU;,
i € {1, 5} and two secondary users (SU; and SU,). Let us consider
that PU, is transmitting all times, however, the other primary
users are not using their licensed spectrum bandwidths for some
time periods. We will also assume that SU, has more priority than
SU4, but his need for the spectrum bandwidths is dynamic (i.e. the

Wasted Resources

T .
- Jeew B
oo | |

Frequency

Secondagy User 2

Primary User 2

B R W

Time

Shared resources
e

Dynamic Spectrum Access

Fig. 15. Spectrum sensing and dynamic spectrum access.

amount of data to be transmitted by SU, are not constant over
time). In this case, the central unit of our cognitive radio should
allocate empty spectrum bandwidths with the signals of the two
secondary users.

Spectrum sensing aims to detect the presence of PU [52,53].
This operation is crucial in order to apply for an efficient dynamic
spectrum access. Spectrum sensing algorithms can be divided into
two categories [54]:

® Cooperative techniques [55] such as: Wave Form (WF) and the
Cyclo-Stationary Detection (CSD) methods, which are the most
widely used. In [56], we proposed an efficient spectrum sensing
approach based on waveform detection, see Fig. 16. Our criter-
ion is called Range Decision Test based WF (RDT-WF).

e Blind techniques do not require any a priori information [57]
such as: Energy Detection and the Blind Source Separation
techniques. In [58], we proposed a spectrum sensing algorithm
based on Cumulative Power Spectral Density.

3.5. Compressive sampling

It is well known that the sampling frequency f; of a digital
signal x(n) should respect the Nyquist threshold, i.e. f; > 2B where
B stands for the maximum frequency of the analog signal x(t).
Recent studies showed that the threshold can be reduced if the
signal is sparse [59]. In [60], we showed that the f; of sparse signals
in the frequency domain can be less than 2B using Multicore
Sampling techniques. This process can be generalized for any
sparse signal. Indeed, this process is equivalent to sample the
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signal with non-uniform sampling or with uniform sampling but
one should just keep periodically p samples out of L [61]. An in-
troduction to Compressive Sampling is provided in [62]. Com-
pressive Sampling is very useful technique for Cognitive Radio, as
they can sample, process and reconstruct compressed signals that
mean less processing time and less needed memory. Besides that,
as the sampling frequency is reduced, therefore one can use these
techniques to easily perform a surveillance for large bandwidths
[63].

3.6. Free-space optical communications

Free-space optical (FSO) communication is a wireless commu-
nication system that uses an optical carrier to transfer information
through free space i.e., inter-building connections.

3.6.1. How it works?

The transmitter of FSO communication modulates the source
data onto an optical carrier which is then propagated through an
optical channel to the receiver. The simplest modulation is the
intensity modulation (IM) in which the source data is modulated
on the intensity of the light. The telescope at the transmitter fo-
cuses the transmitted signal towards the receiver telescope. The
commonly used source in FSO systems is LASER. The main function
of the receiver is to estimate the transmitted data from the re-
ceived optical signal. The receiver consists of a receiver telescope,
an optical band-pass filter, a photodetector, and a detection circuit.
The receiver telescope collects and focuses the received signal
onto the photodetector and the optical band-pass filter reduces
the background noise. The photodetector converts the received
optical signal into an electrical signal such as PIN and avalanche
photodiode (APD). Finally, at the detection circuit, the received
signal is recovered after amplification and filtering [64,65].

FSO communication is a line-of-sight (LOS) technology oper-
ating at wavelengths of 850 nm, 1300 nm and 1550 nm corre-
sponding to the optical communications 1st, 2nd and 3rd trans-
mission windows, respectively as these wavelengths have low at-
tenuation, less than 0.2 dB/km, can use the same commercial
components of an optical fiber and safe for eye and skin [64,66].

3.6.2. History
Alexander Graham Bell invented the photophone in 1880 and
he considered it his greatest invention. Photophone transfers

signal from transmitter to receiver using sunlight as a carrier. It
never came to a commercial product due to the lack of good light
sources. After the invention of the laser in 1960, a lot of experi-
ments were performed for military and aerospace applications.
With the invention of low-loss fiber in 1970, all optical research
was focused on it. Currently, FSO systems attract great interest as a
powerful complementary to radio frequency [64,67].

3.6.3. Advantages

FSO communication system is a promising candidate for the
next generation wireless communication systems as it offers an
efficient solution for last mile access, free license, high data rate
i.e., 10 Gbps links are already in the market, green communica-
tions, cost-effective, back-haul for expensive optical fiber com-
munication, easy to deploy, back-haul for cellular communication
and secure [64,66,67].

3.6.4. Market

In a recent market study, it was anticipated that FSO market
will grow from $ 116.7 Million in 2015 to $ 940.2 Million by 2020
[68]. FSONA, one of the leading FSO companies in Canada, provides
Crédit Agricole French bank with FSO links of 10 Gbps. Four
2.5 Gbps links were deployed rather than using an expensive fiber
optic link for their new building of the bank in Paris. The new link
provides a service for more than 1600 employees [69]. In Lebanon,
FSONA provides a mobile backhaul connectivity for the fourth
generation long-term evolution (LTE) services to customers with a
link of 1.25 Gbps without the delay of a laying cable [70]. Northern
Storm, one of the leading FSO companies in the US, installed a
hybrid FSO/RF link in California city of FSO link with 10.31 Gbps
and RF link with 1 Gbps as a backup for a distance of 238 m. For
the considered system, an availability of 99.999% is achieved for
different weather conditions [71].

3.6.5. Challenges

The transmitted optical signal is affected by various challenges
before arriving at the receiver such as misalignment errors, geo-
metric losses, background noise, weather attenuation losses and
atmospheric turbulence.

Geometric loss: This can be defined as the optical beam diver-
gence due to propagation, divergence angle, and the receiver
aperture size [72].

Misalignment error: Many reasons can cause misalignment er-
rors including but not limited to: Wind, earthquake, and building
vibrations [73]. A laser with a wide divergence angle can reduce
the effect of misalignment error for short range applications.
While a laser with a narrow divergence angle must be used with
an automatic tracking system for long rang applications [73,74].

Weather attenuation loss: FSO communication systems are af-
fected by different weather attenuation losses such as haze, dust,
fog, rain, smoke and snow [75,76]. Unlike RF, FSO links suffer from
the highest attenuation in the presence of fog while they are less
affected by the rain. Hence, hybrid RF/FSO systems [77] and mixed
RF/FSO systems [73,78] are employed to take the advantages of
both technologies. In hybrid RF/FSO, both FSO and RF are em-
ployed between two nodes [77]. However, in mixed RF/FSO, RF and
FSO are deployed together for different hops [78]. The attenuation
coefficient (a in dB/km) of different weather conditions are pro-
vided in Table 1.

Background noise: The exposure of the receiver to direct or in-
direct sunlight or artificial lights leads to background noise.
Background noise reduces the signal-to-noise ratio gain and can be
eliminated through bandpass filter before photo-detection [74,79].

Atmospheric turbulence: The random fluctuation of the received
signal results from the inhomogeneity in temperature and pres-
sure causes atmospheric turbulence. This turbulence degrades the
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performance of FSO communication systems [80]. The turbulence
effect depends on the link distance, the wavelength of the light
source and the refractive index constant, C,2 (m=2/3) [81]. C,2 in-
creases by temperature so it has the peak value at noon and it has
the minimum value at midnight [82].

3.6.6. Mitigation techniques

In this subsection, mitigation techniques at physical layer will
be discussed. Several modulation schemes are employed in FSO
systems to mitigate turbulence effect according to the required
energy efficiency, target spectral efficiency and coherent or non-
coherent detection. The most common schemes are on-off keying
(OOK) [83], pulse position modulation (PPM) [84], multiple PPM
(MPPM) [85], pulse width modulation (PWM) [86], digital pulse
interval modulation (DPIM) [87] and binary phase shift keying
(BPSK) [88]. Another useful mitigation technique for atmospheric
turbulence is forward error correction (FEC) such as Reed-Solo-
mon (RS) codes [89], concatenated RS codes [90,91], turbo codes

Table 1
Weather attenuation coefficient of FSO.

Weather conditions aldB/km]
Clear air 0.43
Haze 42
Moderate rain (12.5 mm/h) 5.8
Heavy rain (25 mm/h) 9.2

Light fog 20
Moderate fog 422
Heavy fog 125

FSO

——

[92] and low-density parity-check codes [93]. Spatial diversity is
also considered as a promising solution to mitigate atmospheric
turbulence and enhances the data rate of the system [94,95]. To
further mitigate turbulence and path losses effects, relay-assisted
systems such as multi-hop systems and cooperative relays are
used due to its advantage of shorter hops that yields significant
performance improvements [96].

3.6.7. Our contributions

Our contributions for FSO communications are summarized in
Fig. 17 [97]. Two challenges facing FSO are considered: Weather
attenuation with geometric loss, and atmospheric turbulence.

Weather attenuation with geometric losses leads to power loss
and relay-assisted FSO systems can mitigate these effects by using
shorter hops. Two schemes are employed for these challenges as
follows:

(a) Best relay selection for cooperative relays using full-duplex
(FD) relays under different turbulence conditions, misalign-
ment error and path loss effects is considered. Our results
show that FD relays have the lowest average bit error rate
(ABER) and the outage probability (OP) compared with the
direct link and best relay selection for cooperative relays using
half-duplex (HD) relays [98].

(b) Decode and forward (DF) multiple-input single-output (MISO)
multi-hop FSO systems are proposed and the obtained results
show the superiority of the considered system over single-
input single-output (SISO) and MISO systems considering
correlation effects at the transmitter [99,100].
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Fig. 17. Our contributions in FSO [97].
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In the case of atmospheric turbulence, which leads to signal
scintillation, spatial diversity and/or relay-assisted can be
employed to mitigate such impairments. Space shift keying
(SSK), orthogonal space-time block codes (OSTBCs) and repe-
tition codes (RCs) are employed as follows:

(c) SSK is considered achieving a high spectral efficiency for FSO
links. SSK outperform direct link and RCs multiple pulse am-
plitude modulations (M-PAM) techniques for higher spectral
efficiency applications and for moderate-strong turbulence
channels. Tight upper and lower bounds for ABER expressions
corresponding to negative exponential and log-normal (LN)
channels, respectively are obtained [101,102].

(d) Correlation among multiple transmitters leads to signal-to-
noise ratio (SNR) losses. Hence, separating the transmitters by
few centimeters decreases the correlation effect. However, the
required separation may be difficult in practice as available
space for the transmitters may not be sufficient for this re-
quirement. Hence, correlated LN channels, as well as path loss
due to weather effects using intensity modulation and direct
detection schemes, have been considered. Additionally, an
approximated ABER expressions for RCs and OSTBCs are de-
rived. Under the considered scenarios, results show that RCs
outperform OSTBCs by at least 3 dB [103,104].

3.7. Multiple-input multiple-output (MIMO) and millimeter wave
(mmWave)

A technology that promises enhancement in the achievable
throughput and the overall spectral efficiency is MIMO systems.
The scarcity of the wireless spectrum is the main factor that hin-
ders the vision for wireless access everywhere anytime, and per-
haps the toughest challenge that wireless research has to under-
take. Overcoming this challenge requires innovations in various
areas including novel ways for spectrum sensing and reuse, as
discussed in previous sections, mechanisms for using higher fre-
quencies such as (mmWave) and the visible light as in FSO, novel
ideas for dealing with interference, MIMO, and generally more
efficient protocols and systems [105-107].

MIMO systems are one of the most promising technical ad-
vances in wireless communications in recent years. Such systems
facilitate high-throughput transmission in various recent stan-
dards including LTE, WIMAX, WINNER, and others [108-110].

Existing radio frequency technologies utilize a spectrum ran-
ging from 300 MHz to about 3 GHz [111]. In such a small band-
width, huge number of wireless applications exist that support
high quality and moderate-latency multimedia services. However,
the rapid increase of mobile applications and wireless services
pose unprecedented challenges for future wireless systems. The
major challenge is to overcome the shortage in the global band-
width, and develop high-bit-rate multimedia services and appli-
cations. A promising solution to overcome such a challenge that
captures significant and rapid interest is millimeter-wave
(mmWave) communications and MIMO systems [112]. Millimeter—
wave communications offer a plentiful frequency spectrum, ran-
ging from 3 to 300 GHz, that can be exploited to achieve multi-
gigabits per second data rates [111,113]. Specifically, the un-
licensed 60 GHz band spectrum has induced a significant interest
in multigigabits data rates for short range wireless communica-
tions [111]. As such, several recent standards have been developed
based on mmWave technology including mmWave WPAN (IEEE
802.15.3¢-2009) [114], WiGig (IEEE 802.11ad) [115], and Wir-
elessHD [116].

Space modulation techniques, as space shift keying (SSK) and
spatial modulation (SM), are MIMO methods that use the multiple
transmit antennas in an innovative fashion. Transmit antennas are
considered as spatial constellation points and utilized to carry

additional information bits to boost the overall spectral efficiency.
Each antenna index is utilized to carry additional information bits
and a spatial multiplexing gain of base-two logarithm of the
overall number of transmit antennas is achieved. Besides, acti-
vating single transmit-antenna at a time eliminates inter-channel
interference, relaxes inter-antenna synchronization requirements,
reduces receiver complexity, and allows the use of a single RF
chain at the transmitter. In addition, it has been shown that space
modulation techniques enhance error performance with a mod-
erate number of transmit antennas as compared to other con-
ventional MIMO techniques. In addition, it is demonstrated that
these techniques are more robust to channel imperfections, such
as spatial channel correlation and channel estimation errors, as
compared to other MIMO techniques, since the probability of error
of space modulation systems is not determined by the actual
channel realization, rather by the differences between channels
associated with the different transmit antennas [117-119].

The past few years have witnessed a tremendous development
on space modulation techniques [117,120-131]. The authors in
[120] provided an analytical solution for the optimum constella-
tion breakdown between space and signal domains. Based on SM
scheme, a new scheme to modulate the information onto the
constellation points, which is called superposition coded mod-
ulation-aided spatial modulation (SCM-SM) is proposed in [121].
In the same work, a low-complexity iterative detector for the SCM-
SM system is developed. The authors in [122] derived an optimal
detector for SM systems. The detector is based on the maximum
likelihood (ML) detector and jointly detects the antenna indexes
and the transmitted symbols. Another modulation scheme known
as space shift keying (SSK), which is a special case of SM is pro-
posed in [123]. In SSK, the antenna index used during the trans-
mission solely conveys the information without sending any data
symbol. Another schemes proposed in [124] use the knowledge of
the channel information at the transmitter to design the transmit
vectors such that the distance between each pair of constellation
vectors at the receiver becomes larger. An extended spatial mod-
ulation (ESM) techniques in which the number of active transmit-
antenna is variable with low-complexity near-optimal detection
scheme was proposed in [125]. Another low-complexity symbol
detector for generalized space shift keying (GSSK) based on £,
minimization technique was proposed in [126]. In this technique,
the signal detection of GSSK is converted into a binary symbol
recovery problem which can be solved via a convex optimization
tool. A novel detection algorithm for the generalized spatial
modulation (GSM) system with multi-active antennas is proposed
in [127]. The proposed algorithm exploits the inherent sparse
property of the SM signal and combines it with the sparse re-
construction theory. An upper bound for the average bit error
probability (BEP) of a differential SM system equipped with two
transmit-antenna over Rayleigh fading channels was derived in
[128]. A computationally efficient concentrated ML (CECML) al-
gorithm is proposed to efficiently compute a newly proposed or-
dering metric for the ordered-block minimum-mean-squared-er-
ror (OB-MMSE) detector in a GSM system [129]. The proposed
algorithm avoids redundant computations and enables early ter-
mination without noticeable performance degradation. The au-
thors in [130] analyzed large-scale GSM-MIMO systems. Specifi-
cally, an analytical upper bounds for the code-word error prob-
ability (CEP) and BEP performance were derived. In addition, a
complexity reduction scheme that allowed the computation of the
bounds for large GSM-MIMO systems is proposed. An optimum
transmit structure for SM systems that balances the size of the
spatial constellation diagram and the size of the signal constella-
tion diagram is proposed in [131]. Instead of using exhaustive
search, a novel two-stage transmit antenna selection (TAS) method
was proposed to reduce the computational complexity, where the
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optimal number of transmit antennas and the specific antenna
positions are determined separately. Recently, an SM technique
called quadrature spatial modulation (QSM) has been proposed in
[132,133]. Performance analysis over Rayleigh fading channel with
perfect and imperfect channel estimations were considered.

Nonetheless, a major criticism of space modulation techniques
is that the data rate enhancement is proportional to the base-two
logarithm of the number of transmit antennas. This is unlike other
spatial multiplexing techniques, where data rate increases linearly
with the number of transmit antennas. To overcome this limita-
tion, several attempts were made to enhance the overall spectral
efficiency of such techniques. In [24], a generalized SM algorithm
is proposed where a combination of transmit antennas is activated
at each time instant. A similar algorithm is proposed in [25] for
SSK system. However, the performance of these systems is shown
to be slightly worse than the conventional SM/SSK systems. In
QSM, the spatial constellation symbols are expanded to in-phase
and quadrature components. The in-phase and quadrature spatial
modulation dimensions are orthogonal representing the in-phase
and the quadrature components of the carrier signal. Conse-
quently, SM advantages such as entire inter-channel interference
avoidance, single RF chain at the transmitter and low complexity
receiver are maintained. But an additional base two logarithm of
the number of transmit antennas as compared to SM is achieved.
Previous analyses of QSM demonstrate the several enhancements
as compared to SM and other MIMO schemes.

3.8. Spatial diversity

The Independent Component Analysis (ICA) is a relatively new
branch of signal processing proposed to solve the Blind Source
separation (BSS) [134]. In the last two decades, many researchers
have been involved in this fields and actually, one can find many
algorithms and applications for ICA and BSS, see the following
references [135-138] and their cited references. Recently, this

problem was introduced in the context of port surveillance [139].
We had mentioned before that ICA and HOS have been used in the
context of Cognitive Radio, Electronic XWarfare and Spectrum
Sensing.

To our knowledge, all classification algorithms assume that the
intercepted signal is a single unknown modulated signal. In our
days, this assumption becomes a very strong one. In wireless ap-
plications, the interception of MIMO signals is a serious challenge
for the scientist community. We proposed a system that can ex-
tract two BPSK signals from one mixed signal of them. In order to
achieve the separation, we introduced an auxiliary signal based on
a frequency rotation and a squared error minimization. It is worth
mentioning that with a 5dB of SNR, good experimental results
have been obtained [140], see Fig. 18.

Finally, we proposed a scheme to separate convolutive mix-
tures in an undetermined scenario [142], see Fig. 19.

4. Conclusion

This manuscript addresses the limitation of actual commu-
nication systems and describes the recent challenges of such sys-
tems. It discusses as well major research fields proposed to solve
the rising problems. Future wireless systems are supposed to meet
several challenges for which intense research is needed to develop
future wireless systems. Disruptive network designs (sensor net-
works, cognitive communication, etc), signal processing at the
physical layer (FSO, mm wave, hybrid systems, beam forming, etc),
implementation of information theory aspects (network coding,
physical layer security, interference and energy management, etc).
Hardware implementations and testbeds are crucial for future
system design. Finally, we hope that this manuscript will be useful
for the readers understanding different recent wireless systems.
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