
Received: 17 November 2017 Revised: 1 October 2018 Accepted: 4 November 2018
RE S EARCH ART I C L E

DOI: 10.1002/dac.3875
Nature‐inspired meta‐heuristic algorithms for solving the
load balancing problem in the software‐defined network
Ali Akbar Neghabi1 | Nima Jafari Navimipour2 | Mehdi Hosseinzadeh1 | Ali Rezaee1
1Department of Computer Engineering,
Science and Research Branch, Islamic
Azad University, Tehran, Iran
2Department of Computer Engineering,
Tabriz Branch, Islamic Azad University,
Tabriz, Iran

Correspondence
Mehdi Hosseinzadeh, Department of
Computer Engineering, Science and
Research Branch, Islamic Azad
University, Tehran, Iran.
Email: hosseinzadeh@srbiau.ac.ir
Int J Commun Syst. 2019;e3875.
https://doi.org/10.1002/dac.3875
Summary

The growth of the networks has difficult network management. Recently, a

concept called software‐defined network (SDN) has been proposed to address

this issue, which makes network management more adaptable. Control and

forwarding planes are separated in SDN. The control plane is a centralized log-

ical controller that controls the network. The forwarding plane that consists of

transfer devices is responsible for transmitting packets. Because the network

resources are limited, optimizing the use of resources in the networks is an

important issue. Load balancing improves the balanced distribution of loads

across multiple resources in order to maximize the reliability and network

resources efficiency. SDN controllers can create an optimal load balancing

compared to traditional networks because they have a network global view.

The load‐balancing problem can be solved using many different nature‐

inspired meta‐heuristic techniques because it has the NP‐complete nature.

Hence, for solving load balancing problem in SDN, nature‐inspired meta‐

heuristic techniques are important methods. However, to the best of our

knowledge, there is not a survey or systematic review on studying these mat-

ters. Accordingly, in the area of the load balancing in the SDN, this paper

reviews systematically the nature‐inspired meta‐heuristic techniques. Also, this

study demonstrates advantages and disadvantages regarded of the chosen

nature‐inspired meta‐heuristic techniques and considers their algorithms met-

rics. Moreover, to apply better load balancing techniques in the future, the

important challenges of these techniques have been investigated.

KEYWORDS

load balancing, meta‐heuristic, nature‐inspired, review, SDN, software‐defined networks
1 | INTRODUCTION

At first, the concept of software‐defined network) SDN (is proposed by Stanford University.1 The primary purpose of
SDN is to make network management more flexible and easier by separating network infrastructure into two logical
layers: control and data plane.2,3 In this manner, the network controller is moved from the transfer devices to a logically
centralized controller with the goal that software can implement the network functions. It also provides a comprehen-
sive overview of the network resources that, unlike traditional networks, supports making changes globally in a central-
ized manner.4-7 With the use of some open standards such as OpenFlow, this new network technique is implemented.
© 2019 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/dac 1 of 26

https://orcid.org/0000-0002-5514-5536
https://orcid.org/0000-0003-1088-4551
mailto:hosseinzadeh@srbiau.ac.ir
https://doi.org/10.1002/dac.3875
https://doi.org/10.1002/dac.3875
http://wileyonlinelibrary.com/journal/dac

2 of 26 AKBAR NEGHABI ET AL.
OpenFlow is one of the fundamental protocols that are equipped for managing, configuring, and interoperating between
different network devices.8,9 Traditional SDN architecture comprises three principal layers.10 The bottom layer consists
of network transmission devices, such as SDN switches, routers, and so on, which represents the data plane and pro-
vides basic packet forwarding functionality.11,12 The middle layer consists of a centralized SDN controller that provides
the functionality of a Network Operating System (NOS).13 The NOS deals with and hides the distributed nature of the
physical network and provides the abstraction of a network graph to higher layer (application layer) services.14 The SDN
controller configures SDN switches by installing forwarding rules via the so‐called southbound interface.11 In an SDN
architecture, control layer (middle layer) and infrastructure layer (bottom layer) are communicated by OpenFlow pro-
tocol. OpenFlow enables direct availability to the forwarding plane of network devices such as virtual and physical
switches and routers.10,15 The top layer of the SDN architecture is application layer. Network services and applications,
such as traffic engineering, routing, load balancing, etc., are developed in application layer.11,12

However, with the rapid growth of the SDN's resources, load balancing directly affects the availability of applications
and system services.16 One of the goals of load balancing is to enhance resource utilization, and also load balancing
causes the throughput of the system and the user experience will be improved and the response time of the network
will be shortened by avoiding congestion.16 In SDN associated research, load balancing issue is one of the most
important issues because of industry concerns.17 Many data centers spread network traffics by load balancer devices.17

Nevertheless, the excessive use of these devices can often be too costly.18

In spite of the fact that nature‐inspired meta‐heuristic load balancing techniques are significant in the SDN, to the
best of knowledge of the authors, there is not any complete and comprehensive systematic review of this issue. There
are several methods that have used nature‐inspired meta‐heuristic algorithms for solving the load balancing problem
in the SDN. The purpose of this article is to review the current methods and compares the features of them. Another
purpose is to provide an outline of the types of important load balancing issues that could address in the SDN. Briefly,
this article can contribute in the following ways:

• Providing SDN architecture review and defining load balancing problem in the SDN.
• Offering a systematic review of the current load balancing techniques based on different nature‐inspired meta‐

heuristic algorithms in the SDN and classifying them.
• Investigating the reviewed techniques and determining their pros and cons.
• Identifying the key areas where works in the future can improve the function of load balancing techniques in the

SDN.

The rest of the article is organized as follows. In Section 2, SDN backgrounds and load balancing problem are
described. In Section 3, some significant related work is focused. The research methodology and mechanism for
selecting articles are presented in Section 4. Section 5 argues nature‐inspired meta‐heuristic algorithms for load
balancing in the SDN and categorizing them, and also the selected mechanisms are compared. In Section 6, results
and comparison are presented. Many open issues are discussed in Section 7. Eventually, this article conclusion and lim-
itation are discussed in Section 8.
2 | BACKGROUND

The SDN structure has been perused, and also the essential profits of using SDN have been described in this section.
Load balancing methods have been divided into two major categories which include static and dynamic methods. In
the end, the metrics that affect load balancing efficiency are been explained.
2.1 | SDN architecture and OpenFlow protocol

In a traditional network, flows are particularly processed according to either one or some combinations of packet header
attributes, including destination Media Access Control addresses, an integration of Internet Protocol (IP) addresses and
Transmission Control Protocol/User Datagram Protocol port numbers, the longest destination IP prefixes, and so
on.19,20 The SDN handles the flows according to several characteristics of packet headers using a communication pro-
tocol such as the OpenFlow protocol.20-24 As illustrated in Figure 1, Open Networking Foundation divides SDN archi-
tecture into three major planes:

FIGURE 1 An overview of SDN architecture with its main planes: Data, control, and application plane19

AKBAR NEGHABI ET AL. 3 of 26
• Data plane: In the SDN architecture, data plane is the lowest level and includes network devices like physical/virtual
switches, routers, access point, etc..19,20 These network devices are available and manageable via a controller data
plane interface from SDN controllers. The network devices and controllers can communicate via secure connections,
for example, the Transport Layer Security connection. OpenFlow protocol is a popular standard controller data
plane interface for communication between the controller and data devices.19,20

• Control plane: A set of software‐based SDN controller exists in the SDN control plane to provide control capabilities
to monitor network transfer behavior via the controller data plane interface.19 It has interfaces to allow communi-
cation between controllers and network devices, as well as between controllers and applications (Application to
Controller Plane Interface (A‐CPI)). An A‐CPI can provide communication facility between network
applications/services and a controller for management, network security, and etc. Functional components and
control logic are two primary components of a controller. Controllers include at least one functional component
such as virtualizer, coordinator, and so on; thus, they can manage the behaviors of controllers.19,20,25 The load
balancer is an application that its goal is to balance the network load. The SDN controller can run various
applications include programs for network monitoring, intrusion detection, network virtualization, and load
balancing. Hence, SDN controller has a component that called load balancer.

• Application plane: An SDN application plane has one or more end‐user applications that using with controllers
capture an abstract view of the network so that they can demonstrate their internal decision‐making process. These
applications communicate with controllers through an open A‐CPI. In fact, the SDN application contains both an
SDN application logic and an A‐CPI driver.19
2.2 | SDN load balancing

Mostly, in distributed systems, load balancing technology is utilized to ameliorate overall cluster performance.26-28

Load balancing is distributing the amount of work between two or more computing resources. Static and dynamic
algorithms are two major categories of load balancing mechanisms. In static algorithms, it is essential to have prior

4 of 26 AKBAR NEGHABI ET AL.
information of the system, such as communication time, job resource requirements, system nodes processing power,
storage media, and memory capacity, etc. Static load balancing algorithms do not depend on the current system state,
and they also use the voting approach (the round robin approach). The essential advantage of static algorithms is its
simple implementation, but the feasibility of inappropriate balancing is high.29,30 Therefore, the major disadvantage
of static load balancing algorithms is that the current system status is not taken into account in decision making, so
it is not a proper approach in systems that load status cannot be foretold in advance. Dynamic algorithms actually
rely on the present status of the system and are mainly employed to manage the changeable processing loads.29,30

Tasks can be transferred from an overloaded node to an under‐loaded one using dynamic algorithms. Continuously
changing of load balancing as the main advantages of dynamic load balancing algorithms depend on the current
system status. Dynamic mechanisms enable us to achieve better performance and obtain more efficient and accurate
solutions.30,31

Load balancing is also used to equally allocate the workload throughout all the nodes.30 It accomplishes by better
resource utilization along with guaranteeing an effective and reasonable resource allocation.30,32 An appropriate load
balancing aids in avoiding overload of any single resource, maximizing throughput, minimizing resource consumption,
minimizing response time, maximizing scalability, and so on.33
2.3 | Parameters of load balancing

Researchers have used some parameters to evaluate a load balancing method. These parameters are used to compare
load balancing methods. Papers apply different parameters such as execution time, response time, and utilization.
The most important qualitative metrics for load balancing in the SDN are defined as follows:

Delay: The time needed to forward a packet across a network is named delay. Many kinds of delay exist such as
communication delay34 and traffic delivery latency.35

Energy consumption: In the network, the amount of consumed energy is being determined by this metric. It should
be minimized. Also, energy consumption can be reduced by efficient load balancing technique.36,37

Execution time: For a given task, execution time is determined as the time spent by the system executing that task.
In a load balancing program, it can include re‐association time,38 migration time,39 computation time,40 and flow setup
time.41 In Wi‐Fi networks, the re‐association process happens when a wireless client temporarily moves outside the
reach of an access point to another access point. Re‐association time is the time taken to perform the re‐association
process. The time it takes for a number of switches from one controller to migrate to other controllers is called the
migration time. A switch asks the controller to install suitable forwarding rules when a switch receives a new flow.
The time necessary for this process is called the flow setup time.

Load balancing degree: This metric determines the monotony of the load distribution among entities. It should be
maximized in load balancing. This metric is be measured by multiple indexes such as standard deviation of the load,42

the arithmetic average for the coefficient of variation,20 and Jain's fairness index and38,43 entropy‐based index.44

Overhead: It is any composition of excessive or indirect bandwidth, computation time, memory, or other resources
that are required to perform a specific task. It should be minimized in load balancing. Communication,45 synchroniza-
tion,46 and messages exchange and data stored overhead47 are different types of overhead.

Response time: The interval that begins with accepting a job or request to responding to a task or request for the
server is called response time.48,49 It should be minimized in load balancing.

The rate of packet loss: When one or more packets do not reach to their target, packet loss happens. Network
congestion usually caused packet loss. The rate of packet loss is the percentage of packets lost regarding packets sent.6,50

Throughput: During a given period of time, the amount of data that has been correctly transmitted from one place to
another is called throughput.51-53

Utilization: A degree to which network resources are used such as bandwidth, link, memory, and utilization of CPU
is called utilization. Load balancing can help to provide maximum resource utilization.36,49,54,55
3 | RELATED WORK

In this section, we describe the number of existing survey articles in SDN and determine some defects of them.
Karakus and Durresi19 have reviewed scalability issues of the control plane in the SDN architectures. In the SDN

architecture, the main reasons why the control plane suffers from scalability problems have been pointed out and the

AKBAR NEGHABI ET AL. 5 of 26
scalability conception has also been discussed. To measure the scalability of the systems, they have suggested some
parameters for scalability. Their studies are organized according to the control plane scalability in the SDN, and the
control plane scalability discussion is categorized into two extensive approaches consisting topology‐related and
mechanisms‐related approaches. In addition, the relationship between the topology of architecture and scalability
issues has been discussed in topology‐related approaches. Also, the relationship between various mechanisms which
are employed to optimize the performance of the controller and scalability issues have been reviewed in
mechanisms‐related approaches. However, mechanism of papers selection is unclear, and load balancing has not been
investigated.

In many aspects, the SDN networks have shown great advantages compared with the conventional networks. To
ameliorate the performance of the SDN networks, many load balancing methods have been suggested in the SDN. Li
and Xu56 have classified load balancing methods and analyzed the disadvantages and advantages of them. They have
divided load balancing techniques into two main categories including load balancing in the centralized and load
balancing in the distributed SDN architecture where centralized SDN architecture has a single controller whereas
distributed SDN architecture has multiple controllers. However, there is a slit for discussion in mechanism of article
selection. In addition, future works have not been satisfactorily explained.

Also, Benzekki, El Fergougui57 have carried out one of the important studies of the SDN. An overview of SDN
technology and the currently deployed network architecture have been explained by them. This survey presented
different existing solutions and mitigation techniques that deal with SDN scalability, elasticity, dependability, reliability,
high availability, resiliency, security, and performance issues. However, there is a slit for discussing the mechanism of
article selection and open issues. Also, they have not discussed most articles published in 2016, and load balancing has
not been studied.

To avoid overloading a single server, server load balancing is applied to balance requests between servers in large
data centers. There are many techniques that perform load balancing. These techniques can be classified into two main
categories including static and dynamic approaches. Static approaches do not provide the same balance of data between
servers. Therefore, to improve the load balance of the server, dynamic methods are needed. With comparison among
dynamic and static load balancing approaches in the SDN, Raghul, Subashri58 have offered different experimental
results and have viewed that dynamic methods present better performance in throughput and response time metrics.
But, there is a slit in the mechanism for selecting articles and open issues.

Furthermore, Hu, Hao22 have carried out an extensive survey of the essential topics in SDN/OpenFlow
implementation, such as basic concept, language abstraction, applications, controller, security, QoS, and its integra-
tion with wireless networks. It not only describes the differences among some typical SDN applications but also
shows OpenFlow applications for its flexibility. They have compared the differences in SDN security schemes based
on OpenFlow/NOX; besides, they have introduced the new architecture parameters and also have compared
network virtualization systems with flexibility, isolation, and management parameters. However, there is a slit in
the mechanism for selecting articles and lately published papers. Moreover, load balancing problem has not been
discussed.

To distribute the request between resources and increase the overall performance of the system, different load
balancing strategies can be used. Each load balancing method has some advantages and disadvantages. Kumari and
Thakur59 have surveyed different load balancing strategies used in the SDN and investigate qualitative parameters that
each article has used. However, they have written this survey in a non‐systematically way. Also, open issues have not
been described.

Finally, Neghabi, Navimipour60 systematically have reviewed the load balancing techniques in the SDN. The load
balancing mechanisms have been categorized into two classes including non‐deterministic and deterministic
approaches. Also, weaknesses and benefits of the selected load balancing algorithms have been represented by them,
and they have investigated algorithm metrics. Furthermore, the key challenges of these algorithms have been
investigated. But, they have not investigated nature‐inspired load balancing techniques in SDN.

It should be noted that a pure systematic literature‐based review of the current nature‐inspired load balancing
techniques in SDN and discussing the important future challenges have not been provided by these surveys. Also, a
comprehensive and systematic review of the discussion on their categorization is not presented to date, despite the
impact of load balancing techniques in the field of nature‐inspired meta‐heuristic techniques. By answering to any of
these questions, this article in the next section formalizes three questions to select significant studies for evaluation
and then describes the importance of nature‐inspired load balancing techniques, key challenges, and future directions
in SDN.

6 of 26 AKBAR NEGHABI ET AL.
4 | RESEARCH METHODOLOGY

This section supplies a Systematic Literature Review (SLR) methodology which is presented by Kitchenham61 paying
attention to studies relevant to nature‐inspired load balancing techniques in the SDN to increase apprehending of them.
The SLR is used to perform a systematic study and a wide range of the nature‐inspired load balancing algorithms in the
SDN. Three research questions have been proposed by researchers to deal with the key issues of load balancing in
the SDN to emboss the incumbency of nature‐inspired load balancing in the SDN. We will formalize these questions
in the next subsection.
4.1 | Question formalization

This study attempts to respond the following three research questions:

RQ1:. What is the importance of load balancing in the SDN?

The number of SDN nature‐inspired load balancing studies which have been published all the time is determined by
this question to confirm the emphasis of it in SDN.

RQ2:. How much do the current methods meet the main metrics of load balancing?

This question targets at evaluating the existing load balancing approaches derived from the primary metrics in SDN.

RQ3:. What obstacles and solutions can be identified in relation to the load balancing in the future years?

This question aims to investigate the load balancing role in the SDN and recognize the challenges and the methods
used to insure the QoS.
4.2 | Process of paper selection

Automated keyword‐based search; selection of the article according to the title, abstract, and quality of the publication;
and formulation of selection criteria are three steps of the paper selection process.62

Stage 1:. Automated search based on keywords

Electronic searching on some popular academic databases is used in the search process. Due to that, electronic
databases have been identified to detect an article for which the following online databases were used: Google Scholar,63

Science Direct,64 IEEE explorer,65 Sage,66 ACM,67 Springer,68 Wiley,69 Emerald,70 and Inderscience.71 Then, a search
string has been specified by selecting the most appropriate keywords in terms of supplying our subject. By adding other
spellings of the essential elements, the following search string was defined to detect pertinent papers.

• (“Software Defined Network” OR “SDN”) AND (“Load” OR “Balancing”) AND (“Nature inspired” OR
“Meta‐heuristic”)

We automatically for search articles based on the keywords across four preselected databases in February 2018 and
then found 178 articles from the journals, conference proceedings, thesis, books, and patent. Between 2013 and 2018,
these articles were published.

Stage 2:. Article selection based on the quality of the publisher

This step starts with the selection of certain practical selection criteria to guarantee that only high‐quality publica-
tions and articles are selected for the review.72 By searching for conference papers and journal articles, the search string
is constrained. Hence, thesis, books, and patents are removed. Furthermore, the papers which are not written in English

AKBAR NEGHABI ET AL. 7 of 26
are eliminated to provide more accurate results. As a result, 137 papers are chosen. An overview of the used process to
identify the articles in this study has been shown in Figure 2.

Stage 3:. Selection criteria

In addition to emerged articles from the initial search are refined, a Quality Assessment Checklist based on
Kitchenham, Brereton73 has been developed in this section. The checklist contains the following questions73: (1) Is
the research methodology clearly put forward in this article? (2) Does the research methodology fulfill the requirements
of the problem under study? (3) Is this study analyzed as it should be? If this study fulfills the evaluation criteria, then
we can expect lots of “yes” replies. As described in Table 1, to pick up the right article, these criteria are introduced.

We eliminated the inappropriate abstracts, after reading searching keywords and abstracts as well as concepts that
reflect the contribution of the paper. Afterward, the entire section of the residuary articles was investigated, and those
which were not related to our respective area were also deleted. After screening the aforementioned studies based on the
inclusion/exclusion criteria and Quality Assessment Checklist, 23 studies were identified which are shown in Table 2
where 13% of the articles are related to Springer, 4% are related to ACM, 9% are related to Science Direct, 61% are
related to IEEE, 13% are related to other publications, and 0% are related to Emerald, Sage, Inderscience, and Wiley.
4.3 | Results

Selected articles are published between 2013 and 2017. Table 3 illustrates the distribution of nature‐inspired meta‐
heuristic load balancing articles based on the year of publication. Most articles were published in 2016. Articles
techniques can be classified into five categories including ant colony optimization (ACO), genetic algorithm (GA),
FIGURE 2 Filtering method for found

articles

TABLE 1 Summary of the inclusion‐exclusion criteria for articles selection

Criterion Rational

Inclusion1. A study that clearly mentioned the problem
of load balancing in the SDN.

We need papers that straightly proposed the load
balancing technique in the SDN.

Inclusion2. A study that is developed by either academics
or practitioners.

Both academic and engineering solutions are
relevant to this study.

Inclusion3. A study that is published in the SDN field. SDN is our reference field.

Exclusion1. A study that does not focus on the load
balancing techniques in the field of SDN environments.

The focus of this paper is only on studying the
presented load balancing techniques in the SDN.

Exclusion2. A study that does not use a nature‐inspired
meta‐heuristic approach.

We want to investigate nature‐inspired
meta‐heuristic approaches.

Exclusion3. A study that does present a good way for
evaluation and analysis.

Papers that do not provide the appropriate evaluation
and analysis of the study are removed.

TABLE 3 Distribution of nature‐inspired meta‐heuristic load balancing in the SDN articles by year

Years Numbers

2013 1

2014 3

2015 3

2016 9

2017 7

TABLE 2 Percentage of nature‐inspired meta‐heuristic load balancing articles in any publication

Publication Percentage

ACM 4%

IEEE 61%

Science Direct 9%

Springer 13%

Other publications 13%

8 of 26 AKBAR NEGHABI ET AL.
particle swarm optimization (PSO), greedy, and simulated annealing (SA). Table 4 illustrates the distribution of the
articles based on the type of nature‐inspired meta‐heuristic algorithms. Table 5 demonstrates details of nature‐inspired
meta‐heuristic algorithms for load balancing in the SDN. To perform a more accurate and detailed analysis, we chose
four articles of each nature‐inspired meta‐heuristic algorithm based on full text and quality assessment. But, in some
of nature‐inspired meta‐heuristic algorithms, the number of the published papers is low such as PSO and SA. Therefore,
the number of articles investigated in these categories is less than 4. In the next sections, we surveyed the selected
nature‐inspired meta‐heuristic algorithms in aforementioned groups.
5 | LOAD BALANCING METHODS

As previously mentioned, in SDN, nature‐inspired meta‐heuristic algorithms can be classified into five categories
including ACO, GA, PSO, greedy, and SA. In the next subsections, we surveyed the selected nature‐inspired meta‐
heuristic algorithms.
5.1 | Ant colony optimization technique

As a heuristic method in evolutionary computation, Dorigo87 has proposed ACO.88 This algorithm was inspired by a
model of the natural behavior of real ants that is finding the shortest path from the nest to food sources.89 In this
process, pheromone plays a key role, which is used by the ants as an orientation and excreted by themselves during
motion.90 A single ant moves almost randomly. However, if it encounters pheromone tracks, then it follows them with
a probability that increases with the strength of the track. She moves on the track and excretes pheromone on it.
TABLE 4 Distribution of the articles based on the type of nature‐inspired meta‐heuristic algorithms

Nature‐Inspired Algorithm Numbers

Ant colony optimization 5

Genetic algorithm 6

Particle swarm optimization 3

Greedy 7

Simulated annealing 2

T
A
B
L
E
5

D
et
ai
ls
of

n
at
u
re
‐
in
sp
ir
ed

m
et
a‐
h
eu

ri
st
ic

al
go
ri
th
m
s
fo
r
lo
ad

ba
la
n
ci
n
g
in

th
e
SD

N

N
at
u
re
‐
In

sp
ir
ed

A
lg
or
it
h
m
s

P
u
bl
is
h
er

Y
ea

r
P
ap

er
A
u
th

or
C
on

fe
re
n
ce
/J
ou

rn
al

Se
le
ct
ed

?

A
n
t
co
lo
n
y
op

ti
m
iz
at
io
n

IE
E
E

20
14

L
oa
d
ba
la
n
ci
n
g
us
in
g
so
ft
w
ar
e‐

de
fi
n
ed

n
et
w
or
ki
n
g
in

cl
ou

d
en

vi
ro
n
m
en

t

K
ou

sh
ik
a
an

d
Se
lv
i4
2

In
te
rn
at
io
n
al

C
on

fe
re
n
ce

on
R
ec
en

t
T
re
n
ds

in
In
fo
rm

at
io
n

T
ec
h
n
ol
og
y

Y
es

20
16

Jo
in
t
ro
ut
e‐
se
rv
er

lo
ad

ba
la
n
ci
n
g

in
so
ft
w
ar
e‐
de
fi
n
ed

n
et
w
or
ks

us
in
g
an

t
co
lo
n
y
op

ti
m
iz
at
io
n

Sa
th
ya
n
ar
ay
an

a
an

d
M
oh

74
H
ig
h
Pe

rf
or
m
an

ce
C
om

pu
ti
n
g

an
d
Si
m
ul
at
io
n
(H

PC
S)

Y
es

A
n
A
C
O
‐
ba
se
d
lin

k
lo
ad

‐

ba
la
n
ci
n
g
al
go
ri
th
m

in
SD

N
W
an

g,
Z
h
an

g7
5

7t
h
In
te
rn
at
io
n
al

C
on

fe
re
n
ce

on
C
lo
ud

C
om

pu
ti
n
g
an

d
B
ig

D
at
a

Y
es

20
17

N
et
w
or
k
aw

ar
e
V
M

lo
ad

ba
la
n
ci
n
g
in

cl
ou

d
da

ta
ce
n
te
rs

us
in
g
SD

N

T
sy
ga
n
ko

v
an

d
C
h
en

76
L
oc
al

an
d
M
et
ro
po

lit
an

A
re
a

N
et
w
or
ks

(L
A
N
M
A
N
)

N
o

O
th
er

pu
bl
ic
at
io
n
s

20
16

T
h
e
lo
ad

ba
la
n
ci
n
g
re
se
ar
ch

of
SD

N
ba
se
d
on

an
t
co
lo
n
y

al
go
ri
th
m

w
it
h
jo
b

cl
as
si
fi
ca
ti
on

L
in

an
d
Z
h
an

g1
6

2n
d
W
or
ks
h
op

on
A
dv

an
ce
d

R
es
ea
rc
h
an

d
T
ec
h
n
ol
og
y
in

In
du

st
ry

A
pp

lic
at
io
n
s

Y
es

G
en

et
ic

al
go
ri
th
m

IE
E
E

20
16

A
fa
st

an
d
lo
ad

‐
aw

ar
e
co
n
tr
ol
le
r

fa
ilo

ve
r
m
ec
h
an

is
m

fo
r

so
ft
w
ar
e‐
de
fi
n
ed

n
et
w
or
ks

F
an

g,
W
an

g7
7

10
th

In
te
rn
at
io
n
al

Sy
m
po

si
um

on
C
om

m
un

ic
at
io
n
Sy
st
em

s,
N
et
w
or
ks

an
d
D
ig
it
al

Si
gn

al
Pr
oc
es
si
n
g
(C
SN

D
SP

)7
7

Y
es

20
17

E
n
tr
op

y‐
ba
se
d
lo
ad

‐
ba
la
n
ci
n
g
fo
r

so
ft
w
ar
e‐
de
fi
n
ed

el
as
ti
c
op

ti
ca
l

n
et
w
or
ks

M
ah

la
b,

O
m
iy
i4
4

T
ra
n
sp
ar
en

t
O
pt
ic
al

N
et
w
or
ks

(I
C
T
O
N
),
19
th

In
te
rn
at
io
n
al

C
on

fe
re
n
ce

Y
es

Sp
ri
n
ge
r

20
14

A
ge
n
et
ic
‐
ba
se
d
lo
ad

ba
la
n
ci
n
g

al
go
ri
th
m

in
O
pe
n
F
lo
w

n
et
w
or
k

C
h
ou

,
Y
an

g2
0

A
dv

an
ce
d
T
ec
h
n
ol
og
ie
s,

E
m
be
dd

ed
an

d
M
ul
ti
m
ed
ia

fo
r

H
um

an
‐
ce
n
tr
ic

C
om

pu
ti
n
g

Y
es

20
16

T
h
e
m
ul
ti
‐
ob

je
ct
iv
e
ro
ut
in
g

op
ti
m
iz
at
io
n
al
go
ri
th
m

fo
r

h
yb
ri
d
SD

N

G
u,

L
uo

78
C
on

fe
re
n
ce

of
Sp

ac
ec
ra
ft
T
T
&
C

T
ec
h
n
ol
og
y
in

C
h
in
a

N
o

A
C
M

20
17

A
h
ig
h
ly

re
lia

bl
e
an

d
lo
ad

ba
la
n
ce

su
pp

or
ti
n
g
do

m
ai
n

di
vi
si
on

al
go
ri
th
m

fo
r

so
ft
w
ar
e‐
de
fi
n
ed

n
et
w
or
ks

L
i
an

d
Sh

i7
9

Pr
oc
ee
di
n
gs

of
th
e
In
te
rn
at
io
n
al

C
on

fe
re
n
ce

on
H
ig
h

Pe
rf
or
m
an

ce
C
om

pi
la
ti
on

,
C
om

pu
ti
n
g
an

d
C
om

m
un

ic
at
io
n
s

N
o

O
th
er

pu
bl
ic
at
io
n
s

20
16

L
oa
d
ba
la
n
ci
n
g
of

so
ft
w
ar
e‐

de
fi
n
ed

n
et
w
or
k
co
n
tr
ol
le
r

us
in
g
ge
n
et
ic

al
go
ri
th
m

K
an

g
an

d
K
w
on

80
C
on

te
m
po

ra
ry

E
n
gi
n
ee
ri
n
g

Sc
ie
n
ce
s

Y
es

G
re
ed
y

IE
E
E

20
14

H
an

,
Se
o8

1
N
o (C
on

ti
n
u
es
)

AKBAR NEGHABI ET AL. 9 of 26

T
A
B
L
E
5

(C
on

ti
n
u
ed
)

N
at
u
re
‐
In

sp
ir
ed

A
lg
or
it
h
m
s

P
u
bl
is
h
er

Y
ea

r
P
ap

er
A
u
th

or
C
on

fe
re
n
ce
/J
ou

rn
al

Se
le
ct
ed

?

So
ft
w
ar
e‐
de
fi
n
ed

n
et
w
or
ki
n
g‐

ba
se
d
tr
af
fi
c
en

gi
n
ee
ri
n
g
fo
r

da
ta

ce
n
te
r
n
et
w
or
ks

N
et
w
or
k
O
pe
ra
ti
on

s
an

d
M
an

ag
em

en
t
Sy
m
po

si
um

(A
PN

O
M
S)

20
15

T
ow

ar
ds

ad
ap

ti
ve

el
as
ti
c

di
st
ri
bu

te
d
so
ft
w
ar
e‐
de
fi
n
ed

n
et
w
or
ki
n
g

C
h
en

,
L
i4
0

C
om

pu
ti
n
g
an

d
C
om

m
un

ic
at
io
n
s

C
on

fe
re
n
ce

(I
PC

C
C
)

Y
es

D
es
ig
n
of

a
lo
ad

‐
ba
la
n
ci
n
g

m
id
dl
eb
ox

ba
se
d
on

SD
N

fo
r

da
ta

ce
n
te
rs

T
u,

W
an

g8
2

C
om

pu
te
r
C
om

m
un

ic
at
io
n
s

W
or
ks
h
op

s
(I
N
F
O
C
O
M

W
K
SH

PS
)

Y
es

20
17

C
lie

n
t‐
n
et
w
or
k
co
lla

bo
ra
ti
ve

lo
ad

ba
la
n
ci
n
g
m
ec
h
an

is
m

fo
r

W
L
A
N

ba
se
d
on

SD
N

an
d

80
2.
11

u

Sa
n
g,

W
u
47

W
ir
el
es
s
C
om

m
un

ic
at
io
n
s
an

d
M
ob

ile
C
om

pu
ti
n
g
C
on

fe
re
n
ce

(I
W
C
M
C
)

Y
es

A
sw

it
ch

m
ig
ra
ti
on

‐
ba
se
d

de
ci
si
on

‐
m
ak

in
g
sc
h
em

e
fo
r

ba
la
n
ci
n
g
lo
ad

in
SD

N

W
an

g,
H
u
39

IE
E
E
A
cc
es
s

N
o

E
ls
ev
ie
r

20
16

B
ea
Q
oS

:
L
oa
d
ba
la
n
ci
n
g
an

d
de
ad

lin
e
m
an

ag
em

en
t
of

qu
eu

es
in

an
O
pe
n
F
lo
w

SD
N

sw
it
ch

B
oe
ro
,
C
el
lo

83
C
om

pu
te
r
N
et
w
or
ks

N
o

O
th
er

pu
bl
ic
at
io
n
s

20
17

A
n
in
it
ia
l
lo
ad

‐
ba
se
d
gr
ee
n

so
ft
w
ar
e‐
de
fi
n
ed

n
et
w
or
k

H
u,

L
uo

36
A
pp

lie
d
Sc
ie
n
ce
s

Y
es

Pa
rt
ic
le

sw
ar
m

op
ti
m
iz
at
io
n

IE
E
E

20
16

A
n
ov
el

lo
ad

ba
la
n
ci
n
g
st
ra
te
gy

of
so
ft
w
ar
e‐
de
fi
n
ed

cl
ou

d/
fo
g

n
et
w
or
ki
n
g
in

th
e
in
te
rn
et

of
ve
h
ic
le
s

H
e,

R
en

34
C
h
in
a
C
om

m
un

ic
at
io
n
s

Y
es

20
17

A
n
in
te
lli
ge
n
t
lo
ad

ba
la
n
ce
r
fo
r

so
ft
w
ar
e‐
de
fi
n
ed

n
et
w
or
ki
n
g

(S
D
N
)
ba
se
d
cl
ou

d
in
fr
as
tr
uc
tu
re

G
ov
in
da

ra
ja
n

an
d
K
um

ar
84

Se
co
n
d
In
te
rn
at
io
n
al

C
on

fe
re
n
ce

on
E
le
ct
ri
ca
l,
C
om

pu
te
r
an

d
C
om

m
un

ic
at
io
n
T
ec
h
n
ol
og
ie
s

(I
C
E
C
C
T
)

Y
es

Sp
ri
n
ge
r

20
15

E
n
er
gy

sa
vi
n
g
an

d
lo
ad

ba
la
n
ci
n
g

fo
r
SD

N
ba
se
d
on

m
ul
ti
‐

ob
je
ct
iv
e
pa

rt
ic
le

sw
ar
m

op
ti
m
iz
at
io
n

Z
h
u,

W
an

g8
5

In
te
rn
at
io
n
al

C
on

fe
re
n
ce

on
A
lg
or
it
h
m
s
an

d
A
rc
h
it
ec
tu
re
s

fo
r
Pa

ra
lle

l
Pr
oc
es
si
n
g

Y
es

Si
m
ul
at
ed

an
n
ea
li
n
g

IE
E
E

20
13

D
yn

am
ic

co
n
tr
ol
le
r
pr
ov
is
io
n
in
g

in
so
ft
w
ar
e‐
de
fi
n
ed

n
et
w
or
ks

B
ar
i,
R
oy

41
N
et
w
or
k
an

d
Se
rv
ic
e

M
an

ag
em

en
t
(C
N
SM

)
Y
es

E
ls
ev
ie
r

20
16

E
ff
ic
ie
n
t
ro
ut
in
g
fo
r
m
id
dl
eb
ox

po
lic
y
en

fo
rc
em

en
t
in

so
ft
w
ar
e‐
de
fi
n
ed

n
et
w
or
ki
n
g

L
i,
W
u
86

C
om

pu
te
r
N
et
w
or
ks

Y
es

10 of 26 AKBAR NEGHABI ET AL.

AKBAR NEGHABI ET AL. 11 of 26
Therefore, the track has more pheromone, and it is now strengthened to attract more ants. For solving discrete
problems, the ACO is originally proposed, and it solved a lot of discrete problems effectively.91,92 The remainder of this
section is organized as follows. Section 5.1.1 consists of the overview of the selected mechanisms that were shown in
Table 5, and summary of the reviewed articles together with their pros and cons propounds is presented in Section 5.1.2.
5.1.1 | Overview of the selected mechanisms

Wang, Zhang75 have proposed a link load balancing algorithm based on ACO. The algorithm has used the search rule of
the ACO and takes link load, delay, and pack‐loss as impact factors that ants select next node. For maintaining link
load‐balancing and reducing end‐to‐end transmission delay, the widest and shortest path in all paths can be gained
by ants. Simulation results have shown that the algorithm can balance the link load of network effectively, improve
the QoS, and decrease network overhead. However, it may become trapped in some local optimal. Also, delay and
throughput of the algorithm have not been considered. Furthermore, since this method applies the ACO algorithm,
the rate of convergence may be slow down. Also, this method exploits single controller; hence, it suffers from low avail-
ability and low scalability. Moreover, the system has a bottleneck. A bottleneck occurs within a server when workloads
arrive too quickly. It causes an interruption in processing packet‐in messages and delays across the network.

Furthermore, Lin and Zhang16 have offered a dynamic load balancing algorithm combined with job classification
and ACO algorithm in SDN network cloud computing environments. They classify the server nodes that have the same
processing capability of the CPU into a small clustered sub‐network in SDN with the classifying SDN network server
nodes. They have created a central controller whose work is to monitor the entire network, and there is a sub‐controller
in each sub‐network. ACO algorithm runs in each controller. When a job comes, the central controller first finds the
corresponding sub‐network based on the job demand for CPU performance and sends the job to the sub‐network
controller; then, in the sub‐network, the ACO algorithm can calculate the minimum load link road. In the end, the
controller sends forwarding policy to the switch. Experimental results have proved that the optimized ACO algorithm
can achieve better load balancing in each link which results in improving the utilization of resources and enhancing
the usability of the system. However, it may become trapped in some local optimal. Moreover, overhead and delay of
the algorithm have not been considered. Also, since this approach has used ACO algorithm, it needs a lot of memory.
Furthermore, they use a central controller to monitor the entire network, and there is a sub‐controller in each sub‐
network; hence, complexity of the method is high.

Also, network performance can be greatly ameliorated by managing resource utilization. Since there are no efficient
ways to obtain network statistics from a device of the network, conventional load balancing approaches are usually
inflexible and inefficient. The problem can be solved by adopting the SDN approaches. Sathyanarayana and Moh74 have
presented a dynamic load balancing method for SDN to balance both the paths leading to the servers load and the
servers load. They have used the least loaded server load balancing policy to select the best server. Also, they have
accepted the ant colony system algorithm to select the best path to reach the selected server. As an SDN controller load
balancing module, they joined dynamic server load balancing algorithm and ant colony system routing. To detect the
best server and path for network flows, this algorithm handles network statistics and server‐load prepared by the
controller. By supplying fewer network delay and upper network throughput, the evaluations show that the suggested
algorithm fulfills considerably better than the shortest path round robin and shortest path random algorithms. Also, this
algorithm has the least average response time and lowest packet loss compared with the other two algorithms. However,
due to using a single controller, this approach suffers from system bottleneck, low availability, and low scalability.
Moreover, analyzing the control overhead has not been performed. As well as, utilization and execution time of the
proposed algorithm are not evaluated. Moreover, falling into a local optimum problem is not solved.

Moreover, when resources are added to data centers, most network resources are underutilized. When routing the
data between the data centers, this underutilization causes congestion. Load balancing over the bottlenecked links
can ameliorate this problem. Hence, Koushika and Selvi42 have fulfilled the load balancer with SDN using the heuristic
approach to help for solving the problem. The load balancer module is performed as the controller application. They
have implemented the ACO‐based load balancer. With the global view supplied by the controller, the suggested objec-
tive function calculates the best server and the optimized best path. When the request of a client comes at the switches,
by balancing both the host and server load, the load balancer determines the best path and the best host. Results of the
simulation have shown that proposed method achieves a higher degree of load balancing and also lower response time
and delay than round‐robin algorithm, which is performed in the SDN environment. However, evaluating the proposed

12 of 26 AKBAR NEGHABI ET AL.
method in a real testbed has not been done. Also, the packet loss rate and throughput of the method have not been
investigated. Furthermore, this method uses single controller; hence, the system has a bottleneck. Moreover, scalability
and availability are not achieved. Also, falling into a local optimum problem has not been solved.
5.1.2 | Summary of the reviewed ACO‐based mechanisms

In the former subsection, based on SDN load balancing, four chosen ACO algorithms are reviewed, and their pros and
cons are explained. Table 6 demonstrates a complete comparison of the most important pros and cons of each article.
Some of the advantages of these methods are reduction of the (network) overhead, diminishing delay, and ameliorating
load balancing degree. Moreover, since most of the methods use a single controller, they suffer from low availability,
low scalability, and system bottleneck. Furthermore, these methods use ACO algorithm and hence may fall into local
optima.
5.2 | Genetic algorithm technique

The GA inspired Darwin's theory of evolution that an organism's survivorship is depended on the fact that individuals
whose fitness value is low will die while individuals whose fitness value is high will survive.93 Darwin also said that the
survivorship of a critter can be retained via the process of reproduction, mutation, and crossover. Then, a computational
algorithm is adapted from the theory that a solution is found for an optimization problem. This algorithm has been
TABLE 6 Selected ACO‐based load balancing techniques and their properties

Paper Main idea Advantages Disadvantages Missing Metrics

Wang, Zhang75 Link load balancing
algorithm based
on ant colony
optimization

• Balancing the link
load of network
effectively

• Improving the QoS
• Reducing network
overhead

• The possibility of
falling into some
local optimal

• The rate of
convergence may
be slow down

• Low scalability
• Low availability
• Bottleneck

• Delay and throughput
of the algorithm have
not been considered

Lin and Zhang16 Load balancing based
on ant colony algorithm

With job classification

• Achieving better load
balancing in each link

• Improving the utilization
of resources

• Enhancing the usability
of the system

• It needs a lot of
memory

• The possibility of
falling into some
local optimal

• High complexity

• Overhead and delay of
the algorithm have not
been evaluated

Sathyanarayana
and Moh74

Load balancing the servers
and the paths leading to
the servers.

Using ant colony system to
select the best path to
reach the chosen server

• Supplying fewer
network delay

• Improving network
throughput

• reducing average
response time

• reducing packet
loss rate

• Low scalability
• Low availability
• Bottleneck
• The possibility of
falling into some
local optimal

• Analyzing the control
overhead has not
performed

• Utilization and execution
time of the method is
not considered

Koushika and Selvi42 Implementing the ACO
and defining a new
objective function

That classifies the best
path and best server

• Achieving a higher
degree of load balancing

• Reducing response time
• Diminishing delay

• Have not evaluated
in a real testbed

• Low scalability
• Low availability
• Bottleneck
• The possibility of
falling into some
local optimal

• Packet loss rate and
throughput metrics
have not been investigated.

AKBAR NEGHABI ET AL. 13 of 26
proposed by Holland94 in 1975 and called GA. This algorithm obtains a value of an optimal solution to a problem that
has many feasible solutions. Genetic algorithms are started with the collection of casually generated solutions named
population. In the population, each individual is named chromosome which is a delegate of each solution and appraised
the level of robustness (fitness) by a predestinated function. Via the natural selection process on genetic operators, it is
expected that a new chromosome with a higher level of fitness as a new generation (child) is generated by the genes of
the two chromosomes. Chromosomes are recalculated, and output of this operation is called as generation. A fitness
function evaluates the chromosomes.95 We hopefully get the optimal solution while the GA converges to the best
chromosome after several generations.96 This algorithm is easy to combine with other algorithms, and also it has been
designed for problems that have real or binary search space.97
5.2.1 | Overview of the selected mechanism

Chou, Yang20 have used the GA to provide an OpenFlow‐based load balancing system. Based on the GA, the data can be
efficiently distributed between clients and various servers by this system. Additionally, with the preconfigured flow table
entries, each flow can be directed in advance. When the traffic burst or server loading unanticipatedly increases, the
proposed method can help to balance the workload of server farms. By comparison with other methods including
load‐based, random, and round‐robin approaches, the evaluation results have shown that the suggested method has
the high efficiency. However, the arithmetic average for the coefficient of variation metric has been only used by them.
Moreover, because this method uses a single controller, system has a bottleneck, and also scalability and availability are
not achieved. In addition, overhead and utilization of the algorithm have not been investigated. Furthermore, this
method suffers from high computation time because it uses the GA.

Moreover, in the SDN when there are considerable requests for routing information from multiple switches to a
controller, the controller overflows and the performance deteriorates. OpenFlow allows the use of multiple controllers
in the network to solve this problem. All the controllers should be well balanced to avoid failure of a heavy‐loaded
controller. Kang and Kwon80 have suggested a load balancing algorithm based on a GA. If controller load is not well
balanced, their algorithm performs selection, crossover, and mutation to determine optimal load balancing. They have
calculated controller load with CPU utilization and packet_in messages. They have simulated an SDN environment and
have proved that an optimized mapping solution can be determined through the proposed algorithm. If the switches
generate high complexity packet_in messages in this simulation, similar performance can be revealed in the real
network. However, the evaluation of the algorithm is based on only load balancing factor, and the delay, overhead,
and energy consumption of the algorithm have not been investigated. Moreover, the performance of the algorithm
has not been compared with other approaches. Furthermore, due to using multiple controllers, the proposed method
complexity is high. In addition, due to using the GA, the proposed method has slow convergence rate.

Also, one controller has been used to manage the entire network in the conventional SDN. It causes single point of
failure (SPOF) problem. To solve this problem, Fang, Wang77 have presented a fast and load‐aware controller failover
(FLCF) for SDN. To gather all failure notifications from other controllers about a failed controller, the FLCF applies
a detecting controller so as to aid the detecting controller to construct the final decision. If the controller has failed, each
controller precomputes its recovery scheme and synchronizes the scheme with other controllers that will adopt the
switches. They have suggested a GA to prepare a near optimal recovery scheme for failure recovery. Based on simulation
and experimental results, they have shown that the FLCF can reduce failover time compared to fast controller failover
for multi‐domain (FCF‐M)98 method. Also, after controller failure and switch reassignment, the FLCF can attain better
controller load balancing. Also, the FLCF considers both switch‐controller delay and controller loading. Therefore, the
switches might not reassign only to some qualified controllers; hence, compared to non‐stop network controller99 and
FCF‐M methods, the controller load imbalance might not occur. However, the degree of load balancing of the proposed
method is low compared to survivor method.100 Furthermore, switch‐controller delay of the method is higher than as
FCF‐M, non‐stop network controller, and pre‐partitioning failover101 methods. Moreover, other metrics such as
execution time, utilization, and energy consumption of the proposed method have not been evaluated. In addition,
the suggested method has a weak local search because it uses the GA.

Furthermore, metro optical networks evolve over time with the surplus of new links to rescue network congestion
and bottlenecks to support exuding traffic requests. For minimizing the cost of the novel deployment, new resources
location should be optimally determined in the network. Network‐wide load imbalance and spectrum‐fragmentation
prevent the optimal allocation of network resources. Lately, with the convergence of advanced programmable and

14 of 26 AKBAR NEGHABI ET AL.
flexible optical devices with emanating SDN paradigms, it is possible to balance the load on the network with dynamic
and flexible defragmentation of the spectrum. For fiber‐load balancing across the network, Mahlab, Omiyi44 have
introduced an optimization strategy in the software‐defined elastic optical networks. Also, by using this strategy, the
cost of the resulting service disruption is minimized. For gauging load imbalance, they have suggested an entropy‐based
metric and applied to design a joint entropy/hits utility function with a GA for the optimization. Evaluation results have
illustrated that using the joint entropy/hits affects load balancing on the links in the network. Also, bandwidth is
abandoned from more weighty loaded fibers and services redistributed between less applied fibers. However, the GA
is very slow.102 Hence, it is one of the main disadvantages of the proposed method. Moreover, this method used a single
controller in the SDN, so it suffers from system bottleneck, low scalability, and low availability. In addition, a real
testbed has not been used to evaluate the proposed method, and it is the possibility of falling into some local optimal.
Moreover, throughput and packet loss rate metrics have not been investigated.
5.2.2 | Summary of the reviewed genetic‐based mechanisms

Based on SDN load balancing, four chosen GAs are reviewed, and their benefits and drawbacks are explained in the
former subsection. Table 7 illustrates a complete comparison of the most important pros and cons of each article. Some
of the advantages of these methods improve the load balancing degree and high efficiency. Most of the methods use a
single controller; hence, they suffer from system bottleneck, low scalability, and low availability. Furthermore, these
TABLE 7 Selected genetic‐based load balancing techniques and their properties

Paper Main idea Advantages Disadvantages Missing Metrics

Chou, Yang20 Using the genetic algorithm
to provide an OpenFlow‐
based load balancing
system

• Balancing the workload
of server farms

• High efficiency in
comparison to other
methods

• Using one metric for
evaluation

• High computation time
• Low scalability
• Low availability
• Bottleneck

• Utilization and
overhead
of the algorithm have
not been evaluated

Kang and
Kwon80

Performing selection,
crossover,
and mutation to specify
optimal load balancing if
controller load is not

balanced

• Improving the load
balancing degree

• Evaluation of the algorithm
is based only load
balancing
factor

• The performance of the
algorithm was not
compared
with other approaches

• Slow convergence rate
High complexity

• The delay, overhead,
and energy
consumption
of the algorithm have
not been investigated

Fang, Wang77 Suggesting a genetic
algorithm
to prepare a near optimal
recovery scheme for failure
recovery cause to attain
better controller load
balancing

• Reducing failover time
• Better controller load
balancing

• The controller load
imbalance might not
occur compared to
investigated methods

• The degree of load
balancing is low

• Weak local search
• Delay is high

• Utilization, energy
consumption, and
execution time metrics
have not been
evaluated

Mahlab, Omiyi44 Introducing an optimization
strategy in the software‐
defined elastic optical
networks and suggesting
an entropy‐based metric
for gauging load imbalance

• Bandwidth is abandoned
from weightier loaded
fibers

• A better degree of load
balancing

• Without evaluation
in a real testbed

• Slow convergence rate
• The possibility of falling
into some local optimal

• Low scalability
• Low availability
• Bottleneck

• Throughput and
packet
loss rate metrics have
not been considered.

AKBAR NEGHABI ET AL. 15 of 26
methods use GA and so may fall into local optima and convergence rate is slow. These are some of the disadvantages of
the selected mechanisms.
5.3 | Methods that have used a greedy algorithm

To detect a global optimum, a greedy algorithm makes the locally optimal selection at each step; hence, it pursues the
problem‐solving heuristic.103 To solve multi‐step and complex problems, it uses a mathematical process that searches
simple and easy‐to‐implement solutions.104 In detecting a solution, a greedy algorithm is not prosperous because all
the search spaces are not searched entirely.105 Moreover, to solve the problems, traditional approximate optimization
approaches such as greedy‐based algorithms make multiple suppositions. Sometimes, the validation of these supposi-
tions is hard in each problem.97
5.3.1 | Overview of the selected mechanism

Due to the rapid development of cloud computing technology, the number of users has increased dramatically as well as
modern cloud‐based applications are becoming more communication‐intensive and need more bandwidth; hence,
existing data centers are not improved for cloud‐based software services.106 Because of the changeability of traffic load,
real data centers may toil from high latency, lower throughput, and low QoS.107,108 To solve this problem, A program-
mable middlebox has been presented by Tu, Wang82 that can evenly distribute traffic. Clos network is a multi‐stage net-
work which is proposed by Clos.109 The middlebox that has been used in this method is based on a clos network. It
designs and uses SDN to improve bandwidth utilization while ensuring QoS. To discover the optimal path for the traffic
within the data center, the middlebox has been used. To exhibit the cost of transferring data from one server to another,
it uses a matrix called price matrix. To calculate the price matrix, a greedy algorithm is exploited. The information is
gathered from switches by the SDN controller of the middlebox. It achieves load balancing by using the traffic distribu-
tion and server loads information. When it is fulfilled in a data center, the middlebox can significantly minimize delay
and enhance bandwidth utilization. The middlebox can simply be utilized in the available data centers because it does
not rely on any specific the data center's feature. However, energy consumption of the approach and the overhead of the
middlebox have not been evaluated. Also, they have not investigated more QoS constraints.

Also, at present, research on energy saving in SDN is mainly focused on the static optimization of the network with
zero loads when new traffic arrives, changing the transmission path of the uncompleted traffic which arrived before the
optimization, possibly resulting in route oscillation and other deleterious effects. To avoid this, Hu, Luo36 have designed
a dynamical energy saving optimization scheme in which the paths of the uncompleted flows will not be changed when
new traffic arrives. To find the optimal solution for energy saving, the problem has modeled as a mixed integer linear
programming problem. As the high complexity of the problem prohibits the optimal solution, an improved heuristic
routing algorithm called improved constant weight greedy algorithm has been proposed to find a sub‐optimal solution.
Simulation results have shown that the energy saving capacity of improved constant weight greedy algorithm is close to
that of the optimal solution, offering desirable improvement in the energy efficiency of the network. Also, in the differ-
ent link densities, average bandwidth utilization is the same. However, the performance of the algorithm has been com-
pared only with the Dijkstra algorithm. Also, execution time and delay of the approach have not been measured.

Furthermore, the congestion of both clients and access points (APs) have increased because the use of wireless local
area network (WLAN) is growing. In the throng WLANs, load balancing problem becomes important. For solving load
balancing AP selection problem, Sang, Wu47 have suggested a client‐network collaborative architecture based on
802.11u and SDN. The SDN is used to collect and store the load information in order to manage the network centrally.
Also, to chaffer the metrics of AP selection among network based on 802.11u and client, they have designed Network
Resource Query Protocol. Using this architecture, they have proposed an innovative load balancing algorithm that
can consider client traffic, AP load, and link state. This algorithm is a greedy solution, and it can complete the calcula-
tion in polynomial time. Experimental results in a real SDN testbed have shown the proposed method that improves the
throughput. However, they have used a single controller in the proposed architecture; hence, it has a SPOF. Also,
response time and utilization of the method have not been investigated.

On the other hand, to deal with the problems of the single controller SDN networks, multiple controllers have been
used in the network to decrease the delay between switches and controllers and ameliorate network reliability. How-
ever, the mapping between controllers and SDN switches is statically configured in the currently distributed SDN

16 of 26 AKBAR NEGHABI ET AL.
schemes, which can lead to a load imbalance between controllers. For solving this problem, Chen, Li40 have suggested
an adaptive elastic distributed SDN architecture. A minimum number of active controllers that switches attached to
them are selected dynamically by architecture. Then, the mapping between controllers and switches according to the
network load are changed. Particularly, a switch can migrate from one controller domain to another so that the
mapping is compatible with the load of the network. The controller selection problem has been formalized by them
as an optimization problem and using greedy algorithms. The controller selection problem has been formalized by them
as an optimization problem, and they chose to use greedy algorithms. The results of the simulation have illustrated that
the number of active controllers is reduced and that the entire load of the network decreases. But, due to using multiple
controllers, this method has high complexity. Also, in the experimental evaluations, throughput and packet loss rate of
the method have not been considered.
5.3.2 | Summary of the reviewed greedy‐based mechanisms

Four chosen greedy algorithms for load balancing in the SND, as well as their disadvantages and advantages, were
investigated in the prior subsection. These properties are shown in Table 8.
5.4 | Techniques that have used particle swarm optimization algorithm

An algorithm that simulates the flock of birds or insects motion to find the best solution is called PSO. It is suggested by
Eberhart and Kennedy110 in 1995. In the algorithm, the insects or birds are called particles. They are initialized by veloc-
ities and random positions.111,112 Each particle is defined by a group of vectors including the position and velocity of the
particle and the personal best position. Solving optimization problems starts with preparing a set of random potential
solutions (or particles), and then each particle is given a velocity to move in the search space, which contains all possible
solutions.113 Each solution (or particle) adjusts its velocity using its best situation and the situation of the best solution
(or particle) of the whole population in each repetition. To balance the utilization in this technique, local search
methods integrate with global search methods. PSO is easy to fulfill. But, in the complex problems, it may encounter
with the parameter selection problem, slow convergence rate, and easily falling into a local optimum.97
TABLE 8 Selected greedy‐based load balancing techniques and their properties

Paper Main Idea Advantages Disadvantages Missing Metrics

Tu, Wang82 Programmable
middlebox based
on a clos network

• Improving bandwidth
utilization

• Reducing delay
• It can be deployed in
current data centers

• Have not been
evaluated more
QoS constraints

• Energy consumption
has not been evaluated

• Overhead of the
middlebox has not
been considered

Hu, Luo36 Improved constant
weight greedy
algorithm

• Improving the energy
efficiency

Average bandwidth
utilization of different
link densities is the same

• The performance of
the algorithm has
been compared only
with the Dijkstra
algorithm

The execution time of
the algorithm has not
been evaluated

• Delay of the approach
has not been investigated

Sang, Wu47 Client‐network
collaborative
architecture based
on 802.11u and SDN

• Have been evaluated
in a real SDN testbed

• Improving throughput

• Single point of failure • Response time and
utilization of the method
have not been measured.

Chen, li40 Adaptive elastic
distributed SDN
architecture

• Reducing the number of
active controllers

• Decreasing entire load
of the network

• High complexity • Throughput and packet loss
rate metrics have not been
considered.

AKBAR NEGHABI ET AL. 17 of 26
5.4.1 | Overview of the selected mechanism

Most of the energy saving approaches on existing IP network only accumulate traffic into a part of links. It results in
imbalance link utilization and seriously affects the QoS. Zhu, Wang85 have taken benefit of the centralized control
and global view of SDN in order to obtain the network load balancing and energy saving by aggregating and balancing
the traffic dynamically while guaranteeing QoS. To formulate a multi‐objective mixed integer programming model,
actual QoS constraints have been added to the basic maximum concurrent flow problem. A multi‐objective PSO
algorithm named MOPSO has also been proposed to solve this NP‐hard problem. MOPSO distributes optimal paths
for dynamic traffic demands and turns idol switches and links into sleeping mode. The experimental results on real
topologies and traffic requirements have shown the efficiency of the method on the goal of energy saving and load
balancing in comparison to other algorithms. However, since the proposed method utilizes centralized controller, it
suffers from low availability and scalability. Also, overhead, delay, and throughput of the algorithm have not been
considered.

On the other hand, in the Intelligent Transportation System, the Internet of Vehicles (IoV) is considered as a typical
application of the Internet of Things (IoT). High processing latency, less mobility support, and location awareness still
give rise to IoV suffering. He, Ren34 have united the fog computing and cloud computing with SDN to deal with the
aforementioned problems. Fog computing expands storing and computing to the edge of the network, which could
significantly decrease latency and also enable location awareness and mobility support. Withal, centralized control
and global view of the network have been provided by SDN. In order to handle the Software Defined Cloud/Fog
Networking architecture in the IoV, they have suggested a new SDN‐based adapted constrained optimization PSO
algorithm. To eschew falling into local optimum, they have proposed an algorithm which utilizes linear inertia weight
and the reverse of the mutation particles flight to improve the efficiency of constrained PSO algorithm. The evaluation
results have illustrated that the QoS has been improved, and the delay has been decreased in the Software Defined
Cloud/Fog Networking architecture by the suggested algorithm. However, utilization, degree of load balancing, and
energy consumption metrics have not been taken into account. Also, other QoS parameters such as capacity and
security have not been investigated.

Moreover, the cloud provides on‐demand storage, computing, and networking resources for cloud consumers. What
acts as an intermediary between cloud providers and cloud consumers is called a Cloud Resource Broker (CSB).
Application requests effectively are managed by CSB, and it allocates cloud resources efficiently. When CSB meets large
amounts of application requests, it must distribute these application requests among the available cloud resources. To
distribute cloud consumer application requests in a balanced and optimal manner, Govindarajan and Kumar84 have
presented a PSO‐based load balancing method. Also, they have investigated the SDN cloud infrastructure, which, based
on the network load, dynamically configures and provides network paths on‐demand. Evaluation of the method in a
real testbed has shown that proposed load balancing minimizes average response time. Also, it maximizes throughput,
resource utilization, and cloud consumer satisfaction value. But they use a single controller in the SDN cloud infrastruc-
ture that causes system bottleneck, low scalability, and low availability. Also, the proposed method execution time and
energy consumption have not been measured.
5.4.2 | Summary of the reviewed PSO‐based mechanisms

In the former sub‐section, three chosen PSO algorithms for load balancing in the SDN were analyzed; also, their pros
and cons were considered. Table 9 illustrates these properties. The analyzation of the selected algorithms shows that
high utilization is an advantage of the most reviewed methods. But, most of them may fall into local optima; also, in
the complex problems, their convergence rate is slow.
5.5 | Simulated annealing technique

It is a local search meta‐heuristic presented by Kirkpatrick.114 It works based on the way thermodynamic systems go
from one energy level to another. In the search space of this method, each point x represents a state, and function
f(x) represents an internal energy of a physical system in that state. The goal of this method is a transferring system from
casual initial state to the least energy state. Consequently, at each stage, some neighboring states x′ of the present state x
is considered, and the basis of the probabilities is determined whether system goes to state x′ or remains in the state x.

TABLE 9 Selected PSO‐based load balancing techniques and their properties

Paper Main idea Advantages Disadvantages Missing Metrics

Zhu, Wang85 Obtaining the network load
alancing and energy saving
by aggregating and balancing
the traffic dynamically with
using SDN properties

• Energy saving
• Medium computation time
• High utilization

• Low scalability
• Low availability

• Overhead, delay, and
throughput of the
algorithm have not
been considered

He, Ren34 Integrated the fog computing,
cloud computing with SDN.

• Decreasing the delay
• Improving the QoS
• Eschewing to fall into
local optimum

• Security and capacity
have not evaluated

• Energy consumption
has not been considered

• Utilization metric has
not been evaluated

• Load balancing degree
has not been evaluated

Govindarajan
and Kumar84

Distributing cloud consumer
application requests in a
balanced and optimal
manner with using PSO
based load balancing
method in SDN cloud
infrastructure

• Have evaluated in a real
SDN testbed

• Minimizing average
response time

• Maximizing throughput
• Maximizing utilization
• Maximizing cloud
consumer satisfaction
value

• Low scalability
Low availability

• Bottleneck

• Execution time and
energy consumption have
not been measured

18 of 26 AKBAR NEGHABI ET AL.
Eventually, until the system attains a good state for the application, these probabilities propel the system to states of
lower energy.97 SA is free to fall into local optimal, and its implementation is easy. But, its initial temperature and
number of iteration affect on solution quality.97
5.5.1 | Overview of the selected mechanism

A conventional SDN implementation uses a single controller. This preliminary centralized method has multiple limita-
tions relevant to scalability and performance in a large‐scale network. To handle these issues, using multiple controllers
that work collaboratively to manage a network has been suggested. Nevertheless, this approach causes a problem,
which is called the Dynamic Controller Provisioning Problem. This problem is defined as determining the controller's
number and their locations with modifying network situations, in order to minimize communication overhead and flow
setup time. For deploying multiple controllers within a large‐scale network, Bari, Roy41 have presented a framework.
This framework, according to network dynamics, dynamically regulates the number of active controllers and delegates
each controller with a subset of OpenFlow switches while warranting minimal communication overhead and flow setup
time. Also, as an Integer Linear Program, they have formulated the optimal controller provisioning problem and have
suggested two heuristic approaches, based on SA and greedy algorithms, to solve it. The method based on SA uses two
algorithms that the aim of algorithm 1 is to produce a possible switch to controller assignment from the current unfea-
sible assignment. The output of this algorithm is presented as an input to algorithm 2 which runs the SA algorithm to
ameliorate the switch to‐controller assignment. Their method solves Dynamic Controller Provisioning Problem by
considering changing traffic load. Based on evaluation results, flow setup time is minimized while causing very low
communication overhead. But, they have not considered convergence time of the method. Also, they have not tested
the method in a real testbed. Moreover, response time, execution time, and utilization metrics have not been evaluated.

On the other hand, to raise network operations, for example, guaranteeing performance and providing security,
applications of the network need traffic to go through multiple kinds of middleboxes. Sequenced‐middlebox policy
routing over regular layer 2/3 flow routing is challenging network administrators to manage it. Moreover, different
kinds of middlebox resources concurrently procured by innumerable applications entangle network‐resource manage-
ment. Also, security challenges and the malfunction of the whole network can be created by middlebox failures. In
the context of sequenced‐middlebox policy routing, to get a network load‐balancing objective, a mixed integer linear
programming problem is formulated by Li, Wu.86 By balancing the whole network, simplifying candidate path

AKBAR NEGHABI ET AL. 19 of 26
selections, and using the SA algorithm, network resources are managed by their method effectively. Based on evaluation
results, their method increases throughput compared with shortest source‐destination path method. Also, it has lower
end‐to‐end delay and loss rate. However, they use a single controller in the SDN; hence low scalability, low availability,
and system bottleneck are the disadvantages of the proposed method. Also, response time, energy consumption, and
load balancing degree of the suggested method have not been measured.
5.5.2 | Summary of the reviewed SA‐based mechanisms

Two selected SA algorithms for load balancing in the SND, as well as their pros and cons, were investigated in the prior
subsection. These properties have been shown in Table 10. Both two method uses a single controller in the SDN; hence,
these methods suffer from a SPOF. Furthermore, energy consumption of these methods has not been measured.
6 | RESULTS AND COMPARISON

In the prior sections, some load balancing approaches based on nature‐inspired meta‐heuristic algorithms in the SDN
have been explained. Reviewing the articles showed that some of the metrics have been used to compare the reviewed
papers together. Delay, energy consumption, execution time, load balancing degree, overhead, response time, the rate of
packet loss, throughput, and utilization are metrics that have been described in subsection 2.3.

Based on the reviewed articles and acquired results in the previous section, most of the nature‐inspired meta‐
heuristic load balancing algorithms have used delay, load balancing degree, and throughput metrics to evaluate its
proposed method but none of the papers are used to the whole metrics and most of the papers do not consider rate
of packet loss and energy consumption metrics. According to the reviewed articles, these methods can increase
throughput, load balancing degree, and utilization metrics and reduce delay metric. Most of them may be falling into
local optimal and suffer from slow convergence rate. Also, these methods often use single controller hence suffer from
system bottleneck, low scalability, and low availability. An overview of the argued load balancing nature‐inspired meta‐
heuristic methods and their essential properties are shown in Table 11.

Figure 3 illustrates researchers that were epitomized on qualitative metrics so as the delay is 21%, the degree of load
balancing is 18%, throughput is 13%, utilization is 11%, response time is 11%, execution time is 8%, overhead is 8%, rate
of packet loss is 5%, and energy consumption is 5%. This figure shows that the most crucial qualitative metrics that are
utilized by researchers are delay, load balancing degree, and throughput metrics and rate of packet loss and energy
consumption less used.
7 | OPEN ISSUE

This research illustrates that there are some essential issues that have not been comprehensively and extensively
perused in the load balancing of SDN. Accordingly, in this section, some open research problems exist.
TABLE 10 Selected SA‐based load balancing techniques and their properties

Paper Main Idea Advantages Disadvantages Missing Metrics

Bari, Roy41 Dynamically regulates the
number of active controllers
and delegates each controller
with a subset of OpenFlow
switches

• Minimizing flow
setup time

• Low communication
overhead

• Convergence time is
not specified

Without evaluating a
real testbed

• Response time, execution time,
and utilization of the method
have not been considered

Li, Wu86 Getting a network load balancing
in the context of sequenced‐
middlebox policy routing by
balancing the whole network,
simplifying candidate path
selections, and using the
simulated annealing algorithm

• Increasing throughput
• Lower delay
• Lower loss rate

• Low scalability
• Low availability
• Bottleneck

• Energy consumption has not
been considered

• Response time metric has not
been evaluated

• Load balancing degree has not
been evaluated

T
A
B
L
E
11

L
oa
d
ba
la
n
ci
n
g
m
et
ri
cs

in
re
vi
ew

ed
n
at
u
re
‐
in
sp
ir
ed

m
et
a‐
h
eu

ri
st
ic

al
go
ri
th
m
s

A
lg
or
it
h
m

R
ef
er
en

ce
D
el
ay

E
n
er
gy

C
on

su
m
p
ti
on

E
xe

cu
ti
on

ti
m
e

L
oa

d
B
al
an

ci
n
g

D
eg

re
e

O
ve

rh
ea

d
R
es
p
on

se
ti
m
e

T
h
e
R
at
e
of

P
ac

k
et

lo
ss

T
h
ro
u
gh

p
u
t

U
ti
li
za

ti
on

A
C
O

W
an

g,
Z
h
an

g7
5

+
‐

‐
+

+
‐

+
‐

‐

L
in

an
d
Z
h
an

g1
6

‐
‐

‐
‐

‐
+

‐
+

‐

Sa
th
ya
n
ar
ay
an

a
an

d
M
oh

74
+

‐
‐

‐
‐

+
+

+
‐

K
ou

sh
ik
a
an

d
Se
lv
i4
2

+
‐

‐
+

‐
+

‐
‐

‐

G
A

C
h
ou

,
Y
an

g2
0

‐
‐

‐
+

‐
‐

‐
‐

‐

K
an

g
an

d
kw

on
80

‐
‐

‐
+

‐
‐

‐
‐

‐

F
an

g,
W
an

g7
7

+
‐

‐
+

‐
‐

‐
‐

‐

M
ah

la
b,

O
m
iy
i4
4

‐
‐

‐
+

‐
‐

‐
‐

‐

G
re
ed
y

T
u,

W
an

g8
2

+
‐

‐
‐

‐
‐

‐
‐

+
H
u
,
L
uo

36
+

+
‐

‐
‐

‐
‐

‐
+

Sa
n
g,

W
u
47

‐
‐

‐
‐

+
‐

‐
+

‐

C
h
en

,
li4

0
‐

‐
+

+
‐

‐
‐

‐
‐

P
SO

Z
h
u,

W
an

g8
5

‐
+

+
‐

‐
‐

‐
‐

+
H
e,

R
en

34
+

‐
‐

‐
‐

‐
‐

‐
‐

G
ov
in
da

ra
ja
n

an
d
K
u
m
ar

84
‐

‐
‐

‐
‐

+
‐

+
+

SA
B
ar
i,
R
oy

41
‐

‐
+

‐
+

‐
‐

‐
‐

L
i,
W
u
86

+
‐

‐
‐

‐
‐

‐
+

‐

20 of 26 AKBAR NEGHABI ET AL.

FIGURE 3 Percentage of load balancing metrics in reviewed nature‐inspired meta‐heuristic algorithms

AKBAR NEGHABI ET AL. 21 of 26
In some of the reviewed approaches, researchers have not considered some factors such as packet priorities and
traffic patterns. Therefore, for future research, one of the issues is applying these factors to the load balancing decisions.

Also, in most of the reviewed methods, energy consumption of the method has not been evaluated. Because the
energy saving is very important in the large‐scale network, to make load balancing and reduce energy consumption
and carbon emission using with a new meta‐heuristic nature‐inspired method is a very attractive line for future studies.

Furthermore, none of the reviewed papers cooperate with two meta‐heuristic algorithms for solving load balancing
problem in the SDN. Since each meta‐heuristic algorithm has defects, it is very interesting in the future to combine
some of them and create a hybrid algorithm that can use the advantages of both algorithms and reduce their
disadvantages.

Moreover, in other analogous networks such as mobile cloud computing,115 peer‐to‐peer networks,116 machine‐to‐
machine networks,117 and mobile ad hoc networks118 can use an SDN‐based solution to cater load balancing. In the
future, it is another research direction.

On the other hand, for future works, applying novel optimization algorithms can be very intriguing. Optimization
approaches such as bat optimization algorithm,119 variable flight mosquito flying optimization algorithm,120 sun and
leaf optimization algorithm,121 gray wolf optimization algorithm,122 whale optimization algorithm,123 lion optimization
algorithm,124 and etc can be used by researchers.

Also, most of the reviewed articles suffer from premature convergence and trapping into local optimal. Researchers
can apply some of the meta‐heuristic algorithms to avoid the occurrence of these two problems. Some of these
algorithms are adaptive genetic algorithm,125 genetic algorithm self‐organizing map,126 quantum‐behaved PSO,127 and
elite mating pool.128

Furthermore, using SDN, we can facilitate network configuration and conserve resources. This SDN feature can be
unified with the IoT to improve network performance. Generally, IoT devices are low powered devices and have less
computing power. In data transmission across the network, energy saving plays an important role.129 Hence, in the
IoT, presenting a load balancing method that considers energy consumption criteria is interesting in the future.

Finally, in discussed articles, the researchers have mainly used simulator‐based tools to build the SDN network as
well as to simulate multiple controllers for evaluations. Therefore, it is very interesting in the future to implement
the mentioned approaches in an actual large‐scale network with more real‐world traffic as well as appraise the
performance.
8 | CONCLUSION AND LIMITATION

A systematic review of nature‐inspired meta‐heuristic algorithms for load balancing in the SDN has been provided in
this paper. SDN structure and load balancing problem are investigated, and some of the metrics that researchers have
used to evaluate their method are described. We defined research methodology and selected 17 articles among the basic
23 principal studies from our search query. The most articles were published in 2016, and the least papers were
published in 2013 according to the SLR. The most published papers belong to IEEE with 61% of articles in journals
and conferences. However, between selected publishers, ACM with 4% have the least published articles. Most of the
papers have been published in conferences. We classified 17 selected articles in five principle categories including

22 of 26 AKBAR NEGHABI ET AL.
ACO, GA, greedy, PSO, and SA. We also specified the main idea, pros, and cons of the load balancing methods in each
category. Most of the reviewed techniques suffer from trapping into local optima and premature convergence.
According to obtained results, ACO‐based articles can improve load balancing degree, delay, overhead, throughput,
utilization, and response time, whereas GA‐based papers only improve load balancing degree. Greedy, PSO, and
SA‐based approaches have improved fewer criteria in comparison with ACO. We investigated load balancing metrics
in reviewed articles and illustrated them in Table 11. According to obtained results, the most important qualitative
metrics that are utilized by researchers are delay, degree of load balancing, and throughput metrics. Also, In the
reviewed articles, rate of packet loss and energy consumption metrics are considered less. In this paper, the challenges
that can be considered by researchers in future are discussed. Exclusively, the responses to the research questions sum-
marized load balancing's main goal, existing challenges, mechanisms, and open issues in SDN. We aspire that the
results of this research will aid researchers to propose more effective load balancing methods in SDN.

This survey is presented to steer a comprehensive and systematic review of nature‐inspired load balancing
techniques in SDN. But, there may be some constraints. Hence, some constraints must be considered in future studies
as follows:

• Research scope: several sources such as patents, thesis, academic publications, technical reports, editorial notes, and
web pages have covered the load balancing application in SDN. But, to attain the best qualification, we heeded only
academic conferences and journals. Also, we have relinquished papers not written in the English language.

• Study and publication: based on prior review experiment, eight online databases are selected. Whereas, the statistics
detect that the most reliable and relevant articles are presented by these eight online databases. However, selection
of all related articles could not be guaranteed. There is an eventuality that some appropriate articles were overlooked
throughout the processes argued in Section 4.

• Categorization: We classified articles in five categories including ACO, GA, greedy, PSO, and SA because these
nature‐inspired meta‐heuristic algorithms have suggested to untangle load balancing problem in the SDN. If the
novel nature‐inspired meta‐heuristic algorithm is suggested to untangle load balancing problem in the SDN similar
whale optimization algorithm, their presented category can be modified and completed.

• Study queries: We defined three questions to develop this article; however, there is the possibility of adding other
questions.
ORCID

Nima Jafari Navimipour https://orcid.org/0000-0002-5514-5536
Mehdi Hosseinzadeh https://orcid.org/0000-0003-1088-4551
REFERENCES

1. Ortiz S. Software‐defined networking: on the verge of a breakthrough? IEEE Comp. 2013;46(7):10‐12.

2. Abdelaziz A, Fong AT, Gani A, et al. Distributed controller clustering in software defined networks. PloS Oone. 2017;12(4):e0174715.

3. Rego A, Canovas A, Jiménez JM, Lloret J. An intelligent system for video surveillance in IoT environments. IEEE Access.
2018;6:31580‐31598.

4. Dao N‐N, Kim J, Park M, Cho S. Adaptive suspicious prevention for defending DoS attacks in SDN‐based convergent networks. PloS
Oone. 2016;11(8):e0160375.

5. Rego A, Garcia L, Sendra S. Lloret J. Future Generation Computer Systems: Software Defined Network‐based control system for an
efficient traffic management for emergency situations in smart cities; 2018.

6. Askar SK. Adaptive load balancing scheme for data center networks using software defined network. Sci J Univ Zakho.
2016;4(2):275‐286.

7. Xu H, Li X‐Y, Huang L, Deng H, Huang H, Wang H. Incremental deployment and throughput maximization routing for a hybrid SDN.
IEEE/ACM Trans Network(TON). 2017;25(3):1861‐1875.

8. OpenFlow Switch Specification March 2015 [Available from: https://www.opennetworking.org

9. Chen H, Li L, Ren J, et al. A scheme to optimize flow routing and polling switch selection of software defined networks. PloS Oone.
2015;10(12):e0145437.

https://orcid.org/0000-0002-5514-5536
https://orcid.org/0000-0003-1088-4551
https://www.opennetworking.org

AKBAR NEGHABI ET AL. 23 of 26
10. Li W, Meng W, Kwok LF. A survey on OpenFlow‐based software defined networks: security challenges and countermeasures. J Network
Comp Appl. 2016;68:126‐139.

11. Al‐Najjar A, Layeghy S, Portmann M, editors. Pushing SDN to the end‐host, network load balancing using OpenFlow. 2016 IEEE
International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops); 2016 14‐18 March 2016.

12. Pakzad F, Portmann M, Tan WL, Indulska J. Efficient topology discovery in openflow‐based software defined networks. Comp Comm.
2016;77:52‐61.

13. Gude N, Koponen T, Pettit J, et al. NOX: towards an operating system for networks. ACM SIGCOMM Comp Comm Rev.
2008;38(3):105‐110.

14. Shenker S, Casado M, Koponen T, McKeown N. The future of networking, and the past of protocols. Open Network Summit. 2011;20.

15. Fundation ON. Software‐defined networking: the new norm for networks. ONF White Paper. April 2012;2:2.6‐.1.

16. Lin W, Zhang L. The load balancing research of SDN based on ant colony algorithm with job classification. 2016.

17. Lin T‐L, Kuo C‐H, Chang H‐Y, Chang W‐K, Lin Y‐Y, editors. A parameterized wildcard method based on SDN for server load balancing.
2016 International Conference on Networking and Network Applications (NaNA) ; 2016: IEEE.

18. Long H, Shen Y, Guo M, Tang F, editors. LABERIO: dynamic load‐balanced routing in OpenFlow‐enabled networks. Advanced
Information Networking and Applications (AINA), 27th International Conference on 2013 IEEE; 2013: IEEE.

19. Karakus M, Durresi A. A survey: control plane scalability issues and approaches in software‐defined networking (SDN). CompNetworks.
2016.

20. Chou L‐D, Yang Y‐T, Hong Y‐M, Hu J‐K, Jean B. A genetic‐based load balancing algorithm in openflow network. In: Advanced
Technologies, Embedded and Multimedia for Human‐centric Computing. Springer; 2014:411‐417.

21. McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comp Comm
Rev. 2008;38(2):69‐74.

22. Hu F, Hao Q, Bao K. A survey on software‐defined network and openflow: from concept to implementation. IEEE Comm Surveys Tutor.
2014;16(4):2181‐2206.

23. Vaughan‐Nichols SJ. OpenFlow: the next generation of the network? Comput. 2011;44(8):13‐15.

24. OpenFlow Switch Specification,1.5.1 [Available from: https://www.opennetworking.org/images/stories/downloads/sdn‐resources/onf‐
specifications/openflow/openflow‐switch‐v1.5.1.pdf.

25. Foundation ON. SDN architecture June, 2014 [Available from: https://www.opennetworking.org/images/stories/downloads/sdn‐
resources/technical‐reports/TR_SDN_ARCH_1.0_06062014.pdf.

26. Zhou W, Yang S, Fang J, Niu X, Song H, editors. Vmctune: a load balancing scheme for virtual machine cluster using dynamic resource
allocation. 9th International Conference on Grid and Cooperative Computing (GCC), 2010; 2010: IEEE.

27. Chin ML, Tan CE, Bandan MI, editors. Efficient load balancing for bursty demand in web based application services via domain name
services. 8th Asia‐Pacific Symposium onInformation and Telecommunication Technologies (APSITT), 2010; 2010: IEEE.

28. Salman MA, Bertelle C, Sanlaville E, editors. The behavior of load balancing strategies with regard to the network structure in
distributed computing systems. Tenth International Conference on Signal‐Image Technology and Internet‐Based Systems (SITIS),
2014; 2014: IEEE.

29. Chen S‐L, Chen Y‐Y, Kuo S‐H. CLB: a novel load balancing architecture and algorithm for cloud services. Comp Electric Eng.
2017;58:154‐160.

30. Milani AS, Navimipour NJ. Load balancing mechanisms and techniques in the cloud environments: systematic literature review and
future trends. J Network Comp Appl. 2016;71:86‐98.

31. Alakeel AM. A guide to dynamic load balancing in distributed computer systems. Int J Comp Sci Info Secur. 2010;10(6):153‐160.

32. Celenlioglu MR, Mantar HA, editors. An SDN based intra‐domain routing and resource management model. IEEE International
Conference on Cloud Engineering (IC2E), 2015; 2015: IEEE.

33. Tuncer D, Charalambides M, Clayman S, Pavlou G. Adaptive resource management and control in software defined networks. IEEE
Trans Network Service Mgmt. 2015;12(1):18‐33.

34. He X, Ren Z, Shi C, Fang J. A novel load balancing strategy of software‐defined cloud/fog networking in the Internet of Vehicles. Chin
Comm. 2016;13(Supplement 2):140‐149.

35. Han T, Ansari N. A traffic load balancing framework for software‐defined radio access networks powered by hybrid energy sources.
IEEE/ACM Trans Network(TON). 2016;24(2):1038‐1051.

36. Hu Y, Luo T, Beaulieu NC, Wang W. An initial load‐based green software defined network. Appl Sci. 2017;7(5):459.

37. Carlinet Y, Perrot N, editors. Energy‐efficient load balancing in a SDN‐based Data‐Center network. 17th International Telecommunica-
tions Network Strategy and Planning Symposium (Networks), 2016; 2016: IEEE.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf

24 of 26 AKBAR NEGHABI ET AL.
38. Lin Y‐D, Wang CC, Lu Y‐J, Lai Y‐C, Yang H‐C. Two‐tier dynamic load balancing in SDN‐enabled Wi‐Fi networks. Wireless Networks.
2017;1‐13.

39. Ca W, Hu B, Chen S, Li D, Liu B. A switch migration‐based decision‐making scheme for balancing load in SDN. IEEE Access.
2017;5:4537‐4544.

40. Chen Y, Li Q, Yang Y, Li Q, Jiang Y, Xiao X, editors. Towards adaptive elastic distributed software defined networking. IEEE 34th
International PerformanceComputing and Communications Conference (IPCCC), 2015; 2015: IEEE.

41. Bari MF, Roy AR, Chowdhury SR, Zhang Q, Zhani MF, Ahmed R, et al., editors. Dynamic controller provisioning in software defined
networks. 9th International Conference on Network and Service Management (CNSM), 2013; 2013: IEEE.

42. Koushika A, Selvi ST, editors. Load balancing using software defined networking in cloud environment. International Conference on
Recent Trends in Information Technology (ICRTIT), 2014; 2014: IEEE.

43. Rangisetti AK, Tamma BR. QoS aware load balance in software defined LTE networks. Comp Comm. 2017;97:52‐71.

44. Mahlab U, Omiyi PE, Hundert H, Wolbrum Y, Elimelech O, Aharon I, et al., editors. Entropy‐based load‐balancing for software‐defined
elastic optical networks. 19th International Conference on Transparent Optical Networks (ICTON), 2017; 2017: IEEE.

45. Hai NT, Kim D‐S, editors. Efficient load balancing for multi‐controller in SDN‐based mission‐critical networks. IEEE 14th International
Conference on Industrial Informatics (INDIN), 2016; 2016: IEEE.

46. Guo Z, Su M, Xu Y, et al. Improving the performance of load balancing in software‐defined networks through load variance‐based
synchronization. Comp Networks. 2014;68:95‐109.

47. Sang X, Wu Q, Li H, editors. Client‐network collaborative load balancing mechanism for WLAN based on SDN and 802.11 u. 13th
International Wireless Communications and Mobile Computing Conference (IWCMC), 2017; 2017: IEEE.

48. Kang B, Choo H. An SDN‐enhanced load‐balancing technique in the cloud system. J Supercomp. 2016;1‐24.

49. Zhong H, Fang Y, Cui J. LBBSRT: an efficient SDN load balancing scheme based on server response time. Future Gen Comp Syst.
2017;68:183‐190.

50. Fizi FS, Askar S, editors. A novel load balancing algorithm for software defined network based datacenters. International Conference on
Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom); 2016: IEEE.

51. Daraghmi EY, Yuan S‐M. A small world based overlay network for improving dynamic load‐balancing. J Syst Softw. 2015;107:187‐203.

52. Subramanian R, Manoranjitham T. Dynamic scheduling for traffic management and load balancing using SDN.

53. Deepika DW, Kumar N. Performance analysis of load balancing algorithms in distributed system. Adv Electron Electric Eng.
2014;4(1):59‐66.

54. Adami D, Giordano S, Pagano M, Santinelli N, editors. Class‐based traffic recovery with load balancing in software‐defined networks.
Globecom Workshops (GC Wkshps), 2014; 2014: IEEE.

55. Sharma S, Singh S, Sharma M. Performance analysis of load balancing algorithms. World Acad Sci, Eng Technol. 2008;38(3):269‐272.

56. Li L, Xu Q, editors. Load balancing researches in SDN: a survey. 7th IEEE International Conference on Electronics Information and
Emergency Communication (ICEIEC), 2017; 2017: IEEE.

57. Benzekki K, El Fergougui A, Elbelrhiti EA. Software‐defined networking (SDN): a survey. Sec Comm Networks. 2016;9(18):5803‐5833.

58. Raghul S, Subashri T, Vimal K, editors. Literature survey on traffic‐based server load balancing using SDN and open flow. Fourth
International Conference on Signal Processing, Communication and Networking (ICSCN), 2017; 2017: IEEE.

59. Kumari P, Thakur D. Load Balancing in Software Defined Network. 2017, 5, 12, 227, 232.

60. Neghabi AA, Navimipour NJ, Hosseinzadeh M, Rezaee A. Load balancing mechanisms in the software defined networks: a systematic
and comprehensive review of the literature. IEEE Access. 2018;6:14159‐14178.

61. Kitchenham B. Procedures for Performing Systematic Reviews. Keele, UK, Keele University. 2004;33(2004):1‐26.

62. Charband Y, Navimipour NJ. Online knowledge sharing mechanisms: a systematic review of the state of the art literature and
recommendations for future research. Info Syst Front. 2016;18(6):1131‐1151.

63. Google. Google scholar [Available from: https://scholar.google.com/.

64. publications E. Sciencedirect [Available from: https://www.sciencedirect.com/.

65. publications I. IEEE Xplore [Available from: https://ieeexplore.ieee.org/Xplore/home.jsp.

66. publications S. SAGE J.

67. publications A. Association for Computing Machinery [Available from: https://www.acm.org/.

68. publications S. Springer link [Available from: https://link.springer.com/.

69. publications W. Wiley online library [Available from: https://onlinelibrary.wiley.com/.

70. publications E. EmeraldInsight [Available from: https://www.emeraldinsight.com/.

71. publications I. Inderscience publishers [Available from: www.inderscience.com.

https://scholar.google.com
https://www.sciencedirect.com
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.acm.org
https://link.springer.com
https://onlinelibrary.wiley.com
https://www.emeraldinsight.com
http://www.inderscience.com

AKBAR NEGHABI ET AL. 25 of 26
72. Reim W, Parida V, Örtqvist D. Product‐service systems (PSS) business models and tactics—a systematic literature review. J Clean Prod.
2015;97:61‐75.

73. Kitchenham B, Brereton OP, Budgen D, Turner M, Bailey J, Linkman S. Systematic literature reviews in software engineering—a
systematic literature review. Info Softw Technol. 2009;51(1):7‐15.

74. Sathyanarayana S, Moh M, editors. Joint route‐server load balancing in software defined networks using ant colony optimization.
International Conference on High Performance Computing & Simulation (HPCS), 2016; 2016: IEEE.

75. Wang C, Zhang G, Xu H, Chen H, editors. An ACO‐based link load‐balancing algorithm in SDN. 7th International Conference on Cloud
Computing and Big Data (CCBD), 2016; 2016: IEEE.

76. Tsygankov M, Chen C, editors. Network aware VM load balancing in cloud data centers using SDN. IEEE International Symposium on
Local and Metropolitan Area Networks (LANMAN), 2017; 2017: IEEE.

77. Fang K‐C, Wang K, Wang J‐H, editors. A fast and load‐aware controller failover mechanism for software‐defined networks.
Communication Systems, Networks and Digital Signal Processing (CSNDSP), 2016 10th International Symposium on; 2016: IEEE.

78. Gu S, Luo L, Zhao Z, Li X, editors. The multi‐objective routing optimization algorithm for hybrid SDN. Conference of Spacecraft TT&C
Technology in China; 2016: Springer.

79. Li L, Shi J, editors. A highly reliable and load balance supporting domain division algorithm for software defined networks. Proceedings
of the International Conference on High Performance Compilation, Computing and Communications; 2017: ACM.

80. Kang S‐B, Kwon G‐I. Load balancing of software‐defined network controller using genetic algorithm. 2016;9:881‐888.

81. Han Y, Seo S‐S, Li J, Hyun J, Yoo J‐H, Hong JW‐K, editors. Software defined networking‐based traffic engineering for data center
networks. Network Operations and Management Symposium (APNOMS), 2014 16th Asia‐Pacific; 2014: IEEE.

82. Tu R, Wang X, Zhao J, Yang Y, Shi L, Wolf T, editors. Design of a load‐balancing middlebox based on SDN for data centers. IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2015; 2015: IEEE.

83. Boero L, Cello M, Garibotto C, Marchese M, Mongelli M. BeaQoS: load balancing and deadline management of queues in an OpenFlow
SDN switch. Comp Networks. 2016;106:161‐170.

84. Govindarajan K, Kumar VS, Editors. An intelligent load balancer for software defined networking (SDN) based cloud infrastructure.
2017 second international conference on electrical, Computer and Communication Technologies (ICECCT); 2017 22‐24 Feb. 2017.

85. Zhu R, Wang H, Gao Y, Yi S, Zhu F, editors. Energy saving and load balancing for SDN based on multi‐objective particle swarm
optimization. International Conference on Algorithms and Architectures for Parallel Processing; 2015: Springer.

86. Li X, Wu H, Gruenbacher D, Scoglio C, Anjali T. Efficient routing for middlebox policy enforcement in software‐defined networking.
Comp Networks. 2016;110:243‐252.

87. Dorigo M. Optimization, learning and natural algorithms (Ph. D. Thesis). Dipartimento diElettronica, Politecnico di Milano, Italy. 1992.

88. Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst, Man, Cybernet, Prt B
(Cybernetics). 1996;26(1):29‐41.

89. Dorigo M, Gambardella LM. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol
Comp. 1997;1(1):53‐66.

90. Wang Z, Xing H, Li T, Yang Y, Qu R, Pan Y. A modified ant colony optimization algorithm for network coding resource minimization.
IEEE Trans Evol Comp. 2016;20(3):325‐342.

91. Narasimha KV, Kivelevitch E, Sharma B, Kumar M. An ant colony optimization technique for solving min‐max multi‐depot vehicle
routing problem. Swarm Evol Comp. 2013;13:63‐73.

92. Salama KM, Freitas AA. Classification with cluster‐based Bayesian multi‐nets using ant colony optimisation. Swarm Evol Comp.
2014;18:54‐70.

93. Goldberg DE, Holland JH. Genetic algorithms and machine learning. Machine Learning. 1988;3(2):95‐99.

94. Holland JH. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. MIT press; 1992.

95. Gen M, Cheng R. Genetic Algorithms and Engineering Optimization. John Wiley & Sons; 2000.

96. Sastry K, Goldberg DE, Kendall G. Genetic algorithms. Search Methodologies: Springer; 2014. p. 93‐117, Genetic Algorithms.

97. Beheshti ZS, Siti Mariyam HJ. A review of population‐based meta‐heuristic algorithm. Int J Adv Soft Comp Appl. 2013;5.

98. Chan Y‐C, Wang K, Hsu Y‐H, editors. Fast controller failover for multi‐domain software‐defined networks. European Conference on
Networks and Communications (EuCNC), 2015; 2015: IEEE.

99. Li D, Ruan L, Xiao L, Zhu M, Duan W, Zhou Y, et al., editors. High availability for non‐stop network controller. IEEE 15th International
Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2014; 2014: IEEE.

100. Müller LF, Oliveira RR, Luizelli MC, Gaspary LP, Barcellos MP, editors. Survivor: an enhanced controller placement strategy for
improving SDN survivability. Global Communications Conference (GLOBECOM), 2014 IEEE; 2014: IEEE.

26 of 26 AKBAR NEGHABI ET AL.
101. Obadia M, Bouet M, Leguay J, Phemius K, Iannone L, editors. Failover mechanisms for distributed SDN controllers. International
Conference and Workshop on the Network of the Future (NOF), 2014; 2014: IEEE.

102. Abramson D, Abela J. A parallel genetic algorithm for solving the school timetabling problem. 1991.

103. DeVore RA, Temlyakov VN. Some remarks on greedy algorithms. Adv Computat Math. 1996;5(1):173‐187.

104. Bang‐Jensen J, Gutin G, Yeo A. When the greedy algorithm fails. Discrete Optimiz. 2004;1(2):121‐127.

105. Ivancevic VG, Ivancevic TT. Computational Mind: A Complex Dynamics Perspective. Springer; 2007.

106. Hsieh W‐K, Hsieh W‐H, Chen J‐L, Chou F‐Y, Lee Y‐S, editors. Load balancing virtual machines deployment mechanism in SDN open
cloud platform. 17th International Conference on Advanced Communication Technology (ICACT), 2015; 2015: IEEE.

107. Greenberg A, Hamilton J, Maltz DA, Patel P. The cost of a cloud: research problems in data center networks. ACM SIGCOMM Comp
Comm Rev. 2008;39(1):68‐73.

108. Beloglazov A, Buyya R, editors. Energy efficient resource management in virtualized cloud data centers. Proceedings of the 2010 10th
IEEE/ACM international conference on cluster, cloud and grid computing; 2010: IEEE Computer Society.

109. Clos C. A study of non‐blocking switching networks. Bell Labs Tech J. 1953;32(2):406‐424.

110. Eberhart R, Kennedy J, editors. A new optimizer using particle swarm theory. Micro Machine and Human Science, 1995 MHS'95,
Proceedings of the Sixth International Symposium on; 1995: IEEE.

111. Kennedy J. Particle swarm optimization. In: Encyclopedia of Machine Learning. Springer; 2011:760‐766.

112. Shi Y, editor. Particle swarm optimization: developments, applications and resources. Proceedings of the 2001 Congress on Evolutionary
computation, 2001; 2001: IEEE.

113. Sheikholeslami F, Navimipour NJ. Service allocation in the cloud environments using multi‐objective particle swarm optimization
algorithm based on crowding distance. Swarm Evol Comp. 2017;35:53‐64.

114. Kirkpatrick S. Optimization by simulated annealing: quantitative studies. J Statistic Phys. 1984;34(5‐6):975‐986.

115. Fernando N, Loke SW, Rahayu W. Mobile cloud computing: a survey. Future Gen Comp Syst. 2013;29(1):84‐106.

116. Navimipour NJ, Milani FS. A comprehensive study of the resource discovery techniques in peer‐to‐peer networks. Peer‐To‐Peer Network
Appl. 2015;8(3):474‐492.

117. Liu L, Zhang T, Zhang J. DAG based multipath routing algorithm for load balancing in machine‐to‐machine networks. Int J Distrib
Sensor Networks. 2013;10(1):457962.

118. Geng R, Ning Z, Ye N. A load‐balancing and coding‐aware multicast protocol for mobile ad hoc networks. Int J Comm Syst.
2016;29(17):2457‐2470.

119. Yang X‐S, Hossein GA. Bat algorithm: a novel approach for global engineering optimization. Eng Comp. 2012;29(5):464‐483.

120. Alauddin M. V‐MFO: variable flight mosquito flying optimization. In: Applications of Soft Computing for the Web. Springer;
2017:271‐283.

121. Hosseini F, Kaedi M. A metaheuristic optimization algorithm inspired by the effect of sunlight on the leaf germination. Int J Appl
Metaheuristic Comp(IJAMC). 2018;9(1):40‐48.

122. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw. 2014;69:46‐61.

123. Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw. 2016;95:51‐67.

124. Yazdani M, Jolai F. Lion optimization algorithm (LOA): a nature‐inspired metaheuristic algorithm. J Comput Des Eng. 2016;3(1):24‐36.

125. Srinivas M, Patnaik LM. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans Syst Man Cybern.
1994;24(4):656‐667.

126. Amor HB, Rettinger A, editors. Intelligent exploration for genetic algorithms: using self‐organizing maps in evolutionary computation.
Proceedings of the 7th annual conference on Genetic and evolutionary computation; 2005: ACM.

127. dos Santos Coelho L. A quantum particle swarm optimizer with chaotic mutation operator. Chaos, Solit Fractals. 2008;37(5):1409‐1418.

128. Choubey NS, Kharat MU. Approaches for handling premature convergence in CFG induction using GA. In: Soft Computing in Industrial
Applications. Springer; 2011:55‐66.

129. Kharkongor C, Chithralekha T, Varghese R. A SDN controller with energy efficient routing in the internet of things (IoT). Proc Comp
Sci. 2016;89:218‐227.

How to cite this article: Akbar Neghabi A, Jafari Navimipour N, Hosseinzadeh M, Rezaee A. Nature‐inspired
meta‐heuristic algorithms for solving the load balancing problem in the software‐defined network. Int J Commun
Syst. 2019;e3875. https://doi.org/10.1002/dac.3875

https://doi.org/10.1002/dac.3875

