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REVIEW

Emerging DNA methylation inhibitors for cancer therapy: challenges and prospects
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aDivision of Basic Research, Instituto Nacional de Cancerología, México City, Mexico; bInstituto de Investigaciones Biomédicas, Universidad Nacional
Autónoma de México UNAM/Instituto Nacional de Can cerología, México City, Mexico

ABSTRACT
Introduction: There is evidence of the association of DNA methylation alterations with cancer devel-
opment and progression.
Areas covered: This review will briefly discuss the basis of epigenetics and the clinical results of first-
generation DNA methyltransferase inhibitors (DNMTi) in myelodysplastic syndrome (MDS) and solid
tumors, as well as the limited clinical information on second-generation DNMTi.
Expert opinion: Azacitidine and decitabine are FDA-approved for the treatment of MDS but show
limited activity against solid tumors despite inducing gene promoter demethylation, gene reactivation,
and global demethylation. Nevertheless, no data consistently shows that the response to these drugs is
associated with any DNA methylation marker. It is key to increase clinical exploratory trials with existing
and novel demethylating agents incorporating ‘omics’ technologies to identify DNA methylation
‘drivers’ or ‘`patterns’ unique to specific malignancies and then proceed to clinical trials in highly
selected patients. Ongoing studies with novel DNMTi would inform whether these agents overcome
the pharmacological limitations of current DNMTi and improve their efficacy. Interestingly, solid pre-
clinical data indicate that acquired DNA hypermethylation impedes PD-1 blockade-mediated T-cell
rejuvenation and this phenomenon can be reverted with decitabine; moreover, this drug synergizes
CTLA-4 blockade in vivo. This promising research avenue is now clinically being tested.

ARTICLE HISTORY
Received 2 November 2018
Accepted 16 January 2019

KEYWORDS
DNA methylation;
Azacitidine; Decitabine

1. Introduction

The term ‘Epigenetics’ was coined in the 1940s when Conrad
Waddington, a British embryologist, and geneticist [1], intro-
duced the term ‘epigenetics’ to describe ‘the interactions of
genes with their environment, which brings the phenotype
into being’. Upon this starting definition, the meaning of epige-
netics has changed over time. Currently, the most widely
accepted definition for epigenetics is the study of heritable
phenotypic traits that result from modifications in gene expres-
sion without changing the DNA code [2]. It is remarkable that
epigenetics has been increasingly studied as reflected by the
thousands of publications on this topic in current years.

The human genome is organized into 23 chromosomes so
that each diploid cell with 46 chromosomes contains approxi-
mately 6 billion base pairs of DNA. If this DNA would be in
a linearized form, each cell would have around 2-m length of
DNA. Such amount of DNA must be packaged into the
nucleus; hence, histone proteins mainly are responsible for
organizing the long fibers of DNA within the nucleus. Both,
the DNA complexed with histones are the elements of chro-
matin and the nucleosome is considered the functional unit of
the genome. Nucleosomes are formed by a histone octamer
formed by dimers of H2A, H2B, H3, and H4 which are linked by
histone H1. Approximately 147 bp of superhelical DNA is
wrapped around the histone octamer forming the nucleosome
core particle [3]. Epigenetics, therefore, can be referred to as

the study of all the elements involved in the regulation of
nucleosome. Functionally, these elements are highly interact-
ing in order to respond to the cells’ needs for proper regula-
tion of gene expression in a time and cell-specific manner.

1.1. Brief historical overview of epigenetics

The concept of DNA methylation emerged in the 1970s. It was
demonstrated that the addition of a methyl group at the fifth-
position of the cytosine in a CpG dinucleotide could inactivate
the expression of genes [4]. Thus, DNA methylation driven by
DNA methyltransferase enzymes became the most important
epigenetic factor [5]. Afterward, in the 1990s, the transcrip-
tional regulatory effects by histone acetylases/deacetylases
enzymes in lysine tails at the histone core of the nucleosomes,
added another level of complexity [6]. In addition, it was
uncovered that histone acetylases and histone deacetylases
enzymes were also able to bind and regulate DNA methyl-
transferases and a family of proteins having a DNA methyla-
tion binding domain called methyltransferase binding domain
proteins [7,8] The recognition that histone proteins can
undergo modifications beyond acetylation/deacetylation
such as methylation/demethylation, phosphorylation/depho-
sphorylation, ubiquitination, citrullination, and deimination
[9–14] led to the discovery of the enzymes responsible for
these modifications, as well as numerous interactions among
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histones and DNA itself. Protein complexes with nucleosome-
remodeling activities [15] are equally recognized as important
epigenetic players. Non-coding RNAs (micro RNA and lncRNA)
are another set of epigenetic players that are themselves
regulated by epigenetic machinery elements [16,17]. Lately,
the discovery of DNA demethylases [18,19] – the ten-eleven
translocation (tet1, tet2, and tet3) enzymes – which convert
5-methylcytosine to 5-hydroxymethylcytosine resulted in an
unanticipated higher complexity of how epigenetics regulates
of gene expression [20].

1.2. DNA methylation

DNA methylation involves the covalent addition of a methyl
group to the carbon atom 5 of the cytosine pyrimidine ring in
a CpG (cytosine-guanine) dinucleotide. In humans, using ske-
letal muscle as a tissue source, the global cytosine methylation
is 4.59% though it is known that there is some variation
depending on cell type [21]. Methyl groups in the dinucleotide
CpGs of gene promoters regulate interactions between DNA
and the transcription machinery of the cell and, in general,
DNA methylation correlates with transcriptional silencing and
typically occurs in DNA sequences that contain cytosines adja-
cent to a guanine nucleotide (known as a CpG site).
Approximately 30 million CpG sites exist in the human gen-
ome [22] and methylation at these sites is associated with the
silencing of the genes that are in proximity to the CpG islands.
Normal differentiation requires proper DNA methylation/
demethylation patterns, and abnormal DNA methylation limits
the capacity of a cell to differentiate into tissue/cell-specific
lineages and may ultimately induce a state of disease [23].

Mammalian cells possess multiple pathways to establish,
maintain, and modify DNA methylation throughout the gen-
ome. Enzymes in mammalian cells, known as DNA methyl-
transferases, DNMT1, DNMT3A, DNMT3B, are responsible for
establishing and maintaining DNA methylation while DNMT3L
participate in DNA methylation in a catalytic independent
manner. The DNMT2 catalyzes tRNA methylation [24,25] but
its ability to methylate DNA is controversial [26].

Since DNA methylation is dynamic, mammalian cells also
possess the ability to remove these marks. Passive DNA
demethylation was the first to be described. As it is passive, it
depends on DNA replication and cell division plus the subse-
quent lack of action of DNA methylation maintenance path-
ways. On the contrary, active DNA demethylation is replication-
independent and occurs through the active enzymatic removal
of the methylcytosine [27]. Among DNA demethylases, the
enzyme activation-induced cytidine deaminase (AID) deaminate
5-mC yielding thymidine that is replaced by an unmethylated
cytosine by the base-excision repair (BER) pathway. Thus, AID
may promote aberrant gene expression by decreasing the pro-
moter DNA methylation of specific genes [28,29]. The family of
tet1, tet2, and tet3 (ten-eleven translocation) proteins are also
considered active DNA demethylases. These enzymes carry out
the hydroxylation of 5-mC to 5-hmC [30], 5-hmC, in turn, is
replaced with an unmethylated cytosine by the BER pathway
[31]. Recent data demonstrate that several proteins bind to
5-hmC, revealing the possibility that specific proteins may be
able to interpret the 5-hmC epigenetic mark and subsequently
influence chromatin structure and gene expression [32,33].
Taken together, the establishment and maintenance model of
DNA methylation is likely an oversimplification of what actually
occurs and all DNMTs in concert with tet enzymes, regulate
DNA methylation levels through a dynamic equilibrium of site-
specific gain and loss of methylation during development and
health and disease conditions.

Abnormal DNA methylation signals may contribute to dis-
ease, and the reversible nature of epigenetic alterations makes
the DNA methylation machinery an exciting therapeutic target
including DNMTs, tet proteins as well as activation-induced
cytidine deaminase (AID) protein [34]. In addition, methyl-CpG
-binding domain (MBD) proteins which ‘read’ and interpret the
methylation moieties on DNA, and are critical mediators of
many epigenetic processes, may also targetable. These include
at least MBD1, MBD2, MBD3, MBD4, and MeCP2 [35].

2. Evidences linking epigenetic alterations with
cancer

Abnormalities in DNA methylation have long been associated
with cancer. Both global hypomethylation and regional hyper-
methylation may play a prominent role in carcinogenesis, and
their contribution shows scarcely defined boundaries. It has
long been known that in cancer cells both alterations coexist:
malignant tumors show global hypomethylation and regional
hypermethylation however the meaning of this phenomenon
remains to be clarified.

2.1. Global DNA hypomethylation promotes
carcinogenesis

As early as 1983, Fearon and Vogelstein reported that DNA
hypomethylation distinguishes genes of some human can-
cers from their normal counterparts [36] support for the
carcinogenic effect of DNA hypomethylation was provided
Gaudet et al., who generated mice having a hypomorphic
DNA methyltransferase 1 (Dnmt1) allele, which reduces

Article highlights

● The role of abnormal DNA methylation for cancer development and
progression still is unclear. The ample heterogeneity of DNA methyla-
tion findings in cancer, namely global and regional DNA hypo and
hypermethylation are often contradictory in regard to cancer causa-
tion or association.

● The first generation of azanucleosides azacitidine and decitabine, as
single agents, are a well-established safe and effective therapy for
MDS. However, no major responses have been observed with these
agents in the treatment of solid tumors.

● Clinically, these agents are able to demethylate and reactivate the
expression of tumor suppressor genes and/or induce global hypo-
methylation. Nevertheless, no consistent data show association of
these biological effects with response in either hematological or solid
neoplasias.

● Improved ‘second generation’ DNA demethylating agents are in
development. The first results with guadecitabine are encouraging
in both hematological and solid neoplasias.

● More research is needed to disclose predictive factors for response to
existing and novel DNA demethylating agents.
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Dnmt1 expression to 10% of wild-type levels resulting in
substantial genome-wide hypomethylation in all tissues.
Interestingly these mice developed aggressive T cell lym-
phomas and high frequency of chromosome 15 trisomy
[37]. In another study, male F344 rats fed with a methyl-
deficient diet for up to 36 weeks, had persistence and
expansion of placental isoform of glutathione-S-transferase
(GSTpi)-positive lesions. Interestingly, re-feeding rats with
methyl-adequate diet beyond week 9, failed to revert liver
carcinogenesis; thus, stable DNA hypomethylation is
a promoting factor for the clonal expansion of initiated
cells [38]. Radiation carcinogenesis has also been associated
with stable loss of global DNA methylation and may con-
tribute to cancer formation in radiation-targeted tissues [39].
Additional evidence on the tumor-promoting actions of glo-
bal DNA hypomethylation come from the observations that
murine embryonic stem cells nullizygous for Dnmt1 gene
have significantly elevated mutation rates at both endogen-
ous and exogenous genes, being gene deletions the predo-
minant mutations [40] and complete double knockout of
dnmt1 and dnmt3b in H116 human colon cancer cells
reduces by 80% global DNA methylation accompanied by
constitutive genomic instability manifested by chromosomal
translocations [41]. Moreover, it has been reported that the
methyl donor group S-adenosylmethionine (SAM) treatment
in a model of breast cancer, causes a significant dose-
dependent decrease in cell proliferation, invasion, migration,
anchorage-independent growth and increased apoptosis
in vitro, and these effects were recapitulated in vivo where
oral administration of SAM reduced tumor volume and
metastasis in a xenograft model, though no global levels
of methylation were measured it is suggested that increas-
ing global methylation may have antitumor effects [42].
Increased global DNA hypomethylation as evaluated by Alu
repeats quantitation has been observed in distant metastatic
and dedifferentiated thyroid cancer [43], and similar findings
have been shown in gastric carcinogenesis [44]. Altogether
these data are suggestive but not conclusive that global
DNA hypomethylation cooperates for cancer development.

2.2. Global DNA hypomethylation protects from
carcinogenesis

Intriguingly, a number of studies suggest that global DNA
hypomethylation does the opposite. It has been reported
that genetic reduction of DNA methylation levels suppresses
the incidence, number and size of gastric tumors in two
different mouse models for gastric tumorigenesis [45].
Cancer protecting effects have also been observed in other
models of DNMT1 gene depletion. Dnmt1 hypomorphic mice
have a reduction in pancreatic acinar cell tumor multiplicity
[46]; suppression of polyp formation in Apc(Min/+) mice [47]
and in a model of ApcMin-induced intestinal neoplasia in mice
where a reduction in the DNA methyltransferase activity
genetically and pharmacologically induced reduces the aver-
age number of intestinal adenomas from 113 in the control
mice to only 2 polyps in the treated heterozygotes [48]. Thus,
it remains to be determined the actual role of global DNA
hypomethylation, with some studies suggesting it acts as

carcinogen while another set of studies evidencing
a protective effect.

2.3. Regional hypomethylation may promote
carcinogenesis

Not only global DNA hypomethylation could be causally
related to carcinogenesis. A number of studies also demon-
strate that hypomethylation at promoters of oncogenes asso-
ciated with oncogenic over-expression that at least in
experimental models aids in cancer development or progres-
sion. Oncogenic ADP-ribosylating factor (ARF)-like 4c (ARL4C)
overexpression in lung squamous cell carcinoma is associated
with DNA hypomethylation in the 3ʹUTR of ARL4C gene [49].
Hypomethylation and increased expression of the oncogene
ELMO3 have been observed in primary and metastatic tumors
from lung cancer patients [50]. C-myc and c-jun are known
oncogenes found to be over-expressed and associated with
hypomethylation in a number of studies [51–53]. Several other
oncogenes have also been found hypomethylated and over-
expressed via diverse mechanisms in several tumor models
including CTCF/BORIS, TERT, ras members, TKTL1, CD30, JunB,
WNT5A, CRIP1, S100P, maspin, synuclein gamma, KLK4, and
bcl-2 [54–65]. Regional hypomethylation is also observed in
non-coding genes. For instance, hypomethylation of LINE-1
promoter activates an alternate transcript of MET oncogene
in bladder cancer and a number of proto-oncogenes in color-
ectal cancer metastasis [66,67]. microRNAs are also found
hypomethylated and hence overexpressed in several models,
which indirectly activates oncogenic signals or interferes with
tumor suppressor genes [68–71]. These studies are suggestive
that not only global but regional hypomethylation at specific
genes or non-coding elements may participate in cancer
development.

2.4. Regional hypermethylation may promote
carcinogenesis

There are numerous reports demonstrating that tumor sup-
pressor genes belonging to nearly every cancer pathway or
function category have silenced or diminished expression due
to abnormal promoter hypermethylation. Many of these
reports are summarized in reviews [72–74]. In fact, these find-
ings were the rationale behind the clinical development of
DNA methyltransferase inhibitors. The first discoveries of pro-
moter methylated tumor suppressor genes were made using
the candidate gene approach. Greger et al., and Sakai et al.
[75,76], were the first to demonstrate silencing of retinoblas-
toma gene by promoter methylation in primary tumors as
a ‘non-genetic’ structural defect mechanism of allele inactiva-
tion according to the ‘two-hit’ Knudson hypothesis [77]. In
2001, Esteller et al. performed a comprehensive analysis of
promoter hypermethylation changes in 12 genes (p16,
p14ARF, p15, p73, APC, BRCA1, hMLH1, GSTP1, MGMT, CDH1,
TIMP3, and DAPK). Each of these genes was rigorously char-
acterized for association with abnormal gene silencing from
over 600 primary tumor samples representing 15 major tumor
types. They found a unique profile of promoter hypermethyla-
tion for each human cancer in which some gene changes are
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shared and others are cancer-type specific. These data illu-
strated that epigenetic inactivation may affect genes impli-
cated in key cancer molecular pathways such as cell
immortalization and transformation cycle, DNA repair, cell
adherence, metastases, and metabolic enzymes among others
[74]. The main findings of this study were also somehow
replicated by Costello et al., using a ‘non-candidate approach’.
They performed a global analysis of the methylation status of
1,184 unselected CpG islands in 98 primary human tumors
using restriction landmark genomic scanning. They reported
an average of 600 CpG islands found methylated in tumors,
and again, methylation patterns that were shared within each
tumor type, together with patterns and targets that displayed
distinct tumor-type specificity. The functional consequences of
such methylation were inferred from treating glioma cell lines
with known methylated and silenced genes with decitabine.
Overall, 6 out of 16 genes (38%) were fully or partially reacti-
vated while 10 genes (63%) were unaffected by the demethy-
lation treatment in all five cell lines, regardless of methylation
status [78].

3. Clinical development of hypomethylating therapy

The azanucleotides azacitidine and decitabine were initially
studied as classical cytotoxics for solid tumors and leukemia
[79–82]. It was not until the discoveries of Jones et al., on the
effects of these drugs upon DNA methylation [83], that low-
dose schedules were used to exploit their hypomethylating
activity in a number of phase I and II trials. These trials culmi-
nated in their FDA-approval for myelodysplastic syndrome
based on the results of randomized phase III trials in 2004
and 2006, respectively, [84–87].

3.1. Randomized phase III trials with azacitidine in
high-risk MDS

The first randomized trial of azacitidine performed in
191 MDS patients to compare this drug with best supportive
care (BSC) as no standard of therapy for MDS existed.
Azacitidine was administered 75 mg/m2/d subcutaneously
for 7 days every 28 days. Among patients assigned to aza-
citidine there were 60% of responses (7% complete, 16%
partial and 37% hematological improvement). Responses
were statistically significantly different as compared to BSC
(p < 0.001) as was also the median time to leukemic trans-
formation or death (21 vs 13 months, p = 0.007). Although
no overall survival difference was reported, the median sur-
vival for azacitidine was 20 months (95% CI, 16 to 26 months)
whereas it was only 14 months (95% CI, 12 to 14 months)
for BSC (p = 0.10). The lack of survival difference was attrib-
uted to the 53% of patients of BSC that crossed-over to
azacitidine, though a 6-month landmark analysis did show
statistically significant superior survival for azacitidine.
Quality of life (QOL) was significantly improved in patients
treated with azacitidine, specifically regarding physical func-
tioning, dyspnea, and psychosocial distress even after con-
trolling for red blood cells transfusions. In addition, QOL was
also improved in the patients of BSC after crossing-over to
azacitidine [84].

The second randomized trial compared azacitidine (same
schedule of the first trial) against conventional care (BSC, low-
dose cytarabine, or intensive chemotherapy as selected by
investigators before randomization). This study accrued 358
patients. After a median follow-up of 21.1 months (IQR
15.1–26.9), the median overall survival was statistically signifi-
cantly higher for azacitidine, 24.5 months (9.9-not reached)
versus only 15.0 months (5.6–24.1) in the conventional care
group (hazard ratio 0.58; 95% CI 0.43–0.77); stratified log-rank
p = 0.0001). At last follow-up, there were 82 deaths in the
azacitidine group as compared to 113 in the conventional care
group. Kaplan–Meier estimates at 2 years, showed that survival
rates were 50.8% (95% CI 42.1–58.8) versus 26.2% (18.7–34.3)
(p < 0 · 0001) in the azacitidine versus conventional care
groups, respectively, [85]. QOL was not assessed in this trial;
however, the higher rate of responses and hematological
improvement suggest that patients most likely had their
QOL improved.

3.2. Randomized phase III trials with decitabine in
high-risk MDS

In the first randomized phase III trial of decitabine, 170
patients received either decitabine at 15 mg/m2 given intra-
venously over 3 h every 8 h for 3 days (at a dose of 135 mg/m2

per course) and repeated every 6 weeks, or BSC. The response
rate to decitabine was statistically significant as compared to
BSC. The overall response rate was 17% (8% PR and 9% CR),
whereas no patient achieved response in arm of
BSC, p < 0.001). Additionally, 12 (13%) patients treated with
decitabine showed hematological improvement that was asso-
ciated with transfusion independence. Overall survival was not
statistically different between arms. However, there was
a trend for a longer median time to acute myelogenous
leukemia (AML) progression or death compared with patients
who received BSC; for those with International Prognostic
Scoring System intermediate-2/high-risk disease; for patients
with de novo disease, and in treatment-naive patients [86].

The second randomized trial was done in 233 patients, and
the primary endpoint was overall survival. Decitabine was
administered at the same dose and schedule but infused
over 4 h and the control arm was BSC. Again, responses
favored the decitabine arm. These were CR (13% v 0%), PR
(6% v 0%), hematologic improvement (15% v 2%), stable
disease (14% v 22%), progressive disease (29% v 68%), hypo-
plasia (14% v 0%), and unevaluable (8% v 8%) for decitabine
and BSC, respectively. There was no increase in overall survival
with decitabine (median OS, 10.1 vs 8.5 months, [HR], 0.88;
95% CI, 0.66 to 1.17; two-sided, log-rank p = 0.38).
Progression-free survival (PFS), but not AML-free survival
(AMLFS), was significantly prolonged with decitabine versus
BSC (median PFS, 6.6 versus 3.0 months, respectively; HR, 0.68;
95% CI, 0.52 to 0.88; p = 0.004; median AMLFS, 8.8 versus
6.1 months, respectively; HR, 0.85; 95% CI, 0.64 to 1.12;
p = 0.24). Nevertheless, the rate of transformation to AML at
1 year was statistically significantly reduced, 33% in BSC and
22% with decitabine. The most common toxicity for decitabine
is myelosuppression and infection which are also observed in
untreated patients. In this study, 47.4% of decitabine patients
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had grade 3–4 infection with neutropenia versus 35% in BSC
arm, likewise, grade 3–4 febrile neutropenia was most fre-
quent (25.4% vs 7.1%) in decitabine and BSC groups, respec-
tively. Both randomized decitabine trials formally assessed
QOL which was significantly improved in patients of decita-
bine arms [87].

3.3. Meta-analysis of azacitidine and decitabine in MDS

A systematic review and network meta-analysis comparing
azacitidine and decitabine for the treatment of myelodysplas-
tic syndrome has been performed. After review of literature,
authors were left with only the four trials aforementioned. The
results of the meta-analysis show that compared to BSC, aza-
citidine was significantly associated with lower mortality
(RR = 0.83, 95% CI 0.74–0.94, I2 = 89%) whereas decitabine
did not significantly reduce mortality (RR = 0.88, 95% CI
0.77–1.00, I2 = 53%). However, both drugs are associated
with higher partial and complete response rates compared
to BSC. Indirect comparisons were not statistically significant
for all the studied outcomes, except for complete response
where azacitidine was less likely to induce complete response
compared to decitabine (RR = 0.11, 95% CI = 0.01–0.86, this at
very low-certainty evidence). Overall, it is clear that both aza-
citidine and decitabine are associated with improved out-
comes compared to BSC. In the absence of head-to-head
comparisons, both drugs are well-established standard of
care for high-risk MDS and the choice of either should be
driven by patient preferences, adverse effects, drug availabil-
ity, and cost [88].

4. DNA demethylating agents for solid tumors

Despite the strong and vast preclinical evidence that DNA
demethylating therapy should be active in solid tumors, parti-
cularly with low-dose regimens, clinical results with these
agents (mostly azacitidine and decitabine) are unsatisfactory.

Recently, a systematic review of DNA demethylating therapy
against solid tumors was published. The review focused on the
outcome of DNA demethylating therapy upon clinical
response, methylation and the effects in the immune system.

The DNMTi included in the review were azacitidine, decita-
bine, hydralazine, procaine, MG98, guadecitabine, and zebu-
larine. However, 33 of the 58 studies combined a DNA
methylation inhibitor with classical chemotherapy agents, his-
tone deacetylase inhibitors, interferon, interleukin 2, anti-EGFR
agents, antiandrogen therapy and cell immunotherapy.
Among the 55 studies (out of 58) for which clinical outcome
was available, 13 had complete response (CR), 35 had partial
responses (PR) and 47 reported stable disease (SD). In all but
one study, progressive disease was observed. The effects upon
DNA methylation and the immune system were not available
in all studies. A decrease in global methylation was observed
in 15 out of 17 studies whereas gene promoter demethylation
and re-expression was reported in 13 out of 15 studies.
Fourteen studies showed immune-related responses such as
re-expression of cancer-testis antigens and up-regulation of
interferon-related genes. While these results, in general, indi-
cate that DNA demethylating therapy works in a variety of
malignant solid tumors studied including melanoma, breast,
gastrointestinal, lymphoma, hepatocarcinoma, ovarian, cervi-
cal, renal, prostate among others, it must be stressed that from
these 58 studies, only 22 used demethylating drugs as a single
agent. As shown in Table 1, among the 21 studies (one
excluded because it was a case report of a single patient)
totalizing 816 patients, no complete responses were observed;
the mean partial response rate was 7.3%, 95CI: 2.18–12.52;
mean stable disease rate was 14.95 SD 16.2, 95CI: 7.28–22.72,
and the mean progressive disease rate 76.80 SD 29.39, 95CI:
63.04–90.56. In 11 studies azacitidine was used, decitabine in
seven and MG98 (a DNMT1 antisense oligonucleotide) in three
studies. Responses rates were not different for azacitidine and
decitabine in regard to the dose (high cytotoxic dose) or low-
dose (demethylating regimens). From this review, it seems

Table 1. Clinical studies of DNA methylation inhibitors as single agents.

Agent, number of patients Cancer CR (%) PR (%) SD (%) PD (%) ORR (%) PFS (m) OS (m) Year Dose

Azacitidine, 27 Breast 0 7 15 78 7 – – 1974 High
Azacitidine, 17 Germ cell tumor 0 0 0 100 0 – – 1993 High
Azactidine, 28 Gastro-intestinal 0 4 29 67 4 – – 1972 High
Decitabine, 12 NSCLC 0 0 50 50 0 – 6.7 1997 High
Azacitidine, 26 Melanoma 0 0 19 81 0 – – 1978 High
MG98, 15 Renal 0 0 40 60 0 – – 2006 –
Decitabine, 82 Various 0 7 22 79 7 – 1987 High
Decitabine, 19 Various 0 0 0 0 0 0.9 1.2 2003 Low
Azacitidine, 22 Various 0 9 0 91 9 1974 Low
Decitabine, 8 Various 0 13 0 88 13 – – 2014 Low
Azacitidine, 6 Various 0 17 0 83 17 – – 1975 High
MG98, 33 Various 0 3 3 94 3 – – 2009 –
Azacitidine, 167 Various 0 3 10 146 3 – – 1977 High
MG98, 14 Various 0 7 14 79 7 – – 2003 –
Decitabine, 20 Various 0 5 0 95 5 – – 1986 High
Azacitidine, 87 Various 0 2 2 95 2 – – 1977 High
Azacitidine, 29 Various 0 45 21 34 45 – – 1972 High
Azacitidine, 150 Various 0 7 44 49 7 – – 1977 Low
Azacitidine, 21 Various 0 0 14 86 0 – – 1976 High
Decitabine, 8 Various 0 25 0 75 25 – – 2005 Low
Decitabine, 25 Various 0 0 16 84 0 – – 2006 Low

Summary of responses with DNA methylation inhibitors as single agent in solid tumors. No. Pts: Number of Patients; CR: Complete Response; PR: Partial Response;
SD: Stable Disease; PD: Progressive Disease; ORR: Overall Response Rate; PFS: Progression-Free Survival; OS: Overall Survival. Data taken from reference 89.
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that any single agent demethylating drug has poor antitumor
activity despite they induce changes in global and gene-
specific demethylation and gene re-expression [89].

5. New DNA methylation inhibitors

Azacitidine and decitabine the oldest DNMTi are nucleoside
analogs that intercalate with the DNA and upon their incor-
poration during S-phase of the cell cycle, form an irreversible
complex with the DNMTs, leading to enzyme degradation.
A limitation of these drugs is their short half-life of about 30
min which limits exposure of diseased cells to the drug,
potentially abrogating their effectiveness [90,91]. On these
bases, nucleoside analogs with longer half-lives are being
sought that could theoretically improve response to therapy
by enhancing incorporation of the active agent into dividing
cells. Several novel nucleosides are in development.
Zebularine, a less toxic cytidine analog was proven to be an
effective and less toxic DNMTi in preclinical models. However,
its clinical development was halted due to its extremely low
bioavailability in rhesus monkeys [92].

Second generation nucleosides analogs are in clinical
development. Of these, guadecitabine (SGI-110) administered
subcutaneously has already being tested in phase I and II clinical
trials. In the phase I trial on 93 patients with AML and MDS testing
several schedules and doses, guadecitabine at 60 mg/m2 daily for
5 days was well-tolerated, easily administered, and biologically
and clinically active in both MDS and AML. The most common
grade ≥3 adverse events were febrile neutropenia (41%),
pneumonia (29%), thrombocytopenia (25%), anemia (25%), and
sepsis (17%). As expected, a dose-related DNA demethylation was
observed in the daily regimen reaching a plateau in demethylation
at 60 mg/m2. Though the study was not designed to evaluate the
efficacy, 6 out 19 MDS patients (31.5%) and 6 out 74 AML patients
(8%) had response [93]. An update of the aforementioned trial [93]
reported the results only of the phase II part in 107 patients with
treatment-naive AML randomized to either 5-day (60 or 90 mg/
m2) or 10-day (60 mg/m2) both in a 28-day schedule (54 and 53
patients) in 5-day or 10-day, respectively, was reported. At
a median follow-up of 953 days (IQR 721–1040), the composite
complete response rates were 54%, 59%, and 26% in the 5-day at
60 mg/m2, 5-day at 90 mg/m2 and 10-day
60 mg/m2, respectively. Though authors state that treatment
had tolerable toxicity, the most common grade 3 or worse events
were febrile neutropenia, thrombocytopenia, neutropenia, pneu-
monia, anemia, and sepsis regardless of the 5-day or 10-day
schedule. Overall, 23 (22%) patients died because of adverse
event, all of them in the 10-day cohort) [94]. An open-label
phase III study that enrolled 815 patients is ongoing, comparing
guadecitabine versus treatment choice in adults with previously
untreated AML who are not considered candidates for intensive
remission induction chemotherapy (NCT02348489).

Two phase I studies with guadecitabine combined with
chemotherapy have been reported. A study of guadecita-
bine with irinotecan in 22 metastatic colorectal cancer
patients exposed to irinotecan used four dose levels of
guadecitabine and irinotecan with or without growth factor

support (GFS). The most common grade 3–4 toxicities were
neutropenia 77%, neutropenic fever (23%), leukopenia 50%.
The conclusion of this study was that 125 mg/m2 with GFS
resulted safe and tolerable with early indication of benefit,
12 out of 17 evaluable patients had stable disease as the
best response. Circulating tumor DNA showed a decrease in
global demethylation by LINE-1 after treatment [95].
A second study in 20 cisplatin-resistant ovarian cancer
patients with a median of previous regimens of 7 (1–14)
were treated with guadecitabine at 45 mg/m2 plus carbo-
platin AUC5. The dose of guadecitabine was deescalated to
30 mg/m2 and carboplatin at AUC4 after the first cohort of
six patients who presented dose-limiting neutropenia and
thrombocytopenia. There were indications of activity, among
the 20 patients, three patients had a partial response (PR),
and six patients had stable disease (SD) for more than
3 months, for an overall response rate (ORR) and clinical
benefit rate of 15% and 45%, respectively. Evidence of
demethylation was also observed in LINE-1 from PBMCs
and promoter demethylation/gene reexpression in paired
tumor biopsies/ascites [96]. A study of guadecitabine with
sorafenib for advanced hepatocellular carcinoma is ongoing
(NCT01752933). There is another second-generation nucleo-
side analog in clinical development, the cytidine analog 4ʹ-
Thio-2ʹ-deoxycytidine is undergoing clinical trial for
advanced solid tumors (NCT02423057). A second cytidine
analog (RX-3117) is also being evaluated in a phase 1b/2a
multicentric study combined with abraxane for patients with
metastatic pancreatic cancer (NCT03189914).

A number of DNA methylation inhibitors are in preclinical
development and are not discussed here. These include CP-
4200, an elaidic acid ester of azacytidine; the naturally occurring
flavonoid Epigallocatechin-3-gallate (EGCG); the polyphenols
theaflavin 3, 3ʹ-digallate and thearubigins from black tea; the
quinoline derivative, SGI-1027; the quinone antibiotic, nanaomy-
cin A, and a phthalimido-L-tryptophan derivative, RG-108 [20].

6. Conclusion

DNA demethylating therapy with the azanucleotides azaciti-
dine and decitabine has become the standard of care of MDS,
a clinical entity where abnormalities in DNA methylation seem
to play an important role in its molecular pathogenesis. Hard
data indicates, however, that while these drugs undoubtedly
improve clinical conditions and lead to better QOL, their effect
on overall survival was clearly seen in only one study with
azacitidine. On the other hand, their efficacy in solid tumors as
a single agent, either used at high (cytotoxic) or low
(demethylating) doses is yet to be demonstrated. No rando-
mized trials of any DNMTi as a single agent in solid tumors has
been done and a number of phase I, II trials, complete
response rates are inexistent while partial responses and dis-
ease stabilization rates are around 7% and 15%, respectively.
These poor results in solid tumors, however, clearly improve
when DNMTi are used combined with chemotherapy, mole-
cular targeted therapy or immunotherapy.
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7. Expert opinion

The simple view that DNMTi could be effective anticancer
therapy based on the reactivation of tumor suppressor genes
silenced by promoter methylation (regardless of the poten-
tially deleterious- drug-induced global DNA hypomethylation
in tumors) may not be correct. So far, there is evidence that
DNMTi do induce gene promoter demethylation and gene
reactivation, as well as global demethylation. Nevertheless,
no data consistently show that response to these drug types
is associated with any DNA methylation marker. The search for
more effective DNMTi is ongoing. Having ‘first generation’
demethylating drugs approved and accepted as a standard
of care for MDS is a vivid demonstration that we are moving
forward. Technological advances are rendering a new wave of
potentially more selective and efficacious DNMTi drugs.
Preliminary data do suggest that ‘second generation’ DNMTi
guadecitabine is safe and effective for MDS and AML and it is
also tested in combination with chemotherapy for solid
tumors. The cytosine analog 4ʹ-thio-2ʹ-deoxycytidine is
another ‘second generation’ DNMTi that is already being in
clinical trials. The clinical testing of a number of non-
nucleosides analogs with high selectivity for DNMT enzymes
which are not cytotoxics on their own, would allow to gen-
erate more evidence on the oncogenic role of DNA
hypermethylation.

Nevertheless, we should be reminded that it is still unclear
the role of altered DNA methylation in cancer. Global hypo-
methylation in some models promotes and in other models
protects cancer development whereas both regional hypo-
methylation and hypermethylation may promote carcinogen-
esis. The complexity of DNA methylation makes hard to arrive
at educated guesses on how to modulate this cascade of
events by pharmacological means: that is, how to best make
use of pharmacological interventions to modify in a beneficial
way the processes of cancer without at the same time, produ-
cing undesirable epigenetic changes that could favor disease
development or progression.

Despite the challenges imposed by this complexity it is very
important to greatly increase the number of small clinical
exploratory trials with existing drugs and novel DNMTi both
as single agents and in combination with existing cancer
therapeutic agents. These exploratory trials should incorporate
pharmacogenetic, pharmacogenomics and other ‘omics’ tech-
nologies to identify predictive factors for response and/or
toxicity, to eventually personalize the use of DNMTi. The
other approach, which also can be cataloged as personalized
medicine, is to continue the study of diseases to find out DNA
methylation ‘drivers’ or ‘methylation patterns’ unique to spe-
cific malignancies and then proceed to clinical trials in a highly
selected population of patients. On the other hand, a very
promising research avenue for DNA demethylating therapy is
the use of DNMTi with checkpoint inhibitors. Solid preclinical
data indicate that acquired DNA hypermethylation impedes
PD-1 blockade-mediated T-cell rejuvenation. Interestingly, this
phenomenon can be efficiently reverted by prior use of dec-
itabine in mice model. Moreover, decitabine not only
enhances lymphocyte function in a murine model of ovarian
cancer, but also synergizes CTLA-4 blockade. In fact, a number

of clinical studies are ongoing combining DNMTi (decitabine,
azacitidine, guadecitabine) with several checkpoint inhibitors
such as ipilimumab, nivolumab, and pembrolizumab.
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