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Abstract

We consider the robust algorithms for the k-means clustering problem where a quantizer is constructed
based on N independent observations. Our main results are median of means based non-asymptotic excess
distortion bounds that hold under the two bounded moments assumption in a general separable Hilbert space.
In particular, our results extend the renowned asymptotic result of Pollard (1981) who showed that the existence
of two moments is sufficient for strong consistency of an empirically optimal quantizer in R

d. In a special case
of clustering in R

d, under two bounded moments, we prove matching (up to constant factors) non-asymptotic
upper and lower bounds on the excess distortion, which depend on the probability mass of the lightest cluster
of an optimal quantizer. Our bounds have the sub-Gaussian form, and the proofs are based on the versions of
uniform bounds for robust mean estimators.

1 Introduction

Statistical (sample-based) k-means clustering is the classical form of quantization for probability measures. In
this framework, given a distribution P defined on a normed space (E, ‖ · ‖) and an integer k ≥ 1, one wants to
find A∗ ⊂ E such that the distortion

D(A) = Emin
a∈A

‖X − a‖2 is minimized among all A ⊂ E, |A| = k.

It is well known that if (E, ‖ · ‖) is Rd with the Euclidean norm and if E ‖X‖2 < ∞ then this optimal quantizer
A∗ exists (see e.g., Theorem 1 in (Linder, 2002)), although it is not necessarily unique for k ≥ 2. The value
of the optimal distortion can be written as D(A∗). In the statistical setup, the access to P is achieved via N
independent observations X1, . . . , XN sampled according to P . Consider again the case of Rd and the Euclidean
norm. The following renowned result due to Pollard (1981) states strong consistency of (any) empirically optimal
quantizer, which is defined by

Â ∈ argmin
A⊂Rd,|A|=k

1

N

N
∑

i=1

min
a∈A

‖Xi − a‖2. (1)

Theorem 1.1 (Strong consistency of k-means (Pollard, 1981)). For any distribution P such that E ‖X‖2 < ∞
and any integer k ≥ 1, it holds that

D(Â)−D(A∗)
a.s.→ 0, as N → ∞.

This consistency result was extended to the case where the space (E, ‖ · ‖) is a general separable Hilbert
space (Biau, Devroye and Lugosi, 2008; Levrard, 2015). Clearly, the consistency alone does not provide any
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information on how many training samples are needed to ensure that the excess distortion is below a cer-
tain level. Moreover, it does not allow the underlying distribution to be different for each N . Over the
last three decades a lot of efforts were made in order to prove non-asymptotic results for the excess distor-
tion D(Â) − D(A∗) where the space is R

d or a general separable Hilbert space. We refer to various bounds
in (Bartlett, Linder and Lugosi, 1998; Linder, 2002; Biau, Devroye and Lugosi, 2008; Graf and Luschgy, 2007;
Maurer and Pontil, 2010; Narayanan and Mitter, 2010; Levrard, 2013, 2015; Fefferman, Mitter and Narayanan,
2016; Maurer, 2016) and the references therein. However, almost all the results were provided under the strong
assumption that the domain is bounded. That is, it is usually assumed that ‖X‖ ≤ T almost surely where X is
distributed according to P and T > 0 is a constant. This simple setup allows one to use the tools of Empirical
Process Theory in order to prove results of the form (see e.g., Theorem 2.1 by Biau, Devroye and Lugosi (2008),
where the space (E, d) is assumed to be a separable Hilbert space)

D(Â)−D(A∗) . T 2

√

k2 + log 1
δ

N
, (2)

holding, with probability at least 1− δ, for δ ∈ (0, 1). The question of general unbounded distributions is more
challenging and has been studied less. The case where the vectorsXi have well behaved exponential moments was
analyzed in (Cadre and Paris, 2012). Results under less restrictive assumptions include: the uniform deviation
bounds in (Telgarsky and Dasgupta, 2013; Bachem, Lucic, Hassani and Krause, 2017); a sub-Gaussian excess
distortion bound in (Brownlees, Joly and Lugosi, 2015) for the so-called k-medians problem; and the results for
trimmed quantizers in (Brécheteau, Fischer and Levrard, 2018). We will discuss some of these results in more
detail in what follows. However, we emphasize that in our particular setup the results we are aware of require
the existence of at least four moments (that is, E ‖X‖4 < ∞) compared to the minimal assumption under which
the problem makes sense — E ‖X‖2 < ∞ — which we are aiming for in this paper (this assumption is required
to define the distortion D(A∗)). The question whether non-asymptotic results of the form (2) are possible under
the minimal assumption E ‖X‖2 < ∞ (as in (Pollard, 1981)) appeared naturally in several papers (see e.g.,
(Levrard, 2013)) but has not yet been addressed.

Our motivating example is the sub-Gaussian mean estimator introduced in (Lugosi and Mendelson, 2019c).
Consider the situation where E = R

d with the Euclidean norm, set µ = EX , and assume that the covariance
matrix Σ = E(X − µ)(X − µ)⊤ exists. If k = 1, we obviously have that the optimal quantizer A∗ is actually the
mean µ. In this case, our problem boils down to the estimation of the mean of a random vector. It was shown
by Lugosi and Mendelson that there is an estimator such that, with probability at least 1− δ,

E ‖X − â‖2 − E ‖X − µ‖2 . E ‖X − µ‖2 + λmax(Σ) log
1
δ

N
, (3)

where λmax(Σ) is the largest eigenvalue of the covariance matrix Σ, the expectation is taken only with respect
to X , and â = â(X1, . . . , XN ) is random. It is known that this bound is valid for the sample mean in the case
where the underlying distribution is multivariate Gaussian. The bound (3) has some remarkable properties:

• The dependence on N is O
(

1
N

)

.

• It only requires the existence of two moments, that is E ‖X‖2 < ∞. We note that in R
d, λmax(Σ) ≤

Tr(Σ) = E ‖X − µ‖2.
• It has the logarithmic dependence on the confidence, which is log 1

δ and corresponds to the sub-Gaussian
tails (see e.g., (Vershynin, 2016) for various equivalent definitions of sub-Gaussian distributions).

• Finally, even in the favorable bounded case where ‖X −µ‖ ≤ T almost surely the bound (3) does not scale
as T 2 (compare it with the typical k-means bound (2)) but as E ‖X−µ‖2 which can be much smaller than
T 2.

Therefore, extending the original question of whether the non-asymptotic excess distortion bounds are possible
under E ‖X‖2 < ∞, it is natural to ask if one can prove a result of the form (3) for k ≥ 2. Unfortunately, fully
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general picture is much more subtle. In particular, even in the favorable bounded case for k ≥ 2 the lower bounds

of order Ω
(

1√
N

)

are known (see e.g., (Antos, 2005)) making the simple bound (2) sharp with respect to N .

Further, if k = 1 we observe that the right-hand side of (3) converges to zero as N goes to infinity even if the
underlying distribution P = P (N) is different for each N . Our only condition is that E ‖X − µ‖2 = Tr(Σ) does
not grow too fast as N goes to infinity. Surprisingly, Example 1.2 below will show that the same is not true for
general k ≥ 2.

Risk bounds having the sub-Gaussian form for heavy-tailed distributions have attracted a lot of attention
recently. Among these advances are (almost) optimal results on mean estimation in various norms (Minsker,
2018; Lugosi and Mendelson, 2019a); in robust regression (Minsker and Mathieu, 2019; Lugosi and Mendelson,
2019b; Lecué and Lerasle, 2017); in covariance estimation (Mendelson and Zhivotovskiy, 2018); in classification
(Lecué, Lerasle and Mathieu, 2018). All the technical results in this area are based on different versions of the
so-called median of means estimator, which was first introduced and analyzed by Nemirovsky and Yudin (1983)
and independently in (Alon, Matias and Szegedy, 1999). For the sake of completeness, let us recall this basic
result.

Assume that Y1, . . . , YN are independent random variables with the same mean µ and the same variance σ2.
Fix the confidence level δ and assume that ℓ = ⌈8 log 1

δ ⌉ is such that N = mℓ, where m is integer. Split the set
{1, . . . , N} into ℓ blocks I1, . . . , Iℓ of equal size such that Ij = {1 + m(j − 1), . . . ,mj}. Denote the median of
means (MOM for short) estimator by

µ̂ = Median

(

ℓ

N

∑

i∈I1

Yi, . . . ,
ℓ

N

∑

i∈Iℓ

Yi

)

.

For this estimator we have the following sub-Gaussian behaviour. It holds, with probability at least 1− δ, that

|µ̂− µ| ≤ σ

√

32 log 1
δ

N
.

Returning to the question of k-means clustering and the inequalities of the form (3) for general k ≥ 2, the
following simple example inspired by Bachem, Lucic, Hassani and Krause highlights some of the obstacles we
will have to handle.

Example 1.2. Let N be the sample size. Consider the real line R, k = 2 and the distribution P supported on
{0,

√
N} such that P ({0}) = 1− 1

N and P ({
√
N}) = 1

N . In this case we have D∗(A) = 0.

One may easily see that, with constant probability, the value
√
N is not among X1, . . . , XN . That will

obviously force Â = {0} and
D(Â)−D(A∗) = EX2 = 1,

which is not converging to zero as N goes to infinity.

In Section 3.1 we will significantly extend this construction. Of course, Example 1.2 does not contradict the
strong consistency result of Theorem 1. Although EX2 = 1, the distribution P = P (N) changes with N , which
is, of course, not allowed in Theorem 1. However, in the statistical learning theory literature, the underlying
distribution P is usually allowed to change with N , and this provides an additional motivation for our study.
Surprisingly, our general bounds will provide consistency even for some sequences of distributions changing with
the sample size N .

On Voronoi cells and clustering. From now on we assume that (E, ‖ · ‖) is a separable Hilbert space
with the inner product denoted by 〈·, ·〉. Any quantizer A = {a1, . . . , ak} induces a partition of E into the
so-called Voronoi cells, which for a ∈ A consists of the points that have a as the closest point from A. To avoid
the uncertainty at the boundaries, we assume that the elements of each quantizer A = {a1, . . . , ak} are ordered,
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and define the cells for j = 1, . . . , k,

Vj(A) = {x ∈ E :‖x− aj‖ < ‖x− aj′‖, j′ = 1, . . . , j − 1,

‖x− aj‖ ≤ ‖x− aj′‖, j′ = j + 1, . . . , k}.

This way, we ensure that the cells are non-intersecting, and each of them is an intersection of k − 1 open or
closed half-spaces. Slightly abusing the notation, we sometimes write Vaj instead of Vj .

We recall some basic properties of an optimal quantizer under the assumption E ‖X‖2 < ∞.

1. For any distribution P with E‖X‖2 < ∞ and any k there exists an optimal k-elements quantizer A∗ (see
(Fischer, 2010), Corollary 3.1.) Note that an optimal quantizer is not necessarily unique.

2. For any optimal A∗ and i 6= j,
P (‖X − aj‖ = ‖X − ai‖) = 0,

which means that the measure of intersection of any two cells is zero, thus it does not matter to which cell
the boundary points are assigned (see (Graf and Luschgy, 2007), Theorem 4.2.)

3. The centroid condition (Graf and Luschgy, 2007): for j = 1, . . . , k,

E‖X − aj‖2 1[X ∈ Vj ] = inf
a∈E

E‖X − a‖2 1[X ∈ Vj ] and aj =
EX 1[X ∈ Vj ]

P (Vj)
.

4. Once the support of P consists of at least k elements, there is a well-defined real number M = M(P, k)
such that for any optimal A∗,

‖a‖ ≤ M for all a ∈ A∗. (4)

We refer to the original proof of Pollard or to Lemma 5.1 in (Fischer, 2010).

5. Due to Theorem 4.1 in (Graf and Luschgy, 2007) provided that the support of P consists of at least k
elements, there exists pmin > 0 s.t. for any optimal A∗,

min
j

P (Vj(A
∗)) ≥ pmin.

Observe that the same conclusions work if we replace P by its empirical counterpart PN . In particular, a
version of centroid condition is also valid for the empirically optimal quantizer defined by (1). However, it is not
true for a MOM based estimator in general.

Structure of the paper

• Section 2 is devoted to a high probability excess distortion bounds that hold in the case where a good guess
on the localization radius of the optimal quantizer A∗ is available. The result generalizes naturally several
known bounds for the empirically optimal quantizer in separable Hilbert spaces.

• Section 3 contains our main results. We show that there is a consistent median-of-means based estimator
that gives the sub-Gaussian performance under our minimal moment assumption provided that a good guess
on pmin is given and pminN → ∞. We also prove a minimax lower bound showing that our dependence on
pmin and N is sharp up to constant factors in the special case of Rd.

• Finally, Section 4 is devoted to the generalization of our main results. We show that it is possible to prove
a slightly weaker bound using the procedure that does not require the knowledge of the parameters of P .

• Section 5 is devoted to discussions and some final remarks.
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Notation. For a, b ∈ R, we set a∧ b = min{a, b}, a∨ b = max{a, b} and for two real valued functions f, g, we
write f . g iff there is an absolute constant c > 0 such that f ≤ cg. We set f ≃ g if f . g and g . f . Given a
probability measure P let P⊗N denote the measure which is N -times product of P . For the sake of simplicity,
we always assume that log x is equal to log x ∨ 1. The indicator of an event A is denoted by 1[A]. We also
use the standard O(·), Ω(·), Θ(·) notation as well as KL(P,Q) and TV(P,Q) for Kullback–Leibler divergence
and Total Variation distance between two measures P and Q (see e.g., (Boucheron et al., 2013)). The support
of a measure P is denoted by supp(P ). For a normed space (E, ‖ · ‖) let BR denote the closed ball of radius R
centered at the origin. To avoid the measurability issues we use the standard convention for the supremum of
stochastic processes (see Paragraph 2 in (Talagrand, 2014)). Given the sample X1, . . . , XN sampled i.i.d. from

P and a function f : E → R we denote PNf = PNf(X) = 1
N

N
∑

i=1

f(Xi). In general, the symbol PN will denote

the empirical measure.
We are interested in L2(PN ) space, and the corresponding covering number of a functional class G will be

denoted by N2(G, x, PN ), where x is the corresponding radius (see e.g., (Vershynin, 2016) for more details on
covering numbers).

2 Simple Case: Known Magnitude of an Optimal Quantizer

In this section we provide our simplest result which can serve as a good illustration of the underlying techniques.
In Sections 3 and 4 we will be focusing on sharpening our basic bound as well as weakening some of the
assumptions.

We first show a simple bound which holds in the situations where a good guess on M is available (recall
the property 4 and (4)). The result of Theorem 2.2 below can be seen as a strengthening of Theorem 11 in
(Brownlees et al., 2015).

First, we observe that M = M(P, k) defined above is not translation invariant. This means that if the
distribution P of X is changed in a way such that we replace X by X + c, where c ∈ E is a constant vector, the
value of M may increase, while the clustering problem will remain the same. Therefore, we slightly redefine the
quantity. Let M = M(P, k) be a number such that

‖a− µ‖ ≤ M for all a ∈ A∗, (5)

where µ = EX and A∗ is any particular optimal quantizer. Fortunately, due to e.g., (3) there is a very efficient
way to estimate µ. One may split the sample of size N in two almost equal parts and estimate µ based on the
first part. Therefore, for the sake of presentation, we assume that µ = 0 in this section.

Remark 2.1. It is important to note that the boundedness of the vectors in the finite set A∗ has nothing
in common with the boundedness of the observations X1, . . . , XN . The latter can still be unbounded and the
distribution P can be heavy-tailed.

We proceed with the main result of this section.

Theorem 2.2. Fix δ ∈ (0, 1). Let some M satisfying (5) be known and assume that µ = EX = 0. There is an
estimator ÂM,δ that depends on M and δ such that, with probability at least 1− δ,

D(ÂM,δ)−D(A∗) . M(M +
√

E ‖X‖2)





k√
N

+

√

log 1
δ

N



 .

Let us now define the estimator that we use in Theorem 2.2. Notice that minimizing mina∈A ‖a−X‖2 with
respect to A is equivalent to

lA(X) → min, lA(x) = min
a∈A

−2〈x, a〉+ ‖a‖2 .
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Fix 1 ≤ ℓ ≤ N and assume without loss of generality that m = N/ℓ is integer. Split the set {1, . . . , N} into ℓ
blocks I1, . . . , Iℓ of equal size such that Ij = {1+ (j− 1)m, . . . , jm}. For any real-valued function f and random
variables X1, . . . , XN define

MOM(f) = Median

(

ℓ

N

∑

i∈I1

f(Xi), . . . ,
ℓ

N

∑

i∈Iℓ

f(Xi)

)

.

Slightly abusing the notation we set

Ak = {A ⊂ E : |A| ≤ k} and Ak
M = {A ∈ Ak : max

a∈A
‖a‖ ≤ M}. (6)

The estimator of Theorem 2.2. Define

ÂM,δ = arg min
A∈Ak

M

MOM(lA),

with the number of blocks ℓ = 8⌈log 2
δ ⌉+ 1 . If there are many minimizers, we may choose any of them.

The proof of Theorem 2.2 relies on the uniform bound for the median of means estimator. However, instead
of restricting our attention to the medians only, we consider the quantiles of means (QOM). That is, for a given
level α ∈ (0, 1),

QOMα(f) = Quantα

(

ℓ

N

∑

i∈I1

f(Xi), . . . ,
ℓ

N

∑

i∈Iℓ

f(Xi)

)

,

where Quantα(x1, . . . , xℓ) = x(⌈αℓ⌉), for x(1), . . . , x(ℓ) being a non-decreasing rearrangement of the original se-
quence. For the sake of simplicity, we always assume that ℓα is non-integer, such that the quantile is uniquely
defined, and, in particular Quantα(x1, . . . , xℓ) = −Quant1−α(−x1, . . . ,−xℓ). It will be usually enough to as-
sume that ℓ is not even which can be always achieved by adding at most one extra block. Obviously, QOM 1

2

corresponds to the median of means.

Lemma 2.3. Fix α ∈ (0, 1) and consider a separable class F of square integrable real-valued functions. Suppose,

we have ℓ blocks and ℓα is a non-integer. It holds that, with probability at least 1− e−α2ℓ/2,

sup
f∈F

(E f −QOMα(f)) .
1

α
E sup

f∈F

(

1

N

N
∑

i=1

ǫif(Xi)

)

+
1

α1/2

√

sup
f∈F

Var(f(X))
ℓ

N
, (7)

as well as with probability at least 1− e−(1−α)2ℓ/2,

sup
f∈F

(QOMα(f)− E f) .
1

1− α
E sup

f∈F

(

1

N

N
∑

i=1

ǫif(Xi)

)

+
1

(1− α)1/2

√

sup
f∈F

Var(f(X))
ℓ

N
, (8)

where ǫ1, . . . , ǫN are i.i.d. Rademacher signs.

Remark 2.4. In the case where α is fixed, we can take ℓ ≃ log 1
δ , so that with probability at least 1− δ,

sup
f∈F

|E f −QOMα(f)| . E sup
f∈F

(

1

N

N
∑

i=1

ǫif(Xi)

)

+

√

sup
f∈F

Var(f(X))
log 1

δ

N
,

where the first term represents the expectation of the empirical process, whereas the second term corresponds to a
tail with the sub-Gaussian behavior. Compare this inequality with Talagrand’s inequality for empirical processes,
where the assumption sup

f∈F
|f(X)| ≤ C almost surely is needed (see Chapter 12 in Boucheron et al. (2013)).
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As noticed by Minsker (2018) (see equation (2.7)) an inequality similar to (7) of Lemma 2.3 for α = 1
2 follows

from the proof of Theorem 2 in (Lecué, Lerasle and Mathieu, 2018). However, to the best of our knowledge,
Lemma 2.3 in this form is not presented explicitly in the literature. We provide its proof in the appendix for the
sake of completeness.

Proof of Theorem 2.2. Step 1. First, we provide the high probability part of the analysis. Observe that

D(ÂM,δ)−D(A∗) = E lÂM,δ
− E lA∗

≤ E lÂM,δ
−MOM(lÂM,δ

) +MOM(lA∗)− E lA∗

≤ 2 sup
A∈Ak

M

|E lA −MOM(lA)| ,

where we used MOM(lA∗) ≥ MOM(lÂM,δ
) since A∗ ∈ Ak

M . We have by Lemma 2.3 that, with probability at

least 1− δ,

sup
A∈Ak

M

|E lA(X)−MOM(lA)| . E sup
A∈Ak

M

1

N

N
∑

i=1

ǫilA(Xi) +

√

√

√

√ sup
A∈Ak

M

Var(lA(X))
log 1

δ

N
,

where ǫ1, . . . , ǫN are independent Rademacher signs. Here, we have for each A ∈ Ak
M ,

lA(x)
2 = (‖x− ax‖2 − ‖x‖2)2 = (‖x− ax‖ − ‖x‖)2(‖x− ax‖+ ‖x‖)2

≤ ‖ax‖2(2‖x‖+ ‖ax‖)2,

where ax ∈ Argmina∈A‖x− a‖. Then, since ‖ax‖ ≤ M for any x, we have

Var(lA(X)) ≤ E lA(X)2 . M2(M2 + E‖X‖2) .

Step 2. Note that ÂM,δ can consist of less than k points. However, in this case we can always add the copies

of some of them and identify ÂM,δ with (a1, . . . , ak). This does not change lÂM,δ
and preserves the Voronoi

partition of the space since the cells corresponding to the newly added points are empty. Finally, we estimate

E sup
A∈Ak

M

1

N

N
∑

i=1

ǫilA(Xi). (9)

Consider the set FA = {fA : A ∈ Ak
M} of Rk-valued functions such that for A = {a1, . . . , ak}, A ∈ Ak

M we set

fA(x) =
(

−2〈x, a1〉+ ‖a1‖2, . . . ,−2〈x, ak〉+ ‖ak‖2
)

.

For c ∈ R
k let φ(c) = min

i≤k
ci. We obviously have lA(X) = φ(fA(X)). Following the analysis of Section 3.2 in

(Maurer, 2016) we have for any two A = {a1, . . . , ak} and B = {b1, . . . , bk} from Ak
M ,

|φ(fA(Xi))− φ(fB(Xi))| ≤ ‖
(

‖Xi − a1‖2 − ‖Xi − b1‖2, . . . , ‖Xi − ak‖2 − ‖Xi − bk‖2
)

‖2.

This allows us to use the ℓ2-contraction to upper bound (9) with the quantity scaling linearly in k. To do so, we
observe that Maurer’s vector contraction inequality (Theorem 3 in (Maurer, 2016)) implies

E sup
A∈Ak

M

1

N

N
∑

i=1

ǫilA(Xi) ≤
√
2

N



2E sup
A∈Ak

M

N,k
∑

i,j=1

ǫi,j〈Xi, aj〉+ E sup
A∈Ak

M

N,k
∑

i,j=1

ǫi,j‖aj‖2


 ,
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where ǫi,j , i = 1, . . . , N , j = 1, . . . , k are independent Rademacher signs, and A = {a1, . . . , ak}. We further have
by Khintchine’s inequality,

E sup
A∈Ak

M

N,k
∑

i,j=1

ǫi,j〈Xi, aj〉 ≤
k
∑

j=1

E sup
A∈Ak

M

〈

N
∑

i=1

ǫi,jXi, aj

〉

≤
k
∑

j=1

E sup
A∈Ak

M

∥

∥

∥

∥

∥

k
∑

i=1

ǫi,jXi

∥

∥

∥

∥

∥

‖aj‖

≤ kM max
j≤k

E

∥

∥

∥

∥

∥

N
∑

i=1

ǫi,jXi

∥

∥

∥

∥

∥

≤ kM max
j≤k

√

√

√

√

E

∥

∥

∥

∥

∥

N
∑

i=1

ǫi,jXi

∥

∥

∥

∥

∥

2

≤ kM

√

√

√

√

N
∑

i=1

E ‖Xi‖2,

and also

E sup
A∈Ak

M

N,k
∑

i,j=1

ǫi,j‖aj‖2 ≤
k
∑

j=1

E sup
A∈Ak

M

∣

∣

∣

∣

∣

N
∑

i=1

ǫi,j

∣

∣

∣

∣

∣

‖aj‖2 . kM2
√
N.

Finally, taking the expectation with respect to X1, . . . , XN and using Jensen’s inequality we obtain an analog
of (2). That is,

E sup
A∈Ak

M

1

N

N
∑

i=1

ǫilA(Xi) .
kM

(

√

E ‖X‖2 +M
)

√
N

.

Combining the above bounds we prove the claim.

It is by now well known that in our setup in the bounded case (e.g., when ‖X‖ ≤ T almost surely) the right
dependence of the excess distortion on the number of clusters is

√
k up to logarithmic factors (Fefferman et al.,

2016; Narayanan and Mitter, 2010). It is natural to ask if the same dependence is possible in our Theorem 2.2.
First, observe that in the unbounded case, there are some complications. In particular, our parameter M =
M(P, k) can also depend on k. This means that the overall dependence of the excess distortion on k can be
more complicated. Nevertheless, in the next section we show, among other things, that these improvements are
possible and, in particular, the k-term will be replaced by the

√
k-term.

3 Towards Better Bounds Based on pmin

This section is devoted to our main results. We prove almost optimal non-asymptotic bounds for k-means. Recall
that if E‖X‖2 < ∞ we have for any optimal quantizer

pmin = min
a∈A∗

P (Va) > 0,

unless the support of P has less than k points. Notice that pmin controls the magnitude of the largest vector
in A∗. Indeed, using the centroid condition, Jensen’s inequality and the Cauchy–Schwarz inequality we have for
any a ∈ A∗,

‖a‖ = ‖E[X | X ∈ Va]‖ =
‖EX 1[X ∈ Va]‖

P (Va)
≤ E

1/2‖X‖2
√

P (Va)
≤ E

1/2‖X‖2√
pmin

. (10)

This confirms that the mass of the lightest cluster of an optimal quantizer should affect the quality of any
empirical quantizer.

Let us return to Example 1.2. In this case we have k = 2, M ≤
√
N , pmin = 1

N , E‖X‖2 ≤ 1 and the

bound (10) is tight. However, the bound of Theorem 2.2 is not tight anymore as it scales as O(
√
N). Indeed,

Theorem 2.2 implies the bound O

(

k(M2+M
√

E‖X‖2)√
N

)

which is O
(

k E‖X‖2

pmin

√
N

)

whenever (10) is tight.
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The challenging part is to get the optimal dependence on pmin and N in the excess distortion bound. In what

follows, we show that the dependence Θ
(

1√
Npmin

)

is achievable with respect to these parameters. The result of

this form guarantees the consistency for sequences of distributions depending on N as long as Npmin → ∞ and
the second moment is uniformly bounded. This extends the original asymptotic result of Pollard (1981) to the
case where the distribution is allowed to change with N .

Suppose that we know the value of pmin > 0 for at least one optimal quantizer. Denote for short, PN (V ) =
1
N

∑N
i=1 1[Xi ∈ V ]. Naturally, we want to find a solution Â such that the corresponding Voronoi cells are of

measure at least pmin > 0 which translates into PN (Vj) ≥ pmin/2 due to concentration. It implies that each cell

corresponding to Â contains enough sample points, which corresponds to the so-called constrained k-means clus-
tering. In R

d the algorithmic side of constrained clustering is well studied in the context of optimal transport and
has numerous practical applications, see (Ng, 2000; Cuturi and Doucet, 2014; Genevay, Dulac-Arnold and Vert,
2019) and references therein. We have additional motivation to introduce pmin since this quantity appears nat-
urally in the condition implying the so-called fast rates of the excess distortion in the bounded case (Levrard,
2015). Finally, recalling Example 1.2 we know that in any reasonable clustering problem pmin ≫ 1

N which means
that the optimal solution A∗ has enough observations in each cell. At the same time, we do not have such a
natural preliminary guess on M .

As before, the number of blocks depends solely on the desired confidence level. The estimator of this section
is translation invariant and the assumption EX = 0 is not needed anymore. Our main result is the following
theorem.

Theorem 3.1. Fix δ ∈ (0, 1). Suppose, mina∈A∗ P (Va) ≥ pmin for some optimal quantizer A∗. There is an
estimator Âδ,pmin

that depends on pmin and δ such that, with probability at least 1− δ,

D(Âδ,pmin
)−D(A∗) . E‖X − µ‖2



(logN)2

√

k

Npmin
+

√

log 1
δ

Npmin



 .

Let us now present our estimator.

The estimator of Theorem 3.1. We set

Âpmin,δ = argmin
A∈Ak

min
a∈A

PN (Va)≥pmin/2

MOM(lA), (11)

with the number of blocks ℓ = 12⌈log 6
δ ⌉+ 1.

The idea behind this estimator is quite natural: we guarantee the robustness by using the MOM principle and
by restricting our attention only on the cells containing enough points. As already mentioned, this is essentially
a robust version of the constrained k-means quantizer introduced in Ng (2000).

We introduce several technical results that together will lead us to the proof of Theorem 3.1 at the end of
this section. As before, since the estimator we consider is translation invariant, we can assume that EX = 0 in
the proof without loss of generality. As previously, our main tool is the concentration of MOM for a suitably
chosen subset of {lA : A ∈ Ak}. We show that the restriction PN (Vj) ≥ pmin/2 in (11) implies a convenient
bound for the vectors in the resulting empirical quantizer. Let us define the following class of quantizers:

Ak
M,m =

{

A ∈ Ak : min
a∈A

‖a‖ ≤ m, max
a∈A

‖a‖ ≤ M
}

, 0 < m ≤ M.

The following lemma says that with high probability all the solutions corresponding to Âδ,pmin
are bounded

which is, of course, natural in view of the proof of Theorem 2.2. However, the key technical observation is that
we also need to control the smallest norm by saying that there is at least one center in Âδ,pmin

which is relatively

9



close to the actual expectation. Surprisingly, in order to show this we do not have to use any uniform results
that hold simultaneously for the entire class Ak. Therefore, we have the following property.

Lemma 3.2. With probability at least 1 − e−ℓ/12, it holds that simultaneously for all A ∈ Ak such that
MOM(lA) ≤ 0,

min
a∈A

‖a‖ ≤ 4

√

2E‖X‖2.

Moreover, with probability at least 1−
(

e−ℓ/12 + e−Npmin/12
)

, it holds that

Âδ,pmin
∈ Ak

M,m for m = 4

√

2E‖X‖2 and M = 10

√

E‖X‖2
pmin

.

Remark 3.3. Note that the first statement of the above lemma gives us a prior bound on the excess distortion
D(Âδ,pmin

) −D(A∗). Indeed, since ℓ ≥ 12 log 1
δ , with probability at least 1 − δ, we have mina∈Âδ,pmin

‖a‖ ≤ m,

thus
D(Âδ,pmin

)−D(A∗) ≤ D(Âδ,pmin
) = E min

a∈Âδ,pmin

‖a−X‖2 ≤ E(m+ ‖X‖)2 . E‖X‖2. (12)

Before going to the proof of Lemma 3.2, let us state the following trivial result on empirical quantiles. We
postpone its proof to Appendix.

Lemma 3.4. Let ξ1, . . . , ξℓ be i.i.d. random values such that E ξ < ∞ and ξ ≥ 0 almost surely. Then for any
0 < α < 1 we have

P

(

Quant1−α(ξ1, . . . , ξℓ) ≥
2

α
E ξ

)

≤ exp

(

−αℓ

6

)

.

Proof of Lemma 3.2. Step 1. First, let us prove the bound on the minimal norm. Consider A ∈ Ak such that
mina∈A‖a‖ ≥ m. Then for any x ∈ Bm/2 (recall that Bm/2 is a ball of radius m/2 centered at the origin) it
holds that mina∈A‖a− x‖ ≥ m

2 , thus for all x ∈ E,

lA(x) = min
a∈A

‖a− x‖2 − ‖x‖2 ≥ m2

4
1

[

‖x‖ ≤ m

2

]

− ‖x‖2 =
m2

4
−
(

m2

4
1

[

‖x‖ >
m

2

]

+ ‖x‖2
)

,

and hence

MOM(lA) ≥
m2

4
−MOM

(

m2

4
1

[

‖X‖ >
m

2

]

+ ‖X‖2
)

.

According to Lemma 3.4, with probability at least 1− e−ℓ/12, it holds that

MOM

(

m2

4
1

[

‖X‖ >
m

2

]

+ ‖x‖2
)

≤ 4E

(

m2

4
1

[

‖X‖ >
m

2

]

+ ‖X‖2
)

< 8E‖X‖2,

thus, simultaneously for all A ∈ Ak satisfying mina∈A‖a‖ ≥ m we have

MOM(lA) >
m2

4
− 8E‖X‖2 = 0.

In particular, since {0} is always one of the potential candidates for Âδ,pmin
and MOM(l{0}) = 0, we have

min
a∈Âδ,pmin

‖a‖ < m.

Step 2. Now consider A ∈ Ak such that there is b ∈ A with ‖b‖ ≤ m. It is easy to see that for any a ∈ A,
x ∈ Va implies ‖a− x‖ ≤ ‖b− x‖, thus

‖x‖ ≥ ‖a‖ − ‖b‖
2

. (13)
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Assume ‖a‖ > M for some a ∈ A, then ‖x‖ > M−m
2 for any x ∈ Va. Hence,

PN (Va) ≤ PN (1 [‖X‖ > (M −m)/2]) .

At the same time,

P (‖X‖ > (M −m)/2) <
4E‖X‖2
(M −m)2

≤ pmin

4
.

Now Chernoff’s bound yields that, with probability at least 1− e−Npmin/12,

PN (‖X‖ > (M −m)/2) ≤ P (‖X‖ > (M −m)/2) +
pmin

4
<

pmin

2
.

This implies PN (Va) < pmin

2 , what means that none of such A can be chosen by our estimator. By the union

bound, we finally get that Âδ,pmin
∈ Ak

M,m with probability at least 1−
(

e−ℓ/12 + e−Npmin/12
)

.

The next step is to provide a uniform concentration of MOM over a class of quantizers Ak
M,m. First, we

estimate the L2-diameter and covering numbers of the functional class corresponding to Ak
M,m:

Fk
M,m =

{

lA : A ∈ Ak
M,m

}

.

Lemma 3.5. For any distribution P and any finite set A ⊂ Ak
M,m it holds that

∑

a∈A

‖a‖2P (Va) ≤ 2m2 + 8E‖X‖2, (14)

and
E l2A(X) ≤ 4M2

(

m2 + 6E‖X‖2
)

. (15)

Proof. Fix A ∈ Ak and let b ∈ A be such that ‖b‖ ≤ m. Then for any a ∈ A and x ∈ Va it holds from (13) that
‖a‖ ≤ ‖b‖+ 2‖x‖ ≤ m+ 2‖x‖. Therefore,

∑

a∈A

P (Va)‖a‖2 = E

∑

a∈A

1[X ∈ Va]‖a‖2 ≤ E (m+ 2‖X‖)2 ≤ 2m2 + 8E‖X‖2.

Further, we easily have using (14)

E l2A(X) ≤
∑

a∈A

P (Va)E

[

(

‖a‖2 + 2‖a‖ · ‖X‖
)2

|X ∈ Va

]

≤ 2M2

(

∑

a∈A

P (Va)‖a‖2 + 4E‖X‖2
)

≤ 4M2
(

m2 + 6E‖X‖2
)

.

The next technical lemma is one of our main contributions which can be of independent interest. It states
the upper bounds on logN2

(

Fk
M,m, t, PN

)

for general separable Hilbert spaces as well as for Rd. The question

on sharp bounds on covering numbers for the classes of functions indexed by Ak appeared naturally in the
analysis of k-means clustering in the uniformly bounded case. The way to do it is to estimate the so-called
fat-shattering dimension (Narayanan and Mitter, 2010; Fefferman, Mitter and Narayanan, 2016) or to decom-
pose the covering numbers as a product of k covering numbers of some simpler classes indexed by A as in
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(Brownlees, Joly and Lugosi, 2015; Foster and Rakhlin, 2019). Furthermore, in the special case of Rd, the anal-
ysis can be done via the computation of Pollard’s pseudodimension (Bachem et al., 2017). Unfortunately, it
seems that these approaches are better tuned to the analysis of uniformly bounded distributions or to the finite
dimensional case. Our approach will be based on direct computations of these covering numbers via the Johnson–
Lindenstrauss lemma (Johnson and Lindenstrauss, 1984), and in R

d our analysis will remove the unnecessary
logarithmic factors appearing in some previous works in the bounded case.

Lemma 3.6. For any 0 < t < diam2

(

Fk
M,m, PN

)

it holds that

logN2

(

Fk
M,m, t, PN

)

.
kM2

(

m2 + PN‖X‖2
)

logN

t2
log

M
(

m+ P
1/2
N ‖X‖2

)

t
.

Moreover, if E = R
d, then

logN2

(

Fk
M,m, t, PN

)

. kd log
M
(

m+ P
1/2
N ‖X‖2

)

t
.

The proof of this fact is differed to Appendix. With this result in mind we are ready to show the following
uniform bound.

Lemma 3.7. Fix the number of blocks ℓ and assume that ℓ divides N . Then for any fixed α ∈ (0, 1) with ℓα

being non-integer, with probability at least 1− e−α2ℓ/2,

sup
A∈Ak

M,m

(E lA(X)−QOMα(lA)) . M
(

m+ E
1/2‖X‖2

)

(

(logN)2

α

√

k

N
+

√

ℓ

αN

)

, (16)

as well as, with probability at least 1− e−(1−α)2ℓ/2,

sup
A∈Ak

M,m

(QOMα(lA)− E lA(X)) . M
(

m+ E
1/2‖X‖2

)

(

(logN)2

1− α

√

k

N
+

√

ℓ

(1− α)N

)

. (17)

Remark 3.8. It is interesting to compare the bound (16) with the result one can obtain via the vector contraction

inequalities which were used in the proof of Theorem 2.2. First, we notice that the leading term M2+M E
1/2‖X‖2

is replaced in (16) by a much better term Mm+M E
1/2‖X‖2.

Proof. By Lemma 2.3, with probability at least 1− e−α2ℓ/2, it holds that

sup
A∈Ak

M,m

(E lA(X)−QOMα(lA)) . E sup
A∈Ak

M,m

(

1

αN

N
∑

i=1

ǫilA(Xi)

)

+

√

sup
A∈Ak

M,m

Var(lA(X))
ℓ

αN
.

Now we are going to bound the first term of the right-hand side for a fixed sample X1, . . . , XN using the
Dudley integral argument. It follows from (15) applied to the empirical distribution PN that

diam2

(

Fk
M,m, PN

)

≤ 10MσN , where σN = m+ P
1/2
N ‖X‖2,

thus, the standard Dudley integral argument (e.g., Lemma A.3 in (Srebro et al., 2010)) together with Lemma 3.6
ensure the following bound on the Rademacher averages of lA,

Eǫ sup
A∈Ak

M,m

(

1

N

N
∑

i=1

ǫilA(Xi)

)

. β +
1√
N

∫ diam2(Fk
M,m,PN)

β

√

logN2

(

Fk
M,m, t, PN

)

dt

. β +
1√
N

∫ 10MσN

β

MσN

t

√

k logN log
MσN

t
dt

. β +MσN

√

k logN

N
log3/2

(

MσN

β

)
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Further, choosing β = MσN

√

k
N we have

Eǫ sup
A∈Ak

M,m

(

1

N

N
∑

i=1

ǫilA(Xi)

)

. MσN

√

k

N
logN log3

N

k
≤ MσN (logN)2

√

k

N
.

Finally, (15) implies

Var(lA(X)) ≤ E l2A(X) . M2
(

m2 + E‖X‖2
)

,

thus we conclude that, with probability at least 1− e−α2ℓ/2,

sup
A∈Ak

M,m

(E lA(X)−QOMα(lA)) .
EMσN (logN)2

α

√

k

N
+

√

sup
A∈Ak

M,m

Var(lA(X))
ℓ

αN

. M
(

m+ E
1/2‖X‖2

)

(

(logN)2

α

√

k

N
+

√

ℓ

αN

)

.

Inequality (17) can be similarly derived from (8).

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. In order to finish the proof we need to combine several results. Let us fix some optimal
quantizer A∗, satisfying P (Va) ≥ pmin for all a ∈ A∗. We derive the bound on the union of the events below:

• by Chernoff’s and the union bounds, it holds with probability at least 1− ke−Npmin/8 that for any a ∈ A∗

PN (Va) ≥
P (Va)

2
≥ pmin

2
,

hence A∗ is in the set of possible solutions;

• by Lemma 3.2, with probability at least 1 − e−ℓ/12 − e−Npmin/12, we have Âδ,pmin
∈ Ak

M,m with M =

10
√

E‖X‖2

pmin

and m = 4

√

2E‖X‖2. In addition, a similar property can be derived for A∗. Indeed, if

mina∈A∗‖a‖ > m, then

E lA∗(X) ≥ m2

4
P
(

‖X‖ ≤ m

2

)

− E‖X‖2 ≥ 8E‖X‖2
(

1− 1

8

)

− E‖X‖2 > 0 = E l{0}(X).

This contradicts the optimality of A∗. Now assume mina∈A∗‖a‖ ≤ m, but ‖a‖ > M for some a ∈ A∗.
Arguing as in the proof of Lemma 3.2, we obtain

P (Va) ≤ P

(

‖X‖ >
M −m

2

)

<
4E‖X‖2
(M −m)2

≤ pmin

4
.

This contradicts the lower bound P (Va) ≥ pmin;

• by Lemma 3.7, taking M and m as above, we have that, with probability at least 1− 2e−ℓ/8,

sup
A∈AM,m

|E lA −MOM(lA)| . E‖X‖2
(

(logN)2

√

k

Npmin
+

√

ℓ

Npmin

)

.

All three assertions take place with probability at least 1−3e−ℓ/12−(k+1)e−Npmin/12. Suppose for a moment that

Npmin ≥ 12 log 2(k+1)
δ . Then, additionally, due to the choice ℓ = 12⌈log 6

δ ⌉+1, we have that the total probability
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is at least 1 − δ. Since we know that on this event Âδ,pmin
, A∗ ∈ AM,m and MOM(lÂδ,pmin

) ≤ MOM(lA∗), we

have

D(Âδ,pmin
)−D(A∗) = E lÂδ,pmin

− E lA∗

≤ E lÂδ,pmin

−MOM(lÂδ,pmin

)− E lA∗ +MOM(lA∗)

. E‖X‖2


(logN)2

√

k

Npmin
+

√

log 1
δ

Npmin



 .

Finally, consider the case Npmin < 12 log 2(k+1)
δ . According to (12) one has, with probability at least 1− δ,

D(Âδ,pmin
)−D(A∗) . E‖X‖2 . E‖X‖2



(logN)2

√

k

Npmin
+

√

log 1
δ

Npmin



 .

The claim follows.

Finally, we present an analog of Theorem 3.1 in R
d. We are able to completely remove the (logN)-factor by

making d appear in the bound. First, we need the following simple result.

Corollary 3.9. For any α ∈ (0, 1) with ℓα being non-integer, we have, with probability at least 1− e−α2ℓ/2,

sup
A∈Ak

M,m

(E lA(X)−QOMα(lA)) . M
(

m+ E
1/2‖X‖2

)

(

1

α

√

kd

N
+

√

ℓ

αN

)

.

as well as, with probability at least 1− e−(1−α)2ℓ/2,

sup
A∈Ak

M,m

(QOMα(lA)− E lA(X)) . M
(

m+ E
1/2‖X‖2

)

(

1

1− α

√

kd

N
+

√

ℓ

(1 − α)N

)

.

Proof. Using the Dudley integral argument again we have

Eǫ sup
A∈Ak

M,m

(

1

N

N
∑

i=1

ǫilA(Xi)

)

.
1√
N

∫ diam2(Fk
M,m,PN)

0

√

logN2

(

Fk
M,m, t, PN

)

dt

.
1√
N

∫ 10MσN

0

√

kd log

(

MσN

t

)

dt

. MσN

√

kd

N
.

The rest of the proof is exactly the same as for Lemma 3.7.

With this result in mind, we can immediately prove our second main result.

Theorem 3.10. Consider the case of Rd with the Euclidean distance. Fix δ ∈ (0, 1). Suppose, mina∈A∗ P (Va) ≥
pmin for some optimal quantizer A∗. The same estimator Âδ,pmin

satisfies, with probability at least 1− δ,

D(Âδ,pmin
)−D(A∗) . E‖X − µ‖2

√

kd+ log 1
δ

Npmin
.

Proof. The proof repeats the same lines of the proof of Theorem 3.1. The only difference is that the bound of
Lemma 3.7 is replaced by the bound of Corollary 3.9.
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3.1 A lower bound with pmin

Here we study the question of minimax lower bounds for the problem considered above. The lower bounds for the
excess distortion appeared first in (Bartlett et al., 1998) for the bounded case (‖X‖ ≤ 1 almost surely), where

they show a minimax lower bound of order Ω

(

√

k1−4/d

N

)

. Furthermore, Linder (2002) recovers this bound for

constant d and k ≥ 3, while Antos (2005) shows the same bound for k = 2 but only for empirically optimal
quantizers. Below, we focus on how the mass of the lightest cluster affects the excess distortion in the unbounded
case. We extend the construction of Linder (2002) to derive a bound that confirms that the dependence on pmin

and N in Theorem 3.10 is sharp.
Fix k = 4 and d = 1. Consider a class of probability measures on R,

P(pmin, σ) =

{

P : EX2 ≤ σ2 and there is A∗ ∈ argminD(A,P ) such that min
a∈A∗

P (Va) ≥ pmin

}

,

i.e., the probability measures that have an optimal quantizer based on k points such that the probability of X
falling into each Voronoi cell under P is at least pmin. Theorem 3.10 implies that there is an estimator ÂN based
on the i.i.d. sample X1, . . . , XN , such that for any P ∈ P(pmin, σ), we have with probability at least (say) 0.99,

D(ÂN , P )−D(A∗, P ) . σ2

√

1

Npmin
,

where the probability of the event is measured with respect to the joint distribution P = P⊗N . The following
result shows that when d and k are constants, the result is sharp up to a constant factor.

Theorem 3.11. Under the notation introduced above let σ > 0, pmin ≤ 1/10. Then, for any empirically designed
quantizer ÂN there is a distribution P ∈ P(pmin, σ), such that, with probability at least 1

4 ,

D(ÂN , P )−D(A∗, P ) ≥ σ2

80

√

1

Npmin
.

Let us first present a heuristic argument showing the validity of Theorem 3.11. For p ∈ (0, 1/2), δ ∈
(−1/2, 1/2) consider a distribution Pp,δ supported on five points

Pp,δ(X = − 1
2p

−1/2) = Pp,δ(X = −p−1/2) =
p(1− δ)

4
, Pp,δ(X = 0) = 1− p,

Pp,δ(X = 1
2p

−1/2) = Pp,δ(X = p−1/2) =
p(1 + δ)

4
.

We have EX2 = 5/8. Obviously, we can rescale these values, so it is enough to consider the case σ2 = 5/8. It is
easy to see that for δ > 0 the optimal quantizer is A∗ = (0, 1

2p
−1/2, p−1/2,− 3

4p
−1/2) with the distortion

D(A∗, Pp,δ) =
p(1− δ)

2

(

p−1/2

4

)2

=
1− δ

32
.

For δ = 1√
Np

, the number of points on the negative side will be greater with constant probability (see p. 27 in

(Linder, 2002)). In such a case, the empirically optimal quantizer must be Â = (0,−p−1/2,− 1
2p

−1/2, (12+a)p−1/2),
where a is some value between 0 and 1

2 . Thus, the distortion of any empirically optimal quantizer will be at least

D(Â, Pp,δ) ≥
p(1 + δ)

2

(

p−1/2

4

)2

=
1 + δ

32
,

which implies

D(Â, Pp,δ)−D(A∗, Pp,δ) ≥
δ

16
=

1

64

1√
Np

.

However, this only touches the empirically optimal quantizer. The proof of the minimax bound relies on a
standard reduction to hypothesis testing.
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Proof of Theorem 3.11. As pointed above, we can fix σ2 = 5/8 without loss of generality. Set p = 4pmin ≤ 2/5.
Then we have that Pp,δ, Pp,−δ ∈ P(pmin, 5/8). Denote, P1 = Pp,δ and P2 = Pp,−δ. The Kullback-Leibler
divergence between the two satisfies

KL(P1, P2) = pδ log
1 + δ

1− δ
≤ pδ2 .

Using Pinsker’s inequality and additivity of the KL-divergence for product measures (see e.g., (Boucheron et al.,
2013)) we have

TV(P⊗N
1 , P⊗N

2 ) ≤
√

N

2
KL(P1, P2) ≤

√

Npδ2 = 1/2,

where we choose δ = 1/(4
√
Np). Below, we only consider the distributions P ∈ {P1, P2} instead of the whole class

P(pmin,
√

5/8). Consider an empirical quantizer ÂN = ÂN (X1, . . . , XN ) that takes only the values {A1, A2},
where

A1 = (− 3
4p

−1/2, 0, 12p
−1/2, p−1/2) and A2 = (−p−1/2,− 1

2p
−1/2, 0, 34p

−1/2).

Let Ω1 ⊂ R
N is the set where ÂN = A1, and ÂN = A2 elsewhere. Since TV(P⊗N

1 , P⊗N
2 ) ≤ 1/2, we have

max
j=1,2

P⊗N
j {ÂN 6= Aj} = max(1− P⊗N

1 (Ω1), P
⊗N
2 (Ω1)) ≥ max(1/2− P⊗N

2 (Ω1), P
⊗N
2 (Ω1)) ≥ 1/4.

Notice that under Pj the event ÂN 6= Aj corresponds to the distortion

D(A1, P2) = D(A2, P1) =
p(1 + δ)

2

(

p−1/2

4

)2

=
1 + δ

32
,

whereas the minimal distortion is

D(Aj , Pj) =
p(1− δ)

2

(

p−1/2

4

)2

=
1− δ

32
.

Since δ = 1/(4
√
Np), p = 4pmin, and σ2 = 5/8 the result follows.

It remains to show why only ÂN ∈ {A1, A2} matters. For an arbitrary ÂN , the corresponding Voronoi cells
could be one of the following:

1.
{

{−p−1/2,− 1
2p

−1/2}, {0}, { 1
2p

−1/2}, {p−1/2}
}

,

2.
{

{−p−1/2}, {− 1
2p

−1/2, 0}, { 1
2p

−1/2}, {p−1/2}
}

,

3.
{

{−p−1/2}, {− 1
2p

−1/2}, {0, 12p−1/2}, {p−1/2}
}

,

4.
{

{−p−1/2}, {− 1
2p

−1/2}, {0}, { 1
2p

−1/2, p−1/2}
}

.

Denote by ÃN an empirical quantizer such that it equals to A1 in the cases 1. and 2., and equals to A2 in the
cases 3. and 4. Let us show case by case, that the distortion of ÃN is smaller under either measure.

1. This case is trivial: by the centroid condition under both measures the optimal center for the cluster
{−p−1/2,− 1

2p
−1/2} is − 3

4p
−1/2, which corresponds to A1.

2. It is easy to calculate that the minimal distortion of a cluster on two points a, b with probabilities q, r,
respectively, is (a− b)2 qr

q+r . Therefore, using only the distortion on {− 1
2p

−1/2, 0},

D(ÂN , P1) ≥
1

4p

p(1− δ)(1 − 2p)

p(1− δ) + 4(1− 2p)
>

1− δ

32
= D(A1, P1),

where the second inequality follows from p ≤ 2/5. Using additionally δ < 1, we have as well

D(ÂN , P2) ≥
1

4p

p(1 + δ)(1 − 2p)

p(1 + δ) + 4(1− 2p)
>

1 + δ

32
= D(A1, P2) .

Due to the symmetry, case 3. is similar to case 2. and case 4. is similar to case 1. We conclude that we always
have D(ÂN , Pj) ≥ D(ÃN , Pj) for both j = 1, 2.

16



4 Unknown Parameters of Distributions

In this section we show that a convergence rate similar to one in Theorem 2.2 and Theorem 3.1 holds without
any prior knowledge on M or pmin. Our motivation is that in practice we may not have any information about
the underlying distribution P . We show that even in this case the sub-Gaussian excess distortion bounds are
possible. However, as a result, our bounds become more sensitive to some specific properties of P . The following
theorem is the main result of this section.

Theorem 4.1. Fix δ ∈ (0, 1). There is an estimator Âδ depending on δ such that, with probability at least 1− δ,

D(Âδ)−D(A∗) . R E
1/2‖X − µ‖2



(logN)2
√

k

N
+

√

log 1
δ

N



 ,

where R is such that

E‖X − µ‖2 1[‖X − µ‖ > R] ≤ ∆

64
,

and
∆ = inf

A∈Ak−1

D(A) − inf
A∈Ak

D(A).

Remark 4.2. Observe that both R and ∆ played an import role in the original proof of the strong consistency
by Pollard.

Let us first define our estimator. As before, in this section we use the notation (6).

The estimator of Theorem 4.1. We set

Âδ = argmin
A∈Ak

MOM(lA),

with the number of blocks ℓ = 32⌈log 4
δ ⌉+ 1.

As before, our estimator Âδ is an analog of an empirically optimal quantizer (1) with the only difference that
instead of the sample mean we minimize the MOM criterion. Note that the estimator is translation invariant,
so we can once again assume that EX = 0 without loss of generality.

Proof of Theorem 4.1. We are going to compare Âδ with Âδ ∩ BM for some M & R and show that with high
probability either E lÂδ∩BM

is close to E lÂδ
(for small N) or Âδ ⊂ BM (for large N), where BM is a ball of

radius M centred at the origin. Moreover, mina∈Âδ
‖a‖ . E

1/2‖X‖2 with high probability, thus in both cases we
can apply Lemma 3.7 to obtain the convergence rate of the form

D(Âδ)−D(A∗) . M E
1/2‖X‖2

√

k log4 N + log 1
δ

N
.

First, according to the first part of Lemma 3.2, with probability at least 1− e−ℓ/12 ≥ 1− δ/4,

min
a∈Âδ

‖a‖ ≤ m = 4

√

2E‖X‖2.

Let us define M = m+ 2(R ∨m). Note that

E‖X‖2 ≤ R2 + E‖X‖2 1[‖X‖ > R] ≤ R2 +
∆

64
≤ R2 +

E‖X‖2
64

,
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thus R ≥ 0.99E1/2‖X‖2, which implies M ≃ R.
Now fix A ∈ Ak such that mina∈A‖a‖ ≤ m. Then by (13) for any a ∈ A (if it exists) such that ‖a‖ > M and

any x ∈ Va, one has ‖x‖ > M−m
2 = R ∨m, thus lA ≡ lA∩BM on BR∨m. Moreover, recall that for all x ∈ E,

min
a∈A

‖a− x‖ ≤ m+ ‖x‖, min
a∈A∩BM

‖a− x‖ ≤ m+ ‖x‖,

and thus

lA∩BM (x)− lA(x) = min
a∈A∩BM

‖a− x‖2 −min
a∈A

‖a− x‖2 ≤ (m+ ‖x‖)2 1[‖x‖ > R ∨m] ≤ 4‖x‖2 1[‖x‖ > R],

Therefore,

MOM(lA) ≥ MOM
(

lA∩BM (X)− 4‖X‖2 1[‖X‖ > R]
)

≥ QOM1/4(lA∩BM )− 4QOM3/4

(

‖X‖2 1[‖X‖ > R]
)

.

The last term can be bounded by Lemma 3.4: with probability at least 1− δ/4,

QOM3/4

(

‖X‖2 1[‖X‖ > R]
)

≤ 8E‖X‖2 1[‖X‖ > R] ≤ ∆

8
,

thus

QOM1/4(lA∩BM ) ≤ MOM(lA) +
∆

2
.

Further, we can assume without loss of generality that A∗ belongs to Ak
M,m. Indeed, mina∈A∗‖a‖ ≤ m according

to the proof of Theorem 3.1, and if A∗ 6⊂ BM , then |A∗ ∩BM | < k and hence

E lA∗ +∆ ≤ E lA∗∩BM ≤ E lA∗ + 4E‖X‖2 1[‖X‖ > R] ≤ E lA∗ +
∆

16
,

which is possible only if ∆ = 0. But in this case ‖X‖ ≤ R ≤ M almost surely and |supp(P)| ≤ k − 1, thus one
can choose A∗ = supp(P) ∈ Ak

M,m. Lemma 3.7 ensures that, with probability at least 1−δ/2, for any α ∈
{

1
4 ,

1
2

}

it holds that

sup
A∈Ak

M,m

|E lA(X)−QOMα(lA)| ≤ CRE
1/2‖X‖2



(logN)2
√

k

N
+

√

log 1
δ

N



 , (18)

where C > 0 is an absolute constant. Finally, we get the following lines of inequalities, which hold with probability
at least 1− δ,

E lÂδ∩BM
≤ QOM1/4(lÂδ∩BM

) + CRE
1/2‖X‖2



(logN)2
√

k

N
+

√

log 1
δ

N





≤ MOM(lÂδ
) +

∆

2
+ CRE

1/2‖X‖2


(logN)2
√

k

N
+

√

log 1
δ

N





≤ MOM(lA∗) +
∆

2
+ CRE

1/2‖X‖2


(logN)2
√

k

N
+

√

log 1
δ

N





≤ E lA∗ +
∆

2
+ 2CRE

1/2‖X‖2


(logN)2
√

k

N
+

√

log 1
δ

N



 .
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Now there are two possible cases. If

CRE
1/2‖X‖2



(logN)2
√

k

N
+

√

log 1
δ

N



 ≥ ∆

4
,

then

E lÂδ
≤ E lÂδ∩BM

≤ E lA∗ + 4CRE
1/2‖X‖2



(logN)2
√

k

N
+

√

log 1
δ

N



 .

Otherwise, we have

CRE
1/2‖X‖2



(logN)2
√

k

N
+

√

log 1
δ

N



 <
∆

4
,

then Âδ ⊂ BM : indeed, E lÂδ∩BM
< E lA∗ +∆, now assume |Âδ ∩BM | < k, then

E lÂδ∩BM
≥ inf

A∈Ak−1

E lA = E lA∗ +∆,

and we obtain a contradiction. Thus, Âδ ∈ Ak
M,m, and (18) again yields

D(Âδ)−D(A∗) = E lÂδ
− E lA∗

≤ E lÂδ
−MOM(lÂδ

)− E lA∗ +MOM(lA∗)

. RE
1/2‖X‖2



(logN)2
√

k

N
+

√

log 1
δ

N



 .

We conclude by comparing our Theorem 4.1 to Theorem 2.2 presented in (Biau, Devroye and Lugosi, 2008).
The form of the latter result is somewhat similar to our excess distortion bound. However, the proof of The-
orem 2.2 contains an inaccuracy which, to the best of our understanding, can not be immediately fixed. The
problem in the proof comes from the application of Corollary 2.1 in (Biau et al., 2008) which requires that the
centres belong to the set Ak

M (which is called Fk
M there) and also that the observations X1, . . . , XN are in a

bounded domain with probability one. The last fact does not hold for the unbounded distributions considered
there (recall our Remark 2.1). Fortunately, with additional technical efforts and by replacing the empirically
optimal quantizer with our MOM minimizer, we achieve the result even stronger in a manner than one claimed
in Theorem 2.2 by Biau et al.

5 Discussions

Finally, we discuss several previous results related to clustering for heavy-tailed distributions as well as directions
for future work.

The results of Brownlees, Joly and Lugosi (2015) are only presented for k-medians (where the distortion is
defined as D(A) = Emin

a∈A
‖X−a‖ instead of D(A) = Emin

a∈A
‖X−a‖2). However, we believe that their techniques,

at least if applied straightforwardly, would require E ‖X‖4 < ∞. Our Theorem 2.2 only requires E ‖X‖2 < ∞
and is valid for any separable Hilbert space, whereas Theorem 11 in (Brownlees et al., 2015) depends explicitly on
the dimension and has a worse dependence on the log 1

δ -term. The uniform bounds in (Telgarsky and Dasgupta,
2013; Bachem et al., 2017) provide uniform convergence bounds under E ‖X‖4 < ∞ in R

d that can not be
immediately converted into the excess distortion bounds similar to ours. Since these uniform bounds are tuned
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to the analysis of empirically optimal quantizers, they obviously have a suboptimal dependence on the confidence
parameter δ.

A natural course of further research is to introduce some favorable assumptions on the distribution P leading
to the so-called fast rates for the excess distortion. These are the excess distortion bounds scaling as O( 1

N ) instead
of O( 1√

N
) which, of course, can not be obtained for free (Antos, 2005). By now, these assumptions and their

analysis are well-understood in the bounded case (see (Levrard, 2015) and references therein). Another interesting
direction is to sharpen our bounds and make our robust algorithms more practical. As already mentioned, we
believe that making some assumptions on pmin and thus restricting the sizes of clusters is somewhat more natural
than assuming that M is known in advance.
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Appendix

Proof of Lemma 2.3. First, notice that E f − QOMα(f) = QOM1−α(E f − f). Therefore, supf∈F(E f −
QOMα(f)) > x is equivalent to

sup
f∈F

1

ℓ

ℓ
∑

t=1

1[E f − f̃t > x] ≥ α,

where f̃t =
ℓ
N

∑

i∈It
f(Xi). Using the idea of Mendelson (2015), denote the function φ(u) = (u − 1)1[1 ≤ u ≤

2] + 1[u ≥ 2], so that φ is 1-Lipschitz, and φ(u) ≥ 1[u ≥ 2]. Then, the above event is included in the following
event

sup
f∈F

1

ℓ

ℓ
∑

t=1

φ

(

2(E f − f̃t)

x

)

≥ α .

Next, we write the bounded difference inequality (see (Boucheron et al., 2013)) since the summands in the above

are independent and bounded by one. We have that, with probability at least 1− e−2ℓy2

,

sup
f∈F

1

ℓ

ℓ
∑

t=1

φ

(

2(E f − f̃t)

x

)

≤ sup
f∈F

1

ℓ

ℓ
∑

t=1

Eφ

(

2(E f − f̃t)

x

)

+ E sup
f∈F

1

ℓ

ℓ
∑

t=1

{

φ

(

2(E f − f̃t)

x

)

− Eφ

(

2(E f − f̃t)

x

)}

+ y.

For the first part, since φ(u) ≤ 1[u ≥ 1] and using Chebyshev’s inequality, we write

sup
f∈F

1

ℓ

ℓ
∑

t=1

Eφ

(

2(E f − f̃t)

x

)

≤ sup
f∈F

1

ℓ

ℓ
∑

t=1

P

(

E f − f̃t ≤ x/2
)

≤ sup
f∈F

Var(f̃t)

(x/2)2
= sup

f∈F
Var(f)

4ℓ

Nx2
.

For the second part we, use the symmetrization and contraction arguments of Ledoux and Talagrand (2013), so
that together

E sup
f∈F

1

ℓ

ℓ
∑

t=1

{

φ

(

2(E f − f̃t)

x

)

− Eφ

(

2(E f − f̃t)

x

)}

≤ 2E sup
f∈F

1

ℓ

ℓ
∑

t=1

ǫtφ

(

2(E f − f̃t)

x

)

≤ 2E sup
f∈F

1

ℓ

ℓ
∑

t=1

ǫt
2(E f − f̃t)

x
,
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where ǫ1, . . . , ǫt are i.i.d. Rademacher signs. Using the symmetrization argument again, we have

E sup
f∈F

1

ℓ

ℓ
∑

t=1

ǫt
2(E f − f̃t)

x
≤ 4

x
E sup

f∈F

1

N

N
∑

i=1

ǫif(Xi) .

Collecting the three terms together we have that, with probability at least 1− e−2ℓy2

,

sup
f∈F

1

ℓ

ℓ
∑

t=1

1

[

E f − f̃t > x
]

≤ y +
8

x
E sup

f∈F

1

N

N
∑

i=1

ǫif(Xi) +
4

x2
sup
f∈F

Var(f)
ℓ

N
.

We need the right-hand side of the last display to be smaller than α. Let us take y = α/2 and

x =
16

α
E sup

f∈F

1

N

N
∑

i=1

ǫif(Xi) +
2

α1/2

√

2 sup
f∈F

Var(f)
ℓ

N
.

Then, with probability at least 1− e−α2ℓ/2, it holds that

sup
f∈F

1

ℓ

ℓ
∑

t=1

1

[

E f − f̃t > x
]

≤ α.

To derive the other tail, we can use the symmetry QOMα(f) = −QOM1−α(−f).

Proof of Lemma 3.4. By Markov’s inequality and Chernoff’s bound for the binomial distribution, we have

P
(

Quant1−α(ξ1, . . . , ξℓ) ≥ 2E ξ/α
)

= P

(

ℓ
∑

i=1

1[ξi ≥ 2E ξ/α] ≥ αℓ

)

≤ exp

(

−1

3

(

α− α

2

)

ℓ

)

= exp

(

−αℓ

6

)

.

Proof of Lemma 3.6. Step 1. We start with E = R
d. In order to prove the bound we observe that L2(PN )

distance between lA, A = (a1, . . . , ak) ∈ Ak
M,m, and lB, B = (b1, . . . , bk) ∈ Ak

M,m (we can multiply some points if
|A| < k or |B| < k), is controlled by the maximum of the Euclidean distances between the corresponding vectors
aj and bj . Indeed, let x ∈ Vaj ∩ Vbs , then the following assertions hold:

lB(x) − lA(x) ≤ ‖bj‖2 − ‖aj‖2 − 2〈x, bj − aj〉 ≤ 2 (‖aj‖+ ‖x‖) ‖aj − bj‖+ ‖aj − bj‖2,
lA(x) − lB(x) ≤ ‖as‖2 − ‖bs‖2 − 2〈x, as − bs〉 ≤ 2 (‖bs‖+ ‖x‖) ‖as − bs‖+ ‖as − bs‖2.

Therefore,
|lA(x) − lB(x)| . (‖aj‖+ ‖bs‖+ ‖x‖)max

r
‖ar − br‖+max

r
‖ar − br‖2.

On the other hand,
‖aj − x‖ = min

a∈A
‖a− x‖ ≤ ‖x‖+min

a∈A
‖a‖ ≤ ‖x‖+m,

as well as ‖bs − x‖ ≤ ‖x‖+m, thus

|lA(x) − lB(x)| = |‖aj − x‖2 − ‖bs − x‖2| ≤ (‖x‖+m)
2
.

Combining the above bounds and using the inequality u2 ∧ v2 ≤ uv for u, v ≥ 0, we conclude that

|lA(x)− lB(x)| . (‖aj‖+ ‖bs‖+ ‖x‖)max
r

‖ar − br‖+ (‖x‖+m)2 ∧max
r

‖ar − br‖2

. (‖aj‖+ ‖bs‖+ ‖x‖)max
r

‖ar − br‖+ (‖x‖+m)max
r

‖ar − br‖

. (‖aj‖+ ‖bs‖+ ‖x‖+m)max
r

‖ar − br‖.
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Note that (14) applied to the empirical measure PN ensures

∑

a∈A

‖a‖2PN (Va) ≤ σ2
N ,

∑

b∈B

‖b‖2PN (Vb) ≤ σ2
N , where σ2

N = 2m2 + 8PN‖X‖2. (19)

Therefore, we have

‖lA − lB‖L2(PN ) .





√

∑

a∈A

‖a‖2PN (Va) +

√

∑

b∈B

‖b‖2PN (Vb) +

√

1

N

∑

i

‖Xi‖2 +m



max
r

‖ar − br‖

≤
(

2σN +m+ P
1/2
N ‖X‖2

)

max
r

‖ar − br‖

. σN max
r

‖ar − br‖.

Finally, we use that in (Rd)k it holds that

logN∞
(

(BM )k, t
)

≤ k logN (BM , t) . kd log
M

t
,

(see e.g., (Vershynin, 2016)).
Step 2. Now we are ready to prove the bound in its full generality. First, note that (15) implies (which

holds for PN as well)

‖lA − l{0}‖L2(PN ) ≤ 2M

√

6PN‖X‖2 +m2 ≤ 2MσN for all A ∈ Ak
M,m,

where σN comes from (19), so it is enough to consider t ≤ 2MσN .
We are going to apply the Johnson–Lindenstrauss lemma, and to do this, we first show that it is enough to

consider quantizers A from some finite-dimensional subspace of E, depending on the sample X1, . . . , XN . Let
us fix an arbitrary vector u /∈ Span ({X1, . . . , XN}). It is easy to see that for any a ∈ E there exists ã ∈ S =
Span({u,X1, . . . , XN}) such that ‖ã‖ = ‖a‖ and 〈ã, Xi〉 = 〈a,Xi〉 for all 1 ≤ i ≤ N . Therefore, without loss of
generality, one can restrictAk

M,m to the sets from the (N+1)-dimensional subspace S. Using the last observation,
by the version of Johnson–Lindenstrauss lemma for products (p.998 in (Fefferman, Mitter and Narayanan, 2016))
for any 0 < ǫ ≤ 1/2 and any fixed set Q ⊂ S with |Q| ≤ N + k, it holds that

PL

(

EQ
L

)

= PL

(

|〈RLx,RLy〉 − 〈x, y〉| ≤ ǫ‖x‖ · ‖y‖ for all x, y ∈ Q
)

≥ 1

2
.

Here L is a random uniformly distributed d-dimensional subspace of S with d =
⌈

c log(N+k)
ǫ2

⌉

(for a rigorous

mathematical definition see (Johnson and Lindenstrauss, 1984)), and RL =
√

N+k
d ΠL, where ΠL is the orthog-

onal projector on L. Let P(t) ⊂ Ak
M,m be such that {lA : A ∈ P(t)} is a t-packing set of Fk

M,m (i.e., a maximal

t-separated set), so that by the standard relation N2(Fk
M,m, t, PN ) ≤ |P(t)|. Now notice that for A chosen

uniformly at random from P(t) and random L with joint probability at least 1
2 the above condition holds for the

set QA = {X1, . . . , XN} ∪ A:

P

(

EQA

L

)

= EA PL(E
QA

L ) ≥ 1

2
.

Note that we consider the union of the sample and a quantizer since we will have to bound both the norms of
projections and products of the form 〈RLXi, RLa〉. On the other hand, by Fubini’s theorem

P

(

EQA

L

)

= EL PA(E
QA

L ) ≥ 1

2
,

therefore, there exists subspace L such that PA(E
QA

L ) ≥ 1
2 , that is, the event EQA

L holds for at least half of
quantizers from P(t) — let us denote this set by PL(t).
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Consider an arbitrary quantizer A ∈ PL(t). In what follows we use for brevity the following simple notation:
x′ = RLx for any x ∈ E and, respectively, A′ = {a′ : a ∈ A} and P ′

N = 1
N

∑

i δX′

i
. Clearly, by Johnson-

Lindenstrauss lemma for any x ∈ QA,

1

2
‖x‖2 ≤ (1− ǫ)‖x‖2 ≤ ‖x′‖2 = 〈RLx,RLx〉 ≤ (1 + ǫ)‖x‖2 ≤ 3

2
‖x‖2,

thus

max
a′∈A′

‖a′‖2 ≤ 3

2
M2, min

a′∈A′

‖a′‖2 ≤ 3

2
m2, PN‖X ′‖2 ≤ 3

2
PN‖X‖2.

In particular, this implies that

A′ ∈ Ak
3M/2,3m/2 and

∑

a′∈A′

‖a′‖2P (Va′) ≤ 3

2
σN ,

with σN defined by (19). Now for any Xi ∈ Va(A), where Va(A) is the Voronoi cell from partition induced by
the set A, corresponding to the point a, we have

lA′(X ′
i) ≤ ‖a′‖2 − 2〈X ′

i, a
′〉 ≤ ‖a‖2 − 2〈Xi, a〉+ ǫ

(

‖a‖2 + 2‖Xi‖ · ‖a‖
)

≤ lA(Xi) + ǫM (‖a‖+ 2‖Xi‖) ,

and in the same way we obtain that for X ′
i ∈ Va′(A′),

lA(Xi) ≤ lA′(X ′
i) + ǫ

(

‖a‖2 + 2‖Xi‖ · ‖a‖
)

≤ lA′(X ′
i) + ǫM (‖a‖+ 2‖Xi‖) ≤ lA′(X ′

i) + ǫM
(√

2‖a′‖+ 2‖Xi‖
)

.

Therefore, recalling the definition of σN (19), we have

‖lA(X)− lA′(X ′)‖L2(PN ) ≤ ǫM
(√

3σN + 2P
1/2
N ‖X‖2

)

≤ 3ǫMσN .

Setting ǫ = t
12MσN

≤ 1
6 we get ‖lA(X)− lA′(X ′)‖L2(PN ) ≤ t

4 , thus

‖lA′(X)− lB′(X)‖L2(P ′

N ) ≥ ‖lA(X)− lB(X)‖L2(PN ) −
t

2
>

t

2
for any A 6= B ∈ PL(t).

This implies by the standard relation between the covering and packing numbers that |PL(t)| ≤ N2 (F ′, t/4, P ′
N),

where F ′ =
{

lA′ : A ∈ Ak
M,m

}

. As was shown above F ′ ⊂ Fk
3M/2,3m/2, and since the corresponding quantizers

belong to the d-dimensional subspace L, we have by Step 1 that

logN2 (F ′, t/4, P ′
N) . kd log

MσN

t
.

kM2σ2
N log(N + k)

t2
log

MσN

t
.

Combining our bounds, we conclude that

logN2(Fk
M,m, t, PN ) ≤ log |P(t)| ≤ log (2|PL(t)|) . logN2 (F ′, t/4, P ′

N) .
kM2σ2

N log(N + k)

t2
log

MσN

t
.

To obtain the claimed bound, it remains to notice that for N < k it is enough to consider the class AN
M,m instead

of Ak
M,m, thus we can always assume k ≤ N . Hence,

logN2(Fk
M,m, t, PN ) .

kM2σ2
N log(2N)

t2
log

MσN

t
.

The claim follows.
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