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Magnetic properties of dense ferrofluids: An influence of interparticle correlations
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A statistical model has been developed describing the magnetostatic properties of dense ferrocolloids and the
dielectric properties of polar fluids. The model is based on the relation between the magnetization and the pair
correlation function of a spatially homogeneous system of dipole particles. This approach allows us to calculate
the ferrofluid magnetization~polarization density of polar fluid! in a form of expansion over both the particle
concentration and the potential of the interparticle dipole-dipole interactionUd . The obtained expressions for
the ferrocolloid initial magnetic susceptibility, the dielectric constant of polar fluid and the ferrofluid magne-
tization with the accuracy;Ud

2 describe well the experimental data and the results of computer modeling. The
model justifies the validity of the ‘‘modified mean-field approach,’’ and the effective field is calculated as a
function of the Langevin magnetization.

DOI: 10.1103/PhysRevE.64.041405 PACS number~s!: 75.50.Dd, 05.20.Jj, 75.50.Mm
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I. INTRODUCTION

Ferrofluids~ferrocolloids, magnetic fluids! are stable col-
loidal suspensions of the one-domain particles of ferrom
netic and ferrimagnetic materials in liquid carriers@1#. The
small sizes of dispersed ferroparticles~diameterd;10 nm!
provide the particles with an inherent magnetic moment p
portional to the volume of their magnetic grains. The sta
lization of suspension is usually obtained by coating of m
netic grains with surfactant layers or by using of classi
mechanism of double electric layer formation. As a res
the ferroparticles interact with each other through the sph
cally symmetric energy~steric repulsion, van der Waals a
traction, electrostatic repulsion! and the noncentral dipole
dipole interaction of particle magnetic moments so that
ferrocolloid has much in common with a polar fluid. Th
high fluidity of ferrocolloids is combined with a perceptib
ability to interact with an external magnetic field, which
the essence of their practical application.

An evaluation of magnetic characteristics of homog
neous ferrofluids comes up against the well-known prob
of taking into account the interparticle dipole-dipole intera
tion. The latter is most conspicuous in concentrated syst
and controls the correlations in mutual position of ferrop
ticles and in mutual orientation of their magnetic momen
In this sense, the problem is similar to calculation of diele
tric properties of polar fluids. The literature on the last su
ject is quite extensive; considerable attention has been g
by Debye @2#, Onsager@3#, Kirkwood @4#, Wertheim @5#.
Nonetheless, the problem of influence of interparticle cor
lations in dense polar fluids with intensive dipole-dipole
teraction should not be considered as solved.

As far as the ferrofluids are concerned, the physical pr
erties of dilute systems are well described in the framew
of the one-particle model@6#, which treats ferrocolloid as an
ideal paramagnetic gas of particles, suspended in a liq
carrier. The equilibrium magnetization is written by applyin
the Langevin function, and the initial magnetic susceptibil
xL is proportional to particle concentrationn, mean squared
particle magnetic moment^m2& and is inverse to temperatur
kT, that is, xL5n^m2&/3kT. However, experiments with
1063-651X/2001/64~4!/041405~12!/$20.00 64 0414
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concentrated ferrocolloids reveal an essential deviation fr
the Langevin formulas@7#. The initial susceptibility in-
creases faster than that according to linear dependencxL
;n. The same behavior is also typical for the polar flui
@8#.

It is clear that this deviation is primarily due to the inte
particle interactions. A number of theoretical models allo
the evaluation of the magnetic properties taking into acco
the dipole-dipole interactions, these are different variants
the mean-field model@2,3,9,10#, the mean-spherical mode
@5,11,12#, and the thermodynamic perturbation mod
@13,14#. In the framework of the most popular mean-fie
model by Weiss@2,9# the dipole-dipole interactions are a
sumed to be equivalent to some increase in the intensit
an external magnetic field, with the amount of its contrib
tion being proportional to magnetizationM of the ferrocol-
loid. The effective field acting on a single-domain particle
expressed asHe5H1kM . The mean-field constant is gen
erally assumed to be equal to the Lorentz valuek54p/3. In
this caseHe coincides with a field intensity in the spheric
cavity formed by a particle in a liquid, provided that th
cavity itself exerts no effect on the state of the neighbor
particles. Thus, this model yields the Curie-Weiss law for
initial susceptibility x5xL /(12kxL). The Weiss model
predicts a magnetic phase transition into a magneto-ord
liquid state; at the transition point the initial susceptibili
becomes infinite, that is,x→` whenxL→3/4p. But a para-
magnetic to ferromagnetic second order phase transitio
never observed in fluidlike magnetic systems. That is w
the Weiss mean-field theory appears to be questionable w
applying to magnetic fluids~or polar fluids!.

The mean-field Onsager model@3# is based on the as
sumption that the cavity formed by a particle in a ferroflu
influences the orientation of the magnetic moments of
neighboring particles. The initial susceptibility remains fin
for any finite temperature and concentration, but the exp
mental and computer studies have shown that the Ons
model highly underestimates the values of the initial susc
tibility of concentrated ferrocolloids~as well as the dielectric
constant of polar fluids! @7,13,15,16#.

Attempts to use the mean-spherical model@11,12# and the
©2001 The American Physical Society05-1
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ALEXEY O. IVANOV AND OLGA B. KUZNETSOVA PHYSICAL REVIEW E 64 041405
thermodynamic perturbation method@13,14# proved far more
successful. These models are appropriate to describe
experimental data on magnetostatic properties of real m
netic fluids. Obviously, these models have the coincid
fields of adequacy and are valid for ferrocolloids with low
moderate concentrations of magnetic phase;10212 % un-
der the presence of an arbitrarily valued uniform magne
field.

The most precise description of the magnetization cur
of moderately concentrated ferrofluids is given by the
called ‘‘modified mean-field model’’@10#. This approach is
based on the assumption that the effective field acting o
ferroparticle is proportional to the Langevin magnetizati
ML , that is,He5H1(4p/3)ML . The resulting expression
for the initial susceptibilityx5xL(114pxL /3) and for the
magnetization in saturation conditions are coincident w
the predictions of the thermodynamic perturbation mo
@13,14#. But the modified mean-field model gives the mo
accurate description of the magnetization curves in the a
trary external field strengths.

All the last-mentioned models are valid in the case wh
the intensity of interparticle dipole-dipole interaction do
not exceed by the order of value of the thermal energykT. It
means that the dipole-dipole interaction parameterg
5m2/d3kT, having a meaning of the interaction energy
the two contacting particles related to the thermal ener
has the order of unity or less, that is,g&1. For dense fer-
rofluids with a magnetic phase concentration over
218 % or ferrofluids, consisting of large particles, this
insufficient. The temperature dependencies of the initial s
ceptibility of these systems demonstrate the large deviat
@7,17# between the theoretical predictions and the exp
mental data. At low temperatures the models@10,11,13# un-
derestimate the values of initial susceptibility by 15220 %.
It is clear that this deviation is due to the fact that the dipo
dipole interactions are most conspicuous in concentra
magnetic fluids.

Besides the mentioned, other methods are recruited
evaluate the dielectric constant of polar fluids. For exam
the hypernetted chain approximation@18# leads to the highly
overestimated values in comparison with the results of co
puter modelling@8,19,20#. The likewise overestimation o
the dielectric constant is given by the recently develop
algebraic perturbation model@15#. In the region of moderate
values of dielectric constant«;30, the computer results ar
well described by the perturbation model developed in R
@21#. However, the theories mentioned are valid only
weak external fields and do not consider the dependenc
polarization density in an arbitrarily valued electric field.

This leads to the conclusion that the role of dipole-dip
interaction in dense dipolar fluidlike systems is not stud
theoretically well. This problem seems to be of princip
nature and to be of specific interest for many fields of app
science.

In the present paper we focus our attention on a n
approach connecting the macroscopic ferrofluid magnet
tion with the pair correlation function of ferroparticle syste
~Sec. II!. Applying to dense ferrocolloids we have calculat
the pair correlation function with the help of the first ord
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perturbation method over the intensity of dipole-dipole int
action under the presence of a uniform external magn
field ~Sec. III!. We have obtained the exact expression for
initial susceptibility on the basis of the second order ov
such perturbation. We have shown the statistical way lead
to the Weiss mean-field model. The results of the mo
~Secs. II and III! are tested on the polar fluids in Sec. IV. W
have calculated the dielectric constant both for the dipo
hard-sphere fluid and for the Stockmayer fluid. Our resu
describe well the data of computer modeling and substan
that the dielectric constant of dense polar fluids is influen
not only by the dipole-dipole interaction but the central i
terparticle energy as well. In Sec. V we study the init
susceptibility of dense magnetic fluids. The analysis sho
that the magnetic properties of ferrocolloids are weakly
pendent on the method of stabilization of suspension. For
first time we have obtained a precise description of the te
perature dependence of initial susceptibility at low tempe
tures (4px;60280). Attempts to use the second order pe
turbation model for magnetization curves allows us to just
the modified mean-field model and to suggest the statist
method of determination of the effective field~Sec. VI!. We
have proposed a simple expression for magnetization
form of modified mean-field theory that describes very ac
rately the total magnetization curves of ferrofluids with t
maximum allowable concentration of a magnetic pha
;18%.

II. FERROFLUID MAGNETIZATION AND PAIR
INTERPARTICLE CORRELATIONS

Presenting a general method, let us consider first a mo
disperse liquid system ofN identical spherical particles~di-
ameterd) containing the constant magnetic momentm ~di-
pole moment!. The particles are suspended in a neutral liqu
carrier of the volumeV. Each particlei is characterized by a
radius-vectorr i(r i ,u i ,w i) and by a vectorVi(v i ,z i), de-
scribing the orientation of its magnetic momentmi5mVi .
Now it is necessary to discuss the shape of the volume w
a ferrofluid. It is well known@22# that under the presence o
a magnetic field the thermodynamic properties of magn
media are dependent on their shapes due to the demag
zation effects. Since we are going to study the magn
properties of ferrofluids as a function of an external field,
choose the shape of a container with ferrofluid such that
influence of demagnetization field can be neglected. Th
we consider the volume of the system in a shape of infinit
elongated ellipsoid of revolution~the ratio of the minor to
major ellipsoid semiaxis should tend to zero! stretched along
an external uniform magnetic fieldH. It is important to stress
that using the infinitely elongated ellipsoidal shape is of a
vantage because this is just the case when demagnetiz
factors are of no consequence and do not need to be
counted for~the external magnetic field coincides exac
with the internal one!. For more general shapes of the co
tainer, the demagnetization factor of the system needs to
taken into account.

The HamiltonianĤ contains the following terms: the
spherical part of interparticle interactionUs( i j ) ~hard sphere
5-2
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MAGNETIC PROPERTIES OF DENSE FERROFLUIDS: . . . PHYSICAL REVIEW E64 041405
interaction, van der Waals forces, electrostatic repulsion!; the
dipole-dipole interactionUd( i j ) of the particle magnetic mo
ments; and the interaction of magnetic moments with an
ternal fieldUm( i )

Ĥ5Ĥd1Ĥs1Ĥm , Ĥs5 (
i , j 51

N

Us~ i j !, ~1!

Ĥd5 (
i , j 51

N

Ud~ i j !,

Ud~ i j !52F3
~mir i j !~mj r i j !

r i j
5

2
~mimj !

r i j
3 G ,

Ĥm5(
i 51

N

Um~ i !52mH(
i 51

N

cosv i , r i j 5r i2r j .

The partition functionQ̃ may be written in the form

Q̃5~sinha/a!NQ, Q5)
i 51

N

R̂i)
i 51

N

V̂ i exp~2bĤs2bĤd!,

~2!

R̂i f ~r i !5
1

VE f ~r i !dr i ,

V̂ i f ~Vi !5
a

sinhaE f ~Vi !exp~a cosv i !dVi ,

a5mH/kT, b51/kT,

dVi5~4p!21 sinv i dv i dz i ,

dr i5r i
2 dri sinu i du i dw i ,

where the action of the operatorsR̂i andV̂ i corresponds with
the averaging over all positions of thei th particle in the
volumeV and over all orientations of thei th magnetic mo-
ment. In the integrals we use the following Cartesian (x,y,z)
coordinate system: the coordinate origin is placed at the c
ter of the ferrofluid volume;z axis is parallel to the majo
axis of the ellipsoid, that is,HiOz; the anglesz i ,w i are the
polar angles in the plane (x,y)'Oz; the anglesv i ,u i are the
angles between the vectorsVi ,r i and the direction of an
external field (Oz axis!.

Introducing the magnetizationM by the definition

M52
1

V

]

]H
~2kT ln Q̃!, ~3!

we get the following expression~see Appendix A!, connect-
ing the magnetization with the one-particle distribution fun
tion g1(r i ,Vi):

M ~H !5nm
1

2E0

p

cosv1g1~v1!sinv1 dv1 , ~4!
04140
x-

n-

-

n5N/V, E g1~v1!dV151.

This function represents actually a probability for a sing
particle to be placed at a pointr i and to be oriented in a
directionVi . It is well known that for a homogeneous liqui
state the equalityg1(r i ,Vi)[1 holds true@23# in the case of
the absence of an external field. Otherwise, this probab
depends only on the anglev i between the external field di
rection and the orientation of the magnetic moment o
single particle, that is,g1(r i ,Vi)[g1(v i). For example, for
an ideal paramagnetic gas@Us( i j )5Ud( i j )'0# from the
definition of g1(r i ,Vi) ~Appendix A! one can easily get the
well-known Langevin magnetization

g1~v1!5~a/sinha!exp~a cosv1!, ~5!

M ~H !5ML~H !5nmL~a!, L~a!5cotha21/a.

For the interacting particle system the expression~4! is
not used practically. This is caused by the fact that there
no methods for determining one-particle distribution fun
tion in dense liquids. The main idea of our approach is t
such a method may be formulated for a ferrofluid~polar
fluid! placed in an external field. The method is based on
Bogolyubov-Born-Green-Kirkwood-Ivon~BBGKI! formal-
ism @23# using the angle dependence of the functiong1(v1).
Differentiating this function with respect tov1 we come to
the equation, connecting the one-particle distribution fu
tion with the pair correlation functiong2(r i ,r j ,Vi ,Vj )
5g2( i j ) ~see Appendix B!:

dg1~v1!

dv1
52a sinv1g1~v1!

2
n

kTE dV2E dr2

dUd~12!

dv1
g2~12!. ~6!

The pair correlation functiong2(r1 ,r2 ,V1 ,V2) repre-
sents actually the mutual probability for two particles~1 and
2! to be placed at the pointsr1 and r2 and to be oriented
along the directionsV1 and V2. This probability is influ-
enced both by the pair interparticle interactionUs(12)
1Ud(12) and by the interactionsUm(1) andUm(2) of the
magnetic moments with an external field. It is convenient
introduce this function in a form~Appendix B!

g2~12!5~a/sinha!2 exp@a~cosv11cosv2!#g̃2~12!,
~7!

separating out the ideal paramagnetic terms@see expression
~5!#. The functiong̃2(12) describes all the multiparticle cor
relations in the mutual two-particle probability.

The analytical solution of Eq.~6! with respect to normal-
ization condition~4! gives
5-3
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ALEXEY O. IVANOV AND OLGA B. KUZNETSOVA PHYSICAL REVIEW E 64 041405
g1~v1!5
a

sinha
exp~a cosv1!F11~12V̂1!

n

kT

3E d~cosv1!V̂2E dr12

dUd~12!

sinv1 dv1
g̃2~12!G ,

~8!

M ~H !5ML~a!1
n2m

kT
V̂1V̂2@cosv12L~a!#

3E d~cosv1!E dr12

dUd~12!

sinv1 dv1
g̃2~12!. ~9!

Here we use the fact that the spatial two-particle probab
depends only on the mutual interparticle distancer i j , that is,
g̃2(r1 ,r2 ,V1,V2)5g̃2(r12,V1 ,V2). The integration
d(cosv1) means the indefinite integral with respect
cosv1, arising from the solution of equation~6!. The expres-
sion ~9! is exact and includes all the corrections to t
Langevin magnetization influenced by a multiparticle cor
lation. Besides that, the expression~9! is of principal nature.
On its basis the cluster expansion methods may be devel
to determine the ferrofluid magnetization~polar fluid polar-
ization! in the arbitrary values of an external field. An im
portant feature of the method is that the right-hand parts
expressions~8! and ~9! contain the first orders of particl
concentrationn and dipole-dipole interaction potentialUd .
Thus, the determination of the pair correlation functi
g̃2(12) up to the order of;nk,Ud

k gives the magnetization in
terms of the order;nk11,Ud

k11 .
To demonstrate this advantage let us consider the ex

sion of g̃2(12) with zero-order accuracy over the dipol
dipole potential~zero-order perturbation!. In this case we
assume that all interparticle correlations are controlled by
spherical part of the interparticle interaction energyUs( i j ),
that is,g̃2( i j )5gs( i j ). Heregs( i j ) stands for the pair distri-
bution function of the reference system@system of particles,
interacting through the central interparticle energyUs( i j )
only#. Substituting the functiongs(12)[gs(ur12r2u) in ex-
pressions~8! and ~9! we come up against the problem
averaging of the first order of dipole-dipole interactionUd
over all the positions of particles 1 and 2. It was shown
Refs.@13,22# that the result of this integration depends on t
shape of the system~but does not depend on the volume a
on the type of the central interparticle interaction!. For the
case of infinitely elongated ellipsoidal container with the n
glecting influence of demagnetization effects we get

g1~v1!5
a

sinha
exp~a cosv1!H 11

4p

3

nm2

kT
L~a!

3@cosv12L~a!#J , ~10!

M ~H !5ML~H !F11
4p

3

dML~H !

dH G ,

04140
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x5xLS 11
4p

3
xLD , xL5nm2/3kT,

where the initial magnetic susceptibilityx is presented in
quadratic parabola behavior over the Langevin susceptib
xL . This result coincides with the prediction of the first o
der perturbation theory@13# and is independent on th
spherical part on interparticle energyUs . It should be noted
that the comparison of the one-particle correlation funct
in forms ~5! and ~10! shows that the consideration of th
magnetic interactionUd on the basis of the first order pertu
bation theory results in the more pronounced orientation
ferroparticles along an external field direction.

III. SECOND ORDER PERTURBATION MODEL

The results~10! of the first order perturbation model de
scribe well the magnetic properties of the moderately c
centrated ferrofluids~magnetic phase concentration;10
212 %) @7,13# as well as the high-temperature dielectr
properties of polar fluids@16#. For the dense ferrofluids a
low temperatures~intensive dipole-dipole interaction! it is
insufficient. The experimental studies@7,17# of temperature
dependences of the initial susceptibility of highly conce
trated magnetic fluids ~magnetic phase concentratio
;18%) have demonstrated the disagreement between
theoretical predictions and the experimental data.

The determination of the pair correlation functiong̃2(12)
in terms of higher orders of perturbation method comes
with the following problem: the cluster expansion results
the pair distribution function@23# become invalid under the
presence of an external field. This problem manifests itse
multiparticle correlations and is caused by the change of
topological properties of the corresponding graphs. Th
graphs must consider not only the various combinations
the orders of dipole-dipole interaction, but the interaction
the graph tops~particle magnetic moments! with an external
field as well. As a result, the topological structure of t
cluster expansion varies drastically.

Let us consider all the corrections of the first order
Ud( i j ) in pair correlation function,

g̃2~12!5@12bUd~12!#gs~12!1Dg̃2~12!, ~11!

Dg̃2~12!5exp@2bUs~12!#nH E dr3 V̂3@2bUd~13!

2bUd~23!#exp@2bUs~13!2bUs~23!#

22E dr34 V̂3V̂4@2bUd~34!#

3exp@2bUs~34!#J .

The correction termDg̃2(12) coincides with the classica
result@23# only in the absence of an external field (a50). In
this case the last term on the right-hand side of expres
for Dg̃2(12) compensates in part the first term. This comp
5-4
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sation leads to the dependence of pair correlation function
the Mayer functionsf d( i j )5exp@2bUd(ij )#21 in the total
graph expansion. Under the presence of an external
such compensation does not take place. Naturally, we wo
calculate the functionDg̃2(12) for the system of dipolar har
spheres, that is,Us( i j )5UHS( i j ),

Dg̃2~12!5n exp@2bUHS~12!#~ I 11I 222I 3!, ~12!

I j5E dr3 V̂3@2bUd~ j 3!#exp@2bUHS~13!

2bUHS~23!#, j 51,2,

I 35E dr34 V̂3V̂4@2bUd~34!#exp@2bUHS~34!#.

The last oneI 3 is the simplest:

I 35
1

kTE dr34 V̂3V̂4F3
~m3r34!~m4r34!

r 34
5

2
~m3m4!

r 34
3 G

3exp@2bUHS~34!#

5
m2

kT
L~a!2E dr34

3~ r̂ 34ẑ!221

r 34
3

3exp@2bUHS~34!#. ~13!

Herer̂ 34 andẑ are the unit vectors (r345r 34r̂ 34,ẑuuH) and we
useV̂ imi5mẑL(a).

While calculating the integral overdr34 we must take into
account the infinitely elongated ellipsoidal shape of the c
tainer @14#,

E dr34

3~ r̂ 34ẑ!221

r 34
3

exp@2bUHS~34!#5
4

3
p. ~14!

As a result, the last term in expression for the functi
Dg̃2(12) has the order of;L(a)2,

I 35
4p

3

m2

kT
L~a!2. ~15!

The termsI 1 and I 2 have the same structure. It is conv
nient to introduce it in the following form:

I 15JEV~1!1JMF~1!, ~16!

JEV~1!5E dr3 V̂3@2bUd~13!#exp@2bUHS~13!#

3$exp@2bUHS~23!#21%,

JMF~1!5E dr13 V̂3@2bUd~13!#exp@2bUHS~13!#.

The termJMF corresponds to the averaging over positio
and orientations of the third particle inside the first one,
04140
n

ld
ld

-

s
t

in the total volumeV. It is equivalent to the assumption o
the mean-field model, when the position and orientation
the third particle are not influenced by the presence of
second one,

JMF~ j !5
4p

3

m2

kT
L~a!cosv j , j 51,2. ~17!

The termJEV(1) gives the corrections toJMF(1) result-
ing from the nonpenetrating conditions between the partic
2 and 3. The integration overdr3 in JEV(1) has to be made
over the excluded volumeVe ~Fig. 1!,

JEV~ j !52
4p

3

m2

kT
@3~ r̂ 12m̂j !~ r̂ 12ẑ!2~m̂j ẑ!#L~a!G~r 12!,

~18!

j 51,2, mj5m̂jm,

G~r 12!5H 0, r 12,d

3r 12/16d2r 12
3 /32d3, d,r 12,2d

d3/r 12
3 , 2d,r 12.

The functionG(r 12) is obtained with respect to the se
ond virial term in the hard-sphere distribution function@23#.
One can see that the termsI 1 and I 2 have the order;L(a)
that differs fromI 3.

With the help of the results of this section it is easy
obtain the expression for the initial magnetic susceptibili
The consideration of the first term in Eq.~11! andJMF parts
only in Dg̃2(12) gives the following expression:

x5xL@114pxL /31~4p!2xL
2/9#'xL /~124pxL /3!,

~19!

FIG. 1. Geometry of particle positions under the calculation
the pair correlation function.Ve is the excluded volume for the third
particle.
5-5
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ALEXEY O. IVANOV AND OLGA B. KUZNETSOVA PHYSICAL REVIEW E 64 041405
which is not influenced by the first order ofUd and by the
explicit form of the functiongs in the first term of the right-
hand part of expression~11!. Their contributions vanish in
the limit H→0. The expression~19! represents the expan
sion of the mean-field model result with the cubic accura
in xL . The divergencex→`,4pxL /3→1 ~that is, the sec-
ond order magnetic phase transition! is a result of neglect of
interparticle correlations~excluded volume in Fig. 1!. Taking
into accountJEV terms we find the exact expression forx
with the cubic accuracy inxL ,

x5xL@114pxL /31~4p!2xL
2/1441O~xL

3!#. ~20!

We should note that the expressions~11!–~18! determine
the pair correlation function of the dipolar hard-sphere flu
influenced by the pair and three-particle correlations with
accuracy;Ud . As it was mentioned earlier, this accura
results in quadratic dependence of the magnetic charact
tics on Ud . The three-particle terms~Fig. 1! take into ac-
count the dipole-dipole correlations in pairs of particles 1
and 1-3. But the particles 2 and 3 interact with each ot
only through the spherical energyUs . In this case the addi
tion to expression~10! term (4p)2xL

3/144 is positive. It
means that the consideration of linear pair correlation fu
tion in Ud leads to much more pronounced orientation
ferroparticles along an external field direction than is p
dicted by the first order perturbation model. It is not a s
prise, because only the circlelike graphs may lead to
opposite effects. But these graphs will appear only in
next, second order expansion ofg̃2( i j ) over Ud .

It is worth noting that the initial susceptibility~20! does
not depend explicitly on the ferroparticle concentrationn and
on the magnetodipole interaction parameterg, but depends
only on the combinationxL5nm2/3kT. In this way, the
Langevin susceptibilityxL represents the universal param
eter, which determines the magnetic properties of ferroflu
in weak magnetic fields. This peculiarity is studied in det
in Sec. V.

IV. STATIC DIELECTRIC PROPERTIES
OF POLAR FLUIDS

Since the expression~20! stands for one of the most im
portant results of the present model, it should be tested
the experimental and numerical data. Unfortunately, we
not have the experimental data on the concentration de
dence of the initial magnetic susceptibility for dense fer
fluids. That is why we refer to the polar fluids, the dielect
properties of which are well studied with the help of com
puter modeling methods.

Two main systems are traditionally used as the model
polar fluids, they are: the dipolar hard-sphere fluid and
Stockmayer fluid. For the first one, the central interact
Us( i j ) is assumed to be the hard sphere potentialUHS( i j ).
The Stockmayer fluid is comprised of particles with perm
nent dipole momentsp interacting with the Lennard-Jone
potential,

Us~ i j !→ULJ~ i j !54«LJ@~d/r i j !
122~d/r i j !

6#, ~21!
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as well as the dipole-dipole interaction~1!.
The main result of a large number of theoretical models

dielectric properties of polar fluids is a presentation of t
dielectric constant« in a form of expansion over the param
etery54pxL /35(4p/9)(np2/kT),

«2153y~11y1Ay21••• !. ~22!

All the theories give the coincident coefficients in the fir
and second terms of expansion~22!. But the predictions of
the third coefficientA are different. For example, the mea
field model by Debye@2#, A51; the Onsager model@3#, A
526; the mean-spherical model by Wertheim@5#, A
51/16; the perturbation theory@21#, A51/16; and the re-
cently developed algebraic perturbation model@15#, A
515/16. The exact value ofA follows from the second orde
perturbation theory~20!: A51/161O(n). Besides that,
some models~see, for example,@15,21#! consider the correc-
tions of the higher orders over concentration to the value
coefficientA, resulting from the account of multiparticle co
relations. These additional terms depend on the concen
tion n, the dipole-dipole interaction parameterg, and the
Lennard-Jones energy«LJ . Thus, the universal expansion o
dielectric constant« over the susceptibility of ideal polar ga
~22! holds true only for the sufficiently small values ofy.
The large number of computer simulations for dense po
fluids demonstrate the independent influence of parame
y,g,«LJ on the dielectric constant. To study such an infl
ence we have to take into account the second order te
over Ud in the pair correlation function~11!. The point is
that we have to consider first the pair dipole-dipole inter
tions, that is,

g̃2~12!5$12bUd~12!1@2bUd~12!#2/2%gs~12!

1Dg̃2~12!. ~23!

The additional term;Ud
2 to expression~11! is of the zero

order over concentrationn, while the corresponding terms i
Dg̃2(12) are of the higher orders overn. Hence, the main
term is the additional term~23!, but never theoretical model
have taken it into account. The dielectric constant may
easily calculated, assuming the simplest determination of
pair distribution functiongs(12) of the reference model in
zero order over concentration:gs(12)5exp@2bUs(12)#. We
get for the dipolar hard sphere fluid,

«2153y@11y~11g2/25!1y2/16#, ~24!

and for the Stockmayer fluid,

«2153yH 11yF11
g2

25
ApkT

2«LJ
expS «LJ

kT D
3erfcS 2A«LJ

kT D G1
y2

16J . ~25!

Figures 2–4 show our results in comparison with t
computer simulations. Figure 2 demonstrates the predict
of various theoretical models for the dipolar hard-sph
5-6
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fluid of densityr5nd350.8 @20#. The universal expansion
~22! describes well the numerical results in the regiony,2.
But for higher valuesy;3 the discrepancy amounts up
10215%. The corrected expression~24! is the best due to
the explicit dependence on the dipole-dipole interaction
rameterg;2 @20#.

The comparison of expressions~22!, ~24!, and ~25! with
the computer simulations@8# on the Stockmayer fluid (r
50.8,«LJ5kT/1.35) is presented in Fig. 3. It follows tha
the Stockmayer fluid is characterized by the larger value
dielectric constant as compared with the dipolar hard sph
of the same concentration and dipole moments. The fac
that the Stockmayer particles are more pair correlated du
the influence of the attractive part of Lennard-Jones po
tial.

The explicit dependence of dielectric constant of po
fluid on the dipole-dipole interaction parameterg is shown in
Fig. 4. Both the numerical results@19# («LJ5kT/1.15) and
the expression~25! predict the faster increase of« than it
follows from the universal expansion~22!. So, we come to
the conclusion that the static dielectric properties of de
polar fluids are greatly dependent on the form and inten

FIG. 2. Dielectric constant of the dipolar hard-sphere flu
Points represent the computer calculations@20#; curves: 1, the
mean-field model by Debye@2#; 2, the hypernetted chain approx
mation @18#; 3, the expression~24!; 4, the expression~22! with A
51/16; 5, the mean-spherical approximation@5#; 6, the mean-field
model by Onsager@3#.

FIG. 3. Dielectric constant of the Stockmayer fluid. Points re
resent the computer calculations@8#; curves: 1, the expression~22!
with A51/16; 2, the expression~24!; 3, the expression~25!.
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of the spherical part of interparticle interaction energy. T
is caused by the fact that the central interactionUs( i j ) re-
sults in the spatial correlations between particles and imp
itly influences the orientational correlations between the p
ticle dipole moments.

Figure 5 shows the influence of the dipole-dipole intera
tion on the polarization densityP of polar fluid in the arbi-
trary values of a uniform electric fieldE. Points correspond
to the computer simulations@8# for Stockmayer fluid (r
50.8,«LJ5kT/1.35,g50.74,«55.4). The polarization den
sity of an ideal polar gas~curve 1! greatly underestimates th
results of numerical modeling. Otherwise, the first order p
turbation model~10! overestimates~curve 2! the polarization
density for the moderate external field strengths (Ep/kT
;1). The very accurate description is given by the modifi
mean field model~dashed curve!, developed in Sec. VI.

V. INITIAL SUSCEPTIBILITY
OF DENSE MAGNETIC FLUIDS

Formally, the conclusion of the previous section about
influence of central interparticle correlations should be a
fulfilled for ferrofluids. Nonetheless, the experimental stu
ies @7,10# and theoretical models@11,13# evidence that the

.

-

FIG. 4. Dielectric constant of the Stockmayer fluid. Solid curv
1–3 represent the expression~25!; dashed curve represents the un
versal expansion~22! with A51/16; points represent the comput
calculations@19# at r50.274 (L and 1!, 0.548 (n and 2! and
0.822 (s and 3!.

FIG. 5. Polarization density of the Stockmayer fluid. Points re
resent the computer calculations@8#; solid curves: 1, the Langevin
law; 2, the first order perturbation model~10!; dashed curve repre
sents the modified mean-field model~32!.
5-7



e
us
r

ns
f

et
tio

-
in
g-

aa

ra
s

l-

of
io
de
m
ri

0

s
a
lo
e

id
-
d

ion
d

er

l-

-
tra-
res-
e

on-
tion

e

the

cep-
ata
s-

ALEXEY O. IVANOV AND OLGA B. KUZNETSOVA PHYSICAL REVIEW E 64 041405
magnetostatic properties of ferrocolloids are described w
while operating with the only parameter—the Langevin s
ceptibility xL . It means that the magnetic properties of fe
rofluids are influenced only by the dipole-dipole correlatio
This disagreement is convenient to study the basis o
monodisperse ferrofluid model, when the particle magn
moment, concentration, and central interparticle interac
have to be considered as the independent parameters.

The central potentialUs is defined by the method of sta
bilization of a ferrocolloid. The use of surfactant layers
neutral liquids~for example, liquid hydrocarbons and ma
netite particles stabilized by oleic acid! reveals that theUs
potential includes the steric repulsion and the van der W
attraction. The ionic ferrofluids@24# are stabilized with the
double electric layer mechanism. So, theUs potential must
include the electrostatic repulsion and van der Waals att
tion. The interparticle interaction in ionic ferrofluids ha
been studied carefully in Ref.@25#.

With the order of accuracy of expressions~24! and ~25!
the initial susceptibility of magnetic fluids is written as fo
lows:

x5xLH 11
4pxL

3 F11
m4

25~kT!2
I G1

~4pxL!2

144 J , ~26!

I 56E
0

`exp@2bUs~r !#

r 7
dr.

Here, the parameterI takes into account the central part
pair interparticle correlations. On the basis of this equat
we have tested a lot of sterical and ionic stabilized mo
ferrocolloids at room temperatures in the range of para
eters: the saturation magnetization of ferromagnetic mate
Ms5480 kA/m ~magnetite!; the magnetic core diameterx
58213 nm; the concentration of magnetic phasewm up to
20%; the particle surface nonmagnetic layer thickness
20.8 nm; the Hamaker constant 2310219 to 4310219 J
~hydrocarbons! and 2310220 to 4310220 J ~water-based
ferrofluids!; the steric layer thickness 222.5 nm; the particle
surface electrostatic potential (425)kT; the Debye electro-
static screening lengthkD510220d21. Our calculations
have shown the negligible difference between the case
sterical and ionic stabilizations, but the computer data
dependent on the particle sizes. The typical results are p
ted on Fig. 6 as the ferrofluid initial susceptibility vs th
Langevin susceptibility for the magnetic core diametersx
510 nm @Fig. 6~a!# and 13 nm@Fig. 6~b!#. The calculated
data @expression~26!# are presented by points, the sol
curves correspond to expression~20! and dashed curves rep
resent the predictions of the 1st order perturbation mo
~10!. For the magnetic core diametersx less than 11 nm we
have not found any visible deviations between express
~20! and~26! both for the sterical and for the ionic stabilize
suspensions. For larger valuesx;12215 nm the small de-
viations appear (;5%) in the region 4pxL;728 ~mag-
netic phase concentration;15220 %). But the point is that
in real polydisperse magnetic fluids the main number of f
roparticles are small in sizex57210 nm, and only the very
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small mole portion (;5210 %) of particles reaches the va
ues x;12215 nm. That is why the deviation region@big
particles, 4pxL;728, Fig. 6~b!# is never realized in prac
tically used magnetic colloids with the moderate concen
tions of a magnetic phase. In this case, the universal exp
sion ~20! is valid for ferrofluids while using the polydispers
defined Langevin susceptibilityxL5n^m2&/3kT. The pre-
dictions of the first order perturbation model@13# and the
modified mean-field model@10# in a form of expression~10!
give the adequate description only for the moderately c
centrated ferrofluids with the magnetic phase concentra
wm;10% and 4pxL;3.

FIG. 6. Initial susceptibility of the model ferrofluids with th
magnetic core diameters 10 nm~a! and 13 nm~b!. Points represent
the calculated data with the help of expression~26! for the sterical
(s) and ionic (n) stabilized systems. Solid curves represent
expression~20!; dashed curves represent the expression~10!.

FIG. 7. Temperature dependence of the initial magnetic sus
tibility of dense ferrofluids. Points represent the experimental d
@17# (L) and @7# (s). Solid curves 1 and 2 represent the expre
sion ~20!; dashed curves 1 and 2 represent the expression~10!.
5-8
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The application of expression~20! to the temperature de
pendence of the initial susceptibility of dense ferroflui
(wm'18%) is shown in Fig. 7. These systems represent
dispersions of the so-called ‘‘drop-like aggregates,’’ arisi
during the phase separation of ferrocolloids. The droplets
highly concentrated and are enriched with the large part
fractions. The mean magnetic moment amounts up to^m&
;20310219 A m2. At low temperatures the susceptibilit
may be as great as 4px;80. The adequate interpretation
x(T) curves needs to take into account the following: t
Langevin susceptibility decreases with increasing temp
ture not only due to the factor 1/T but also because of th
liquid heat expansion~the number particle density decrease!
and of the decreasing magnetizationMs of the particle ma-
terial. The calculation procedure of such an account was
scribed in Ref.@7#. In view of the above considerations th
theoretical curvesx(T) in Fig. 7 were constructed in thre
stages:~i! calculation of the Langevin susceptibilityxL(T0)
using the formula~20! and the experimental value ofx(T0)
at the reference temperatureT05345 K ~curve 1! and 380 K
~curve 2!; ~ii ! derivation ofxL(T) at an arbitrary temperatur
accounting for the liquid heat expansion and temperature
pendence of the magnetizationMs ; ~iii ! calculation of the
initial susceptibilityx(T) in the framework of the presente
theoretical model@expression~20!#, and a comparison of the
predicted and experimental values. The fact is that the
sented model for the first time shows the good agreem
with the experimental data@7,17#. So, the term proportiona
;xL

3 in expression~20! is very important for the dense fer
rofluids at low temperatures~see the solid and dashed curv
on Fig. 7!.

VI. MAGNETIZATION CURVES AND MODIFIED
MEAN-FIELD THEORY

Applying to the magnetization curves of real ferroflui
the general method of Sec. II should be extended to the p
disperse systems. Introducing the discrete ferroparticle di
bution by size, we find, according to Eqs.~4! and ~6!,

M ~H !5n(
k

nkmk

1

2E0

p

cosv1g1
k~v1!sinv1 dv1 ,

~27!

dg1
k~v1!

dv1
52ak sinv1g1

k~v1!2
n

kT (
l

n lE dV2

3E dr2

dUd
kl~12!

dv1
g2

kl~12!. ~28!

Here, nk stands for the mole portion of the particles ofk
fraction ~magnetic momentmk), and the particles 1 and
belongs to fractionsk and l, respectively~upper indexes of
the dipole-dipole potential and correlation functions!. The
summations overk andl correspond to the averaging over a
the ferroparticle distribution by size.
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The solution of equation~28!, substituting in expression
~27!, leads to the following:

M ~H !5ML~H !1
n2

kT (
k,l

nkn lmkV̂1
kV̂2

l @cosv12L~ak!#

3E d~cosv1!E dr12

dUd
kl~12!

sinv1 dv1
g̃2

kl~12!,

ML~H !5n(
k

nkmkL~ak!, ak5
mkH

kT
. ~29!

Determination of the pair correlation functiong̃2
kl(12) lin-

ear in dipole-dipole potential~Sec. III! gives the very cum-
bersome expression for the ferrofluid magnetization, conta
ing a lot of terms. The main contribution is made by the thr
of them:

M ~H !5ML~H !F11
4p

3

dML~H !

dH

1
1

2 S 4p

3 D 2

ML~H !
d2ML~H !

dH2

1
~4p!2

144 S dML~H !

dH D 2

1•••G . ~30!

Here, all the terms omitted do not make any contribution
the initial susceptibility. This expression represents the v
complicated expansion of the ferrofluid magnetizationM
over the various combinations of the Langevin magnetizat
ML and its derivatives. The first two terms in square brack
coincide with the result of the first order perturbation mod
~10!.

The idea of approximation of the ferrofluid magnetizati
M in terms of the Langevin oneML belongs to the modified
mean-field model@10#, which was discussed in the Introduc
tion:

M ~H !5ML~He!5ML@H1~4p/3!ML~H !#. ~31!

The point is that the expansion of this expression with
accuracy;(nm2)2;(nUd)2 gives the first three terms pre
sented in expression~30!. Evidently, the higher terms of suc
expansion;(nUd)k, k53,4, . . . will appear in the higher
orders of the perturbation method. In other words, the de
oped statistical theory justifies the validity of the modifie
mean-field approach. However, the definition of an effect
field He , according to Ref.@10# and expression~31!, is in-
sufficient for dense ferrofluids, especially for a weak ma
netic field. But, on the basis of a success of approach~31! for
moderately concentrated ferrocolloids we are able to sug
some modification, including the last term in expressi
~30!,

M ~H !5ML~He!5nE
0

`

m~x! f ~x!LFm~x!He

kT Gdx, ~32!
5-9
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TABLE I. Parameters of ferrofluids, magnetization curves of which are presented in Fig. 8. The frac
distributions by size were determined on the basis of results of Sec. VI.

M` n,1022 x0 ^m&,10219 ^x& Curve
~kA/m! (m23) a ~nm! 4pxL 4px (A m)2 ~nm! in Fig. 8

87.1 43.8 7.54 0.97 4.05 10.0 1.99 8.3 1
88.6 42 2.72 2.03 8.67 38.3 2.1 7.55 2
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He5H1
4p

3
ML~H !1

~4p!2

144
ML~H !

dML~H !

dH
,

M ~H !5xH, x5xLF11
4pxL

3
1

~4pxL!2

144 G , H→0,

~33!

M ~H !5S M`2
nkT

H D S 11
4p

3

nkT

H2 D , H→`. ~34!

Here, the additional term in the effective fieldHe is pro-
portional to the derivative of the Langevin magnetizatio
and results in the additional term in magnetic susceptibil
The asymptotics of the weak magnetic fields~33! coincide
with the expression~20!, and the asymptotics of the stron
magnetic fields~34! correspond with the first order perturb
tion model@13#. The functionf (x) stands for the continuou
ferroparticle distribution density by the magnetic co
diameters.

We have tested the model~32! on the experimental mag
netization curves@12,17# for the ferrofluids with the satura
tion magnetizationM`587.1 and 88.6k A / m. Theparticle
polydispersity was described by the gamma distribution,

f ~x!5
1

x0
S x

x0
D aexp~2x/x0!

G~a11!
, ~35!

wherex0 anda are the parameters of the distribution densi
andG(z) stands for the gamma function. The magnetizat
curves were calculated in four stages according to the m
netogranulometric algorithm:~i! with the help of the strong
field asymptotics~34! the fitting of the experimental dat
gives us the particle number densityn and the mean mag
netic momentM`5n^m&; ~ii ! the weak field asymptotics
~33! allows us to obtain the Langevin susceptibility an

FIG. 8. Magnetization curves of dense ferrofluids. Points rep
sent the experimental data@12# (s and 1! and @17# (L and 2!;
curves represent the modified mean-field model~32!.
04140
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hence, the mean squared magnetic moment^m2&; ~iii ! since
^m&;^x3& and^m2&;^x6&, we are able to find the distribu
tion parametersx0 and a, which are presented in Table
~iiii ! as a result, we calculate the ferrofluid magnetizat
~32! in the arbitrary values of an external field. The compa
son, presented in Fig. 8, shows a very accurate agreem
between the developed model~32! and the experimenta
data. Besides that, the expressions~32!–~35! allow us to de-
termine the ferrofluid fractional distribution by the partic
size~Fig. 9!, which is of great importance for many applica
tions.

It should be noted that the saturation magnetizationsM`

of both ferrofluids are close, but the initial susceptibiliti
differ by the four times~Table I!. The reason is that the
ferrofluid 2 contains a number of big particles~Fig. 9!, mag-
netic moments of which are greatly correlated. The lat
leads to a faster increase of magnetization 2 in the w
magnetic fields as compared with magnetization 1~curves 1
and 2, Fig. 8!.

VII. CONCLUSION

With the help of the BBGKI method the ferrofluid mag
netization was expressed in terms of the pair correlat
function of the ferroparticle system. This new approach
lows us to develop the cluster expansion of the ferrofl
magnetization~polar fluid polarization! over both the particle
concentrationn and the interparticle dipole-dipole interactio
Ud in an arbitrary valued external field. An important adva
tage of the method is that the determination of the pair c
relation function up to the order of;nk,Ud

k gives the mag-
netization in terms of the order;nk11,Ud

k11 .
The exact expressions for the ferrofluid initial magne

susceptibility and the polar fluid dielectric constant were o
tained under the condition that the interparticle dipole-dip
correlations linear inUd have been taken into account. W

-
FIG. 9. Ferroparticle distribution density by the magnetic co

diameters. Curves correspond to the ferrofluids 1 and 2~Fig. 8!.
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MAGNETIC PROPERTIES OF DENSE FERROFLUIDS: . . . PHYSICAL REVIEW E64 041405
have shown that the result of the Weiss mean-field mo
will appear while neglecting the presence of excluded v
umes for interacting particles due to the central interpart
interaction. The obtained expressions for the dielectric c
stant of both the dipolar hard sphere fluid and the Sto
mayer fluid were compared with the known computer cal
lations. Our results describe well the data of compu
modeling and substantiate that the dielectric properties
dense polar fluids are influenced not only by the dipo
dipole interaction but the central interparticle correlations
well.

Applying our results to dense ferrocolloids we have stu
ied the dependence of the initial magnetic susceptibility
the stabilization method of a magnetic suspension; this
pendence was shown to be very weak for real ferroflu
This conclusion justifies the validity of the obtained expre
sion for the initial susceptibility in a form of the expansio
over the universal parameter—the Langevin susceptibi
The theory presented gives the accurate description of
temperature dependence of the magnetic susceptibility
dense ferrofluids. The magnetization was studied in term
the second order perturbation method over the dipole-dip
interaction energy. We have justified the validity of th
modified mean-field approach and have suggested the s
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tical method of determination of the effective field, acting
a single particle. The obtained expression for magnetiza
allows us to determine the correct fractional contents a
describes very accurately the total magnetization curves e
for ferrofluids with the maximum allowable concentration
a magnetic phase;18%. This is caused by the fact that o
result is expressed on the basis of the modified mean-fi
model. We have shown that such an approach represen
special form of perturbation theory, when the ferrofluid ma
netization is evaluated as an expansion over the Lang
magnetization. The explicit form of this expansion is co
trolled by the pair correlations of ferroparticle magnetic m
ments.
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APPENDIX A

Calculating the derivatives in expression~3!, we get

M52
1

V

]

]H
~2kT ln Q̃!

5
kT

V

]

]H H lnF S sinha

a D N

QG J
5

kT

VQ̃

]

]H)
i 51

N

R̂i)
i 51

N E dVi exp~2bĤm2bĤs2bĤd!

5
kT

VQ̃
)
i 51

N

R̂i)
i 51

N E dV i exp~2bĤm2bĤs2bĤd!
m

kT (
i 51

N

cosv i

5
nm

Q
R̂1E dV1S a

sinha Dexp~a cosv1!cosv1)
i 52

N

R̂i)
i 52

N

V̂ i exp~2bĤs2bĤd!

5nmR̂1E dV1 cosv1g1~r 1 ,V1!.

Here we define the one-particle distribution function as the Gibbs distribution averaging over the coordinates and
tions of all particles except one according to

g1~r1 ,V1!5S a

sinha D exp~a cosv1!

Q )
i 52

N

R̂i)
i 52

N

V̂ i exp~2bĤs2bĤd!.

Assuming that for a homogeneous ferrofluid the functiong1 does not depend onr1 andz1, we come to the expression

M5nm
1

2E0

p

cosv1g1~v1!sinv1 dv1 .
5-11
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Let us calculate the derivative of the functiong1(v1) with respect to the angle variablev1:

dg1~v1!

dv1
5

d

dv1
S a

sinha D exp~a cosv1!

Q )
i 52

N

R̂i)
i 52

N

V̂ i exp~2bĤs2bĤd!

52a sinv1S a

sinha D exp~a cosv1!

Q )
i 52

N

R̂i)
i 52

N

V̂ i exp~2bĤs2bĤd!

1S a

sinha D exp~a cosv1!

Q )
i 52

N

R̂i)
i 52

N

V̂ i exp~2bĤs2bĤd!
d

dv1
(
j 52

N F2
Ud~1 j !

kT G
52a sinv1g1~v1!2

N21

kT S a

sinha D exp~a cosv1!

Q
R̂2V̂2

dUd~12!

dv1
)
i 53

N

R̂i)
i 53

N

V̂ i exp~2bĤs2bĤd!

52a sinv1g1~v1!2
n

kTE dr2E dV2

dUd~12!

dv1
g2~r1 ,r2 ,V1 ,V2!.

Here we define the pair correlation functiong2 as the Gibbs distribution averaging over the coordinates and orientatio
all particles except two according to

g2~r1 ,r2 ,V1 ,V2![g2~12!5S a

sinha D 2exp@a~cosv11cosv2!#

Q )
i 53

N

R̂i)
i 53

N

V̂ i exp~2bĤs2bĤd!

5S a

sinha D 2

exp@a~cosv11cosv2!#g̃2~12!,

g̃2~12!5)
i 53

N

R̂i)
i 53

N

V̂ i exp~2bĤs2bĤd!/Q.

The functiong̃2(12) has the meaning of the pair correlation functiong2(12), separating out the one-particle distributio
functions of an ideal paramagnetic gas~5!: (a/sinha)exp(a cosvi),i51,2.
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