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Magnetic properties of dense ferrofluids: An influence of interparticle correlations
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A statistical model has been developed describing the magnetostatic properties of dense ferrocolloids and the
dielectric properties of polar fluids. The model is based on the relation between the magnetization and the pair
correlation function of a spatially homogeneous system of dipole particles. This approach allows us to calculate
the ferrofluid magnetizatiofpolarization density of polar flujdn a form of expansion over both the particle
concentration and the potential of the interparticle dipole-dipole interattjpnThe obtained expressions for
the ferrocolloid initial magnetic susceptibility, the dielectric constant of polar fluid and the ferrofluid magne-
tization with the accuracy- Uﬁ describe well the experimental data and the results of computer modeling. The
model justifies the validity of the “modified mean-field approach,” and the effective field is calculated as a
function of the Langevin magnetization.
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[. INTRODUCTION concentrated ferrocolloids reveal an essential deviation from
the Langevin formulag7]. The initial susceptibility in-
Ferrofluids(ferrocolloids, magnetic fluigsare stable col- creases faster than that according to linear dependgnce
loidal suspensions of the one-domain particles of ferromag=-n. The same behavior is also typical for the polar fluids
netic and ferrimagnetic materials in liquid carri¢td. The  [8].
small sizes of dispersed ferroparticl@ameterd~10 nm It is clear that this deviation is primarily due to the inter-
provide the particles with an inherent magnetic moment proparticle interactions. A number of theoretical models allow
portional to the volume of their magnetic grains. The stabi-the evaluation of the magnetic properties taking into account
lization of suspension is usually obtained by coating of magthe dipole-dipole interactions, these are different variants of
netic grains with surfactant layers or by using of classicathe mean-field mod€]2,3,9,1Q, the mean-spherical model
mechanism of double electric layer formation. As a result[5,11,14, and the thermodynamic perturbation model
the ferroparticles interact with each other through the spherif13,14. In the framework of the most popular mean-field
cally symmetric energysteric repulsion, van der Waals at- model by Weisq2,9] the dipole-dipole interactions are as-
traction, electrostatic repulsiprand the noncentral dipole- sumed to be equivalent to some increase in the intensity of
dipole interaction of particle magnetic moments so that thexn external magnetic field, with the amount of its contribu-
ferrocolloid has much in common with a polar fluid. The tion being proportional to magnetizatiovi of the ferrocol-
high fluidity of ferrocolloids is combined with a perceptible loid. The effective field acting on a single-domain particle is
ability to interact with an external magnetic field, which is expressed abl,=H+ «M. The mean-field constant is gen-
the essence of their practical application. erally assumed to be equal to the Lorentz vataed /3. In
An evaluation of magnetic characteristics of homoge-this caseH, coincides with a field intensity in the spherical
neous ferrofluids comes up against the well-known problentavity formed by a particle in a liquid, provided that the
of taking into account the interparticle dipole-dipole interac-cavity itself exerts no effect on the state of the neighboring
tion. The latter is most conspicuous in concentrated systemgarticles. Thus, this model yields the Curie-Weiss law for the
and controls the correlations in mutual position of ferropar-initial susceptibility =y, /(1—«x.). The Weiss model
ticles and in mutual orientation of their magnetic momentspredicts a magnetic phase transition into a magneto-ordered
In this sense, the problem is similar to calculation of dielec-liquid state; at the transition point the initial susceptibility
tric properties of polar fluids. The literature on the last sub-becomes infinite, that igg—c wheny, —3/4. But a para-
ject is quite extensive; considerable attention has been givamagnetic to ferromagnetic second order phase transition is
by Debye[2], Onsager[3], Kirkwood [4], Wertheim[5]. never observed in fluidlike magnetic systems. That is why
Nonetheless, the problem of influence of interparticle correthe Weiss mean-field theory appears to be questionable while
lations in dense polar fluids with intensive dipole-dipole in- applying to magnetic fluidéor polar fluids.
teraction should not be considered as solved. The mean-field Onsager modgd] is based on the as-
As far as the ferrofluids are concerned, the physical propsumption that the cavity formed by a particle in a ferrofluid
erties of dilute systems are well described in the frameworknfluences the orientation of the magnetic moments of the
of the one-particle mod¢b], which treats ferrocolloid as an neighboring particles. The initial susceptibility remains finite
ideal paramagnetic gas of particles, suspended in a liquitbr any finite temperature and concentration, but the experi-
carrier. The equilibrium magnetization is written by applying mental and computer studies have shown that the Onsager
the Langevin function, and the initial magnetic susceptibilitymodel highly underestimates the values of the initial suscep-
XL is proportional to particle concentration mean squared tibility of concentrated ferrocolloid&s well as the dielectric
particle magnetic momem?) and is inverse to temperature constant of polar fluids[7,13,15,186.
KT, that is, xy,=n(m?)/3kT. However, experiments with Attempts to use the mean-spherical mddel,17 and the
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thermodynamic perturbation methft3,14] proved far more  perturbation method over the intensity of dipole-dipole inter-
successful. These models are appropriate to describe welktion under the presence of a uniform external magnetic
experimental data on magnetostatic properties of real magield (Sec. lll). We have obtained the exact expression for the
netic fluids. Obviously, these models have the coincidentnitial susceptibility on the basis of the second order over
fields of adequacy and are valid for ferrocolloids with low or Such perturbation. \We have shown the statistical way leading
moderate concentrations of magnetic phasg)—12 % un- 10 the Weiss mean-field model. The results of the model
der the presence of an arbitrarily valued uniform magnetidSecs. Il and I1] are tested on the polar fluids in Sec. IV. We
field. have calculated the dielectric constant both for the dipolar
The most precise description of the magnetization curve§ard-sphere fluid and for the Stockmayer fluid. Our results
of moderately concentrated ferrofluids is given by the sodescribe well the data of computer modeling and substantiate
called “modified mean-field modelT10]. This approach is that the dielectric constant of dense polar fluids is influenced
based on the assumption that the effective field acting on BOt only by the dipole-dipole interaction but the central in-
ferroparticle is proportional to the Langevin magnetizationterparticle energy as well. In Sec. V we study the initial
M, , that is,H.=H+ (4m/3)M_ . The resulting expressions susceptibility of dense magnetic fluids. The analysis shows
for the initial susceptibilityy= x,(1+4my, /3) and for the that the magnetic properties of ferrocolloids are weakly de-
magnetization in saturation conditions are coincident withPendent on the method of stabilization of suspension. For the
the predictions of the thermodynamic perturbation modefirst ime we have obtained a precise description of the tem-
[13,14). But the modified mean-field model gives the morePerature dependence of initial susceptibility at low tempera-
accurate description of the magnetization curves in the arbitures (4rx~60—80). Attempts to use the second order per-
trary external field strengths. turbation model for magnetization curves allows us to justify
All the last-mentioned models are valid in the case wherthe modified mean-field model and to suggest the statistical
the intensity of interparticle dipole-dipole interaction doesmethod of determination of the effective fielflec. V). We
not exceed by the order of value of the thermal endegylt ~ have proposed a simple expression for magnetization in a
means that the dipole-dipole interaction parameter form of modified mean-field theory that describes very accu-
=m?2/d3kT, having a meaning of the interaction energy of fately the total magnetization curves of ferrofiuids with the
the two contacting particles related to the thermal energymaximum allowable concentration of a magnetic phase

has the order of unity or less, that ig=1. For dense fer- ~18%.

rofluids with a magnetic phase concentration over 15

—18% or ferrofluids, consisting of large particles, this is Il. FERROFLUID MAGNETIZATION AND PAIR
insufficient. The temperature dependencies of the initial sus- INTERPARTICLE CORRELATIONS

ceptibility of these systems demonstrate the large deviations ) ) ]
[7,17) between the theoretical predictions and the experi- Presenting a general method, let us consider first a mono-
mental data. At low temperatures the modéle, 11,13 un-  disperse liquid system dfl identical spherical particleadi-
derestimate the values of initial susceptibility by-180%. ameterd) containing the constant magnetic momemtdi-
It is clear that this deviation is due to the fact that the dipole-P0le moment The particles are suspended in a neutral liquid
dipole interactions are most conspicuous in concentrate@arrier of the volumev. Each particlé is characterized by a
magnetic fluids. radius-vectorr;(r;,6; ,¢;) and by a vector);(w;,¢;), de-
Besides the mentioned, other methods are recruited t8Cribing the orientation of its magnetic momenf=mq;.
evaluate the dielectric constant of polar fluids. For exampleNOW it is necessary to discuss the shape of the volume with
the hypernetted chain approximatift8] leads to the highly @ ferroﬂuu_j. IF is well known[22] tha’g under the presence of
overestimated values in comparison with the results of com@ Magnetic field the thermodynamic properties of magnetic
puter modelling[8,19,20. The likewise overestimation of Media are dependent on their shapes due to the demagneti-
the dielectric constant is given by the recently developedation effects. Since we are going to study the magnetic
algebraic perturbation modgl5]. In the region of moderate Properties of ferrofluids as a f_unctlo_n of an ex_ternal field, we
values of dielectric constamt~ 30, the computer results are phoose the shape of a container with ferrofluid such that the
well described by the perturbation model developed in Refinfluence of demagnetization field can be neglected. Thus,
[21]. However, the theories mentioned are valid only forWe consider the volume of the system in a shape of infinitely
weak external fields and do not consider the dependence &fongated ellipsoid of revolutiofthe ratio of the minor to
polarization density in an arbitrarily valued electric field. ~ major ellipsoid semiaxis should tend to zgstretched along
This leads to the conclusion that the role of dipole-dipole@n €xternal uniform magnetic field. It is important to stress
interaction in dense dipolar fluidlike systems is not studiedhat using the infinitely elongated ellipsoidal shape is of ad-
theoretically well. This problem seems to be of principal Vantage because this is just the case when demagnetization
nature and to be of specific interest for many fields of appliedactors are of no consequence and do not need to be ac-
science. counted for(the external magnetic field coincides exactly
In the present paper we focus our attention on a newvith the internal on)e_Forl more general shapes of the con-
approach connecting the macroscopic ferrofluid magnetiza@iner, the demagnetization factor of the system needs to be
tion with the pair correlation function of ferroparticle system taken into account.
(Sec. I). Applying to dense ferrocolloids we have calculated The HamiltonianH contains the following terms: the
the pair correlation function with the help of the first order spherical part of interparticle interactidh(ij) (hard sphere
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interaction, van der Waals forces, electrostatic repujsitie

dipole-dipole interactiotJ 4(ij) of the particle magnetic mo-
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n:N/V, J gl(wl)dﬂl=1

ments; and the interaction of magnetic moments with an ex-

ternal fieldU (i)

N
A=Ry+ Aot P, Hs=i<j2=lus<ij>, @

. m;ri) (m;ryg)  (mmy)
Ugii)=-| ’rf., ) ol
ij ij

N N
Am=> Un(i)=—mH>, cosw;, rj=ri—rj.
=1 =1

The partition functionrQ may be written in the form

N N
Q=(sinha/ 0)NQ, Q=,H1 ﬁeiljl Q; exp(— BA— BHY),
)

ﬁifm)%f f(rydr,

O, f(Q)= f f(Q,)expla cosw;)dQ; ,

sinha
a=mH/KT, B=1/KkT,
dQ;=(4m)"* sinw; do; dZ;,
dri=r2 dr; sing, do; de;,
where the action of the operatdis and(}; corresponds with
the averaging over all positions of théh particle in the

volumeV and over all orientations of thiegh magnetic mo-
ment. In the integrals we use the following Cartesigyy(z)

This function represents actually a probability for a single
particle to be placed at a poimnt and to be oriented in a
direction€); . It is well known that for a homogeneous liquid
state the equalitg,(r;,€;)=1 holds trug 23] in the case of
the absence of an external field. Otherwise, this probability
depends only on the angte; between the external field di-
rection and the orientation of the magnetic moment of a
single particle, that isg,(r;,€;)=g1(w;). For example, for
an ideal paramagnetic gd¥&)4(ij)=Uy(ij)~0] from the
definition of g4(r; ,€2;) (Appendix A one can easily get the
well-known Langevin magnetization

®

01(w1)=(al/sinha)exp a cosw,),

M(H)=M_ (H)=nml(«), L(a)=cotha—1/a.

For the interacting particle system the expresdiénis
not used practically. This is caused by the fact that there are
no methods for determining one-particle distribution func-
tion in dense liquids. The main idea of our approach is that
such a method may be formulated for a ferroflblar
fluid) placed in an external field. The method is based on the
Bogolyubov-Born-Green-Kirkwood-lvonfBBGKI) formal-
ism[23] using the angle dependence of the funcig(w,).
Differentiating this function with respect t@,; we come to
the equation, connecting the one-particle distribution func-
tion with the pair correlation functiorgy(r;,rj,€2;,€2;)
=g,(ij) (see Appendix R

dgi(wy)
dwl

=—asinwigi(w1)
n f 40 fd dUq4(12) 12
KT 2| dra d—w192( ).

The pair correlation functiorg,(rq,ro,€Q4,€Q,) repre-

(6

coordinate system: the coordinate origin is placed at the cersents actually the mutual probability for two particldsand

ter of the ferrofluid volumegz axis is parallel to the major
axis of the ellipsoid, that is{|Oz the angle<;,¢; are the
polar angles in the plan(y)_L Oz the anglesw; , 6, are the
angles between the vectof?;,r; and the direction of an
external field Oz axis).

Introducing the magnetizatioM by the definition

19 ~
M=—-5 —(—kTIn Q),

V H @

we get the following expressiofsee Appendix A connect-

2) to be placed at the points; andr, and to be oriented
along the direction®2; and Q,. This probability is influ-
enced both by the pair interparticle interactidny(12)
+Uy4(12) and by the interactionsd,(1) andU.(2) of the
magnetic moments with an external field. It is convenient to
introduce this function in a forntAppendix B

0,(12) = (a/sinha)? exd a(cosw,+ cosw,)]g,(12),
@)

ing the magnetization with the one-particle distribution func-separating out the ideal paramagnetic tefsee expression

tion g4(r;,€)):

1 (=
M(H)znmzf Ccosw191(wy)Sinw, dwq, (4)
0

(5)]. The functiong,(12) describes all the multiparticle cor-
relations in the mutual two-particle probability.

The analytical solution of E(6) with respect to normal-
ization condition(4) gives
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== 14 (1 Q) Y P —nmR/3KT
gl(wl)—mexﬂacoswl) +(1- 1)k_T X=xu I+ 7 x ), xe=nm ,
xf d(cosw;) Q) jdr dUq(12) ~ (12) where the initial magnetic susceptibility is presented in
YRtz 25inw, dw, 2 ’ quadratic parabola behavior over the Langevin susceptibility

| AL This result coincides with the prediction of the first or-
der perturbation theonf13] and is independent on the
5 spherical part on interparticle enertyy; . It should be noted
M(H)=M_(a)+ E@ 0,[cosw;—L(a)] that the comparison of the one-particle correlation function
LL@) T g tiansal bose e in forms (5) and (10) shows that the consideration of the
magnetic interactiotJ 4 on the basis of the first order pertur-
% j d(COSwl)f dry, fjud(lz) 9,(12). (9) bation theory results in the more pronounced orientation of
Sinw; doy ferroparticles along an external field direction.

Here we use the fact that the spatial two-particle probability Il. SECOND ORDER PERTURBATION MODEL
depends only on the mutual interparticle distange that is,

0o(r1,712,94,9,)=0,(r1,,9,,9,). The integration

d(cosw;) means the indefinite integral with respect to
cosws, arising from the solution of equatigb). The expres-

sion (9) is exact and includes all the corrections to the
Langevin magnetization influenced by a multiparticle corre-
lation. Besides that, the expressi@) is of principal nature. .
On its basis the cluster expansion methods may be develop
to determine the ferrofluid magnetizatigpolar fluid polar-

The results(10) of the first order perturbation model de-
scribe well the magnetic properties of the moderately con-
centrated ferrofluids(magnetic phase concentration 10
—12%) [7,13] as well as the high-temperature dielectric
properties of polar fluid$16]. For the dense ferrofluids at
low temperaturegintensive dipole-dipole interactiont is

ufficient. The experimental studi¢g,17] of temperature
ependences of the initial susceptibility of highly concen-
ization) in the arbitrary values of an external field. An im- trategj magnetic fluids (magnetlc_ phase concentration
portant feature of the method is that the right-hand parts of_ 18%) have demonstrated the disagreement between the

expressiong8) and (9) contain the first orders of particle eoretical preFjlct!ons and the.expenme.ntal data};
concentratiom and dipole-dipole interaction potentialy. ~ The determination of the pair correlation functigp(12)
Thus, the determination of the pair correlation functionin terms of higher orders of perturbation method comes up

(12 to the order of-nk UX gives the magnetization in with th_e fo_Ionving problem: the cluster ex.pans.ion results for
92(12) up ki1l g ghetization | the pair distribution functiof23] become invalid under the

terms of the order-n**1,UX p L field. Thi bl fests itself i
To demonstrate this advantage let us consider the expal resence ot an exter.na eld. This probiem mani ests itself in

) ~ } . ultiparticle correlations and is caused by the change of the

sion of g>(12) with zero-order accuracy over the dipole- ygpological properties of the corresponding graphs. These

dipole potential(zero-order perturbation In this case we graphs must consider not only the various combinations of

assume that all interparticle correlations are controlled by thene orders of dipole-dipole interaction, but the interaction of

spheric~al part of the interparticle interaction enetdyij),  the graph topgparticle magnetic momentsvith an external

that is,g-(ij) =0s(ij). Heregg(ij) stands for the pair distri- field as well. As a result, the topological structure of the

bution function of the reference systdsystem of particles, cluster expansion varies drastically.

interacting through the central interparticle enetdy(ij) Let us consider all the corrections of the first order of

only]. Substituting the functioyg(12)=g(|r,—r,|) in ex-  Ug(ij) in pair correlation function,

pressions(8) and (9) we come up against the problem of

averaging of the first order of dipole-dipole interactiop 02(12=[1-BU4(12)]gs(12) +AGx(12), (11

over all the positions of particles 1 and 2. It was shown in

Refs.[13,22 that the result of this integration depends on the - .

shape of the systefibut does not depend on the volume and Agz(12)=exq—ﬂus(12)]n[ f drz Q5[ —BU4(13)

on the type of the central interparticle interachiokor the

case of infinitely elongated ellipsoidal container with the ne- —BU4(23)]exd — BUL(13)— BU4(23)]

glecting influence of demagnetization effects we get

—zf dray 00,0~ BUL(34)]

S 1 ™
91(w1) = G, 8XPla COSwy)) 1+ —= 1= L(a)
Xexgd —BU(34)];.
X[Coswl—L(a)]], (10) ~
The correction termAg,(12) coincides with the classical

result[23] only in the absence of an external field=0). In
4qr dML(H)} this case the last term on the right-hand side of expression

M(H)= ML(H)[ 1+ 3 dH for Ag,(12) compensates in part the first term. This compen-

041405-4



MAGNETIC PROPERTIES OF DENSE FERROFLUIDS: ... PHYSICAL REVIEWGE 041405

sation leads to the dependence of pair correlation function on
the Mayer functionsfy(ij)=exd —BUqij)]—1 in the total
graph expansion. Under the presence of an external field
such compensation does not take place. Naturally, we would ;{
calculate the functiong,(12) for the system of dipolar hard
spheres, that id)4(ij)=Ups(ij),
AGy(12)=nexf — BUns(12)](11+1,-215), (12
1= [ ors - U3 1exi - BU<(13
_BUHS(23)]1 j:1!2’ y
3= f dras Q5Ql — BU4(34) Jex — BUns(34)].
The last ond ; is the simplest:
1 A Q(m3r34)(m4r34) (mgmy) FIG. 1. Geometry of particle positions under the calculation of
|3:k_T dras (250 3 r5 - '3 the pair correlation functiorV,, is the excluded volume for the third
34 34 particle.

Xexfd — BUns(34)]
in the total volumeV. It is equivalent to the assumption of

m? ) 3(f34§)2—1 the mean-field model, when the position and orientation of
- ﬁ'-(“) f drag r3 the third particle are not influenced by the presence of the
34 second one,
xXexd — BUus(34)]. (13

2

4mm )
Herer 3, andz are the unit vectorsrg,=rs4f 34,2||H) and we Ine()) = 7 jgLla)cose;,  j=1.2. (17

useQ;m;=mz ().

While calculating the integral ovelr 3, we must take into The termJg\(1) gives the corrections tdy (1) result-
account the infinitely elongated ellipsoidal shape of the coning from the nonpenetrating conditions between the particles
tainer[14], 2 and 3. The integration ovelr; in Jg\(1) has to be made

over the excluded volum¥, (Fig. 1),
3(?342)2_ l 4
f drog—— 5 ——exd—BUns(34]=zm.  (14) dmm?
F34 Jev(j)=— 3 ﬁ[3(r12mj)(r122) —(M;2)IL(a)G(r1p),
As a result, the last term in expression for the function (18)

A9,(12) has the order of-L(a)?, i
j=1,2, mj=mm,

| dm m’ L(a)? 15
37 3 kT (a)”. A9 0, rip<<d
3
The termsl; andl, have the same structure. It is conve- G(ryp)=1{ 3ria/16d—riy32d° d<ry,<2d
nient to introduce it in the following form: d®/rd,, 2d<r .
h1=Jev(1) +Jur(D), (16 The functionG(r,) is obtained with respect to the sec-
ond virial term in the hard-sphere distribution functi@8].
JEV(l):f drz Q5 — BU4(13)]exd — BUnxs(13)] One can see that the termhsand|, have the order-L(«)
that differs froml 5.
X {exq — BUns(23)]- 11, With the help of the results of this section it is easy to

obtain the expression for the initial magnetic susceptibility.
The consideration of the first term in EQ.1) andJy g parts

JMF(l):f dry3 s — BU4(13)Jexy] — BUps(13)]. only in Ag,(12) gives the following expression:

The termJy e corresponds to the averaging over positions X=XL[1+47TXL/3+(4#)2XE/9]~XL/(1—477)(L/3),
and orientations of the third particle inside the first one, but (19
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which is not influenced by the first order tfy and by the as well as the dipole-dipole interactidh).

explicit form of the functiongg in the first term of the right- The main result of a large number of theoretical models of
hand part of expressio(ll). Their contributions vanish in dielectric properties of polar fluids is a presentation of the
the limit H—0. The expressiolil9) represents the expan- dielectric constan¢ in a form of expansion over the param-
sion of the mean-field model result with the cubic accuracyetery=4my, /3=(4/9)(np%/KT),

in x_. The divergencey—,47y /3—1 (that is, the sec- 5

ond order magnetic phase transitiés a result of neglect of e—1=3y(1+y+Ay+.--). (22)
interparticle correlationgexcluded volume in Fig.)1 Taking
into accountJgy, terms we find the exact expression fer
with the cubic accuracy iy, ,

All the theories give the coincident coefficients in the first
and second terms of expansi@@?). But the predictions of
the third coefficientA are different. For example, the mean-
field model by Debyd?2], A=1; the Onsager modé¢B], A
=—6; the mean-spherical model by Wertheifs], A

: - =1/16; the perturbation theorj21], A=1/16; and the re-
We should note that th A4)—(18) det
e should note that the expressidd)~(18) determine cently developed algebraic perturbation modéb], A

the pair correlation function of the dipolar hard-sphere fluid>* h I ol ¢ h
influenced by the pair and three-particle correlations with the ™ 15/16. The exactva u.e aﬁ_o ows from the sepond order
accuracy~Uy. As it was mentioned earlier, this accuracy Perturbation theory(20): A=1/16+O(n). Besides that,

results in quadratic dependence of the magnetic characteri§oMe model¢see, for examplé15,21) consider the correc-
tics onUy. The three-particle terméFig. 1) take into ac- tions of the higher orders over concentration to the value of

count the dipole-dipole correlations in pairs of particles 1_ZcoefficientA, resulting' from the account of multiparticle cor-
and 1-3. But the particles 2 and 3 interact with each othefelations. These additional terms depend on the concentra-
only through the spherical enerdy;. In this case the addi- tion n, the dipole-dipole interaction parametgy and _the

tion to expression(10) term (4)2x?>/144 is positive. It L_ennart_i-.]ones energy , . Thus, the .un!versa}l expansion of
means that the consideration of linear pair correlation funcd|electr|c constant over the susceptibility of ideal polar gas

tion in Uy leads to much more pronounced orientation of-(zz) holds true only for the sufficiently small values pf

ferroparticles along an external field direction than is pre-The large number of computer simulations for dense polar

dicted by the first order perturbation model. It is not a Sur_fIU|ds demonstrate the independent influence of parameters

prise, because only the circlelike graphs may lead to the® ?>&Ls ON the dielectric constant. To study such an influ-

opposite effects. But these graphs will appear only in thence we have to _take mto_account_the second or_der_ terms
R over Uy in the pair correlation functiorill). The point is
next, second order expansion@f(ij) overUy.

. . N d- that we have to consider first the pair dipole-dipole interac-
It is worth noting that the initial susceptibilit§20) does P P P

x=x.[1+4mx I3+ (47)2°x21144+O(x3)].  (20)

. ) _ tions, that is,
not depend explicitly on the ferroparticle concentratioend
on the magnetodipole interaction parameferut depends Bo(12)=11— BU(12)+[ — BU(12)1%/2 12
only on the combinationy, =nm?/3kT. In this way, the 02(129)={1~ BUq(12)+[ - BU4(129]7/2}9,(12)
Langevin susceptibilityy, represents the universal param- +AQ,(12). (23)

eter, which determines the magnetic properties of ferrofluids
in weak magnetic fields. This peculiarity is studied in detail The additional term- U3 to expressiori11) is of the zero

in Sec. V. order over concentratiom, while the corresponding terms in
AQ,(12) are of the higher orders over Hence, the main
IV. STATIC DIELECTRIC PROPERTIES term is the additional terr(23), but never theoretical models

OF POLAR FLUIDS have taken it into account. The dielectric constant may be

. . ) easily calculated, assuming the simplest determination of the
Since the expressiof20) stands for one of the most im- i istribution functiong(12) of the reference model in

portant re'sults of the presen't model, it should be tested o ero order over concentratiogs(12)=exy —BUL12)]. We
the experimental and numerical data. Unfortunately, we d et for the dipolar hard sphere fluid,

8—1=3y[1+y

not have the experimental data on the concentration depen-
dence of the initial magnetic susceptibility for dense ferro- e—1=3y[1+y(1+ y?/25)+y?/16], (24)
fluids. That is why we refer to the polar fluids, the dielectric
properties of which are well studied with the help of com-and for the Stockmayer fluid,
puter modeling methods.
Two main systems are traditionally used as the models of y? [mkT €Ly
polar fluids, they are: the dipolar hard-sphere fluid and the 1+ 25V 2¢; XA w7
Stockmayer fluid. For the first one, the central interaction
U(ij) is assumed to be the hard sphere poterdigh(ij). feLs y?
The Stockmayer fluid is comprised of particles with perma- xerfc( "Nl 18 (25
nent dipole momentg interacting with the Lennard-Jones
potential, Figures 2—4 show our results in comparison with the
computer simulations. Figure 2 demonstrates the predictions
Ug(ij)—Upy(ij)=4e [ (d/rj)*?=(d/r;;)®], (21  of various theoretical models for the dipolar hard-sphere
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FIG. 2. Dielectric constant of the dipolar hard-sphere fluid. ) ) . .
Points represent the computer calculati@§]; curves: 1, the FIG. 4. Dielectric constant of the Stockmayer fluid. Solid curves

mean-field model by Debyg2]; 2, the hypernetted chain approxi- 1—3 represent the expressi2®); dashed curve represents the uni-
mation[18]; 3, the expressiofi24); 4, the expressiol22) with A versal e_xpansnon(122) with A=1/16; points represent the computer
—1/16; 5, the mean-spherical approximat{@; 6, the mean-field ~calculations[19] at p=0.274 (¢ and 1, 0.548 (A and 2 and

model by Onsageli3]. 0.822 (O and 3.

fluid of densityp=nd3=0.8[20]. The universal expansion of the spherical part of interparticle interaction energy. This
(22) describes well the numerical results in the regjen2. IS caused by the fact that the central interactioygij) re-

But for higher valuesy~3 the discrepancy amounts up to sults in the spatial correlations between particles and implic-
10—15%. The corrected expressiéd) is the best due to Itly influences the orientational correlations between the par-

the explicit dependence on the dipole-dipole interaction palicle dipole moments. _ _ .
rametery~ 2 [20]. Figure 5 shows the influence of the dipole-dipole interac-
The comparison of expressiof2), (24), and (25) with tion on the polarization densitly of polar fluid in the arbi-

the computer simulationf8] on the ,Stocly<mayer fludg  trary values of a uniform electric fielH. Points correspond
=0.8,£.,=kT/1.35) is presented in Fig. 3. It follows that © the computer simulation8] for Stockmayer fluid f

the Stockmayer fluid is characterized by the larger values of 0-8£Ls=KT/1.35,y=0.74g=5.4). The polarization den-
dielectric constant as compared with the dipolar hard spheredty Of an ideal polar gagcurve 1 greatly underestimates the
of the same concentration and dipole moments. The fact jeesults of numerical modeling. Otherwise, the first order per-

that the Stockmayer particles are more pair correlated due firbation mode(10) overestimategcurve 2 the polarization
the influence of the attractive part of Lennard-Jones potendensity for the moderate external field strengttEp/kT
tial. ~1). The very accurate description is given by the modified

The explicit dependence of dielectric constant of polarmean field mode(dashed curve developed in Sec. VI.
fluid on the dipole-dipole interaction parameteis shown in
Fig. 4. Both the numerical resulf49] (e, ;=kT/1.15) and V. INITIAL SUSCEPTIBILITY
the expressior(25) predict the faster increase ef than it OF DENSE MAGNETIC FLUIDS

follows from the universal expansid@2). So, we come to Formally, the conclusion of the previous section about the

thoela(r:?cﬂﬁtljl“'::rr; thraetailhe d‘:[agﬁ doellﬁze()cs]r[[%er);g?;rt;isd ?;tgﬁgi??nﬂuence of central interparticle correlations should be also
P 9 y dep Xulfilled for ferrofiuids. Nonetheless, the experimental stud-

ies [7,10] and theoretical modelgl1,13 evidence that the

€
80 P/np
2 - -
60 <Li}
0.5 AL
40 < 1
20
0 1 2 EphT

0 1 2 3 y
FIG. 5. Polarization density of the Stockmayer fluid. Points rep-

FIG. 3. Dielectric constant of the Stockmayer fluid. Points rep-resent the computer calculatiof]; solid curves: 1, the Langevin
resent the computer calculatiof8; curves: 1, the expressid@2) law; 2, the first order perturbation moddl0); dashed curve repre-
with A=1/16; 2, the expressio(24); 3, the expressiof25). sents the modified mean-field mod&p).
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magnetostatic properties of ferrocolloids are described well 4ry

while operating with the only parameter—the Langevin sus- /
ceptibility y, . It means that the magnetic properties of fer-
rofluids are influenced only by the dipole-dipole correlations.

This disagreement is convenient to study the basis of a 5k

monodisperse ferrofluid model, when the particle magnetic
moment, concentration, and central interparticle interaction
have to be considered as the independent parameters.

The central potentidl is defined by the method of sta- @
bilization of a ferrocolloid. The use of surfactant layers in 0 1 ) 3 Ay,
neutral liquids(for example, liquid hydrocarbons and mag-
netite particles stabilized by oleic agideveals that théJg
potential includes the steric repulsion and the van der Waals
attraction. The ionic ferrofluid§24] are stabilized with the
double electric layer mechanism. So, tHe potential must
include the electrostatic repulsion and van der Waals attrac-
tion. The interparticle interaction in ionic ferrofluids has
been studied carefully in Ref25].

With the order of accuracy of expressiof#&}) and (25)
the initial susceptibility of magnetic fluids is written as fol-

4my,

lows: 0 2 4 6 Amy,
FIG. 6. Initial susceptibility of the model ferrofluids with the
4 m* (4mx)? , : :
Y=x.| 1+ XL XL (26) magnetic core diameters 10 ni@ and 13 nm(b). Points represent
L 3 25 kT)2 144 |’ the calculated data with the help of express{a6) for the sterical
(O) and ionic (A) stabilized systems. Solid curves represent the
=exg — BUL(r)] expression20); dashed curves represent the expressidn
-6 [RHAYAO
0 r’

Here, the parametértakes into account the central part of small mole portion {-5—10 %) of particles reaches the val-

pair interparticle correlations. On the basis of this equatior!®S X~ 12—15 nm. That is why the deviation regidibig

we have tested a lot of sterical and ionic stabilized modeparticles, 4TXL~7_.8’ Fig.'db)] 'is never realized in prac-
tically used magnetic colloids with the moderate concentra-

ferrocolloids at room temperatures in the range of param-. ¢ i oh In thi h ) |
eters: the saturation magnetization of ferromagnetic materig|OnS Of @ magnetic phase. In this case, the universal expres-

M.=480 kA/m (magnetite; the magnetic core diameter sion (20) is vaIid_for ferroflu'id.s. while usigg the polydisperse
=8—13 nm; the concentration of magnetic phasg up to d_efl_ned Langew_n SUSCGpthIHtX/L:er )/3KT. The pre-
20%; the particle surface nonmagnetic layer thickness 0.§'Ct'9ns of the f_|rst order per_turbat|on moddl3] a_nd the
—0.8 nm: the Hamaker constant<20 2° to 4x 10~ 1° J modlfled mean-field modt_{ll_o] in a form of expressioi(10)
(hydrocarbons and 2<10°2 to 4x10°2 J (water-based give the adequatg des_crlpuon only fqr the moderately con-
ferrofluids; the steric layer thickness22.5 nm; the particle centrated ferrofluids with the magnetic phase concentration

surface electrostatic potential {%6)kT; the Debye electro- #m™ 10% and 47y, ~3.
static screening lengthkp=10—20d 1. Our calculations

have shown the negligible difference between the cases of 4y,
sterical and ionic stabilizations, but the computer data are g0 |
dependent on the particle sizes. The typical results are plot-
ted on Fig. 6 as the ferrofluid initial susceptibility vs the
Langevin susceptibility for the magnetic core diameters
=10 nm[Fig. 6(@] and 13 nm[Fig. 6b)]. The calculated
data [expression(26)] are presented by points, the solid
curves correspond to expressi@®) and dashed curves rep-
resent the predictions of the 1st order perturbation model
(10). For the magnetic core diametersess than 11 nm we
have not found any visible deviations between expressions
(20) and(26) both for the sterical and for the ionic stabilized 20
suspensions. For larger valugs 12— 15 nm the small de-

viations appear {5%) in the region 4y, ~7—-8 (mag- FIG. 7. Temperature dependence of the initial magnetic suscep-
netic phase concentration15—20 %). But the point is that tibility of dense ferrofluids. Points represent the experimental data
in real polydisperse magnetic fluids the main number of fer{17] (¢ ) and[7] (O). Solid curves 1 and 2 represent the expres-
roparticles are small in size=7—10 nm, and only the very sion (20); dashed curves 1 and 2 represent the expres&ion

40

250 300 350 T(K)
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The application of expressidi20) to the temperature de- The solution of equatiori28), substituting in expression
pendence of the initial susceptibility of dense ferrofluids(27), leads to the following:
(em=~18%) is shown in Fig. 7. These systems represent the
dispersions of the so-called “drop-like aggregates,” arising
during the phase separation of ferrocolloids. The droplets are
highly concentrated and are enriched with the large particle
fractions. The mean magnetic moment amounts upni® du§'(12) ~l
~20x10 1 Am?. At low temperatures the susceptibility XJ d(coswl)f drlZW‘Jz(lZ)'
may be as great as#y~80. The adequate interpretation of
x(T) curves needs to take into account the following: the
Langevin susceptibility decreases with increasing tempera- ML(H)=nE vimL(ay), ag=
ture not only due to the factor I/but also because of the K
liquid heat expansiofthe number particle density decregses -
and of the decreasing magnetizatibh, of the particle ma- Determination of the pair correlation functigy'(12) lin-
terial. The calculation procedure of such an account was dear in dipole-dipole potentigiSec. Il gives the very cum-
scribed in Ref[7]. In view of the above considerations the bersome expression for the ferrofluid magnetization, contain-
theoretical Curves((T) in F|g 7 were constructed in three Ing a lot of terms. The main contribution is made by the three
stagesi(i) calculation of the Langevin susceptibilify (T,)  ©f them:
using the formulg20) and the experimental value qf(T,)

n’ A%
M(H)=ML(H)+ 15 > nnm Q305 coswy—L(ay)]

mH

T (29

at the reference temperatufg= 345 K (curve 9 and 380 K 47 dM (H)

(curve 2; (ii) derivation ofy, (T) at an arbitrary temperature M(H)=M.(H) 1+ 3 dH

accounting for the liquid heat expansion and temperature de-

pendence of the magnetizatidf; (iii) calculation of the 1(4m\? d?M(H)

initial susceptibility x(T) in the framework of the presented + 2 ?) L W
theoretical modefexpressior(20)], and a comparison of the

predicted and experimental values. The fact is that the pre- (47)2 [ dM_(H)\2

sented model for the first time shows the good agreement (#) +.. 1 (30)
with the experimental datgr,17]. So, the term proportional 144 dH

~ Xﬁ in expression20) is very important for the dense fer-

rofluids at low temperaturesee the solid and dashed curves Here, all the terms omitted do not make any contribution to
on Fig. 7. the initial susceptibility. This expression represents the very

complicated expansion of the ferrofluid magnetizatign
over the various combinations of the Langevin magnetization

VI. MAGNETIZATION CURVES AND MODIFIED M, and its derivatives. The first two terms in square brackets
MEAN-FIELD THEORY coincide with the result of the first order perturbation model
(10).

Applying to the magnetization curves of real ferrofluids
the general method of Sec. Il should be extended to the ponM
disperse systems. Introducing the discrete ferroparticle distriI;n
bution by size, we find, according to Edqd) and(6),

The idea of approximation of the ferrofluid magnetization
in terms of the Langevin onkl belongs to the modified
ean-field mode10], which was discussed in the Introduc-

tion:

1(n . , M(H)=M (He)=M[H+(4m/3)M (H)].  (31)
M(H)=n>, vkmsz cosw,9X(w,)sinw; do;,
K 0 The point is that the expansion of this expression with the
(27) accuracy~ (nm?)2~(nU,)? gives the first three terms pre-
sented in expressiaid0). Evidently, the higher terms of such

dgli(wl) n expansion~(nUg), k=3,4, ... will appear in the higher
g =—ay Sinw,gX(wy) — KT > | dQ, orders of the perturbation method. In other words, the devel-
@1 ! oped statistical theory justifies the validity of the modified
dut(12) mean-field approach. However, the definition of an effective
« | dr,—4-— Kl(12) (28)  field H,, according to Ref[10] and expressiori31), is in-
2 dwl d> . C !

sufficient for dense ferrofluids, especially for a weak mag-
netic field. But, on the basis of a success of apprqathfor
Here, v, stands for the mole portion of the particles lof moderately concentrated ferrocolloids we are able to suggest

fraction (magnetic momentn,), and the particles 1 and 2 SOme modification, including the last term in expression
belongs to fractionk and|, respectively(upper indexes of (30),

the dipole-dipole potential and correlation functipn¥he .
summations_ovek gndl cqrrespon'd to the averaging over all M(H)=M_(Hg)= nf m(x)f(x)L
the ferroparticle distribution by size.

m(X)He
KT

}dx, (32
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TABLE |. Parameters of ferrofluids, magnetization curves of which are presented in Fig. 8. The fractional
distributions by size were determined on the basis of results of Sec. VI.

M., n,10% Xo (m),10°1° (x) Curve
(kA/m) (m™3) a (nm) 41y Ay (A m)? (nm) in Fig. 8
87.1 43.8 7.54 0.97 4.05 10.0 1.99 8.3 1
88.6 42 2.72 2.03 8.67 38.3 2.1 7.55 2

(4)? dM_(H) hence, the mean squared magnetic monjert); (iii) since
142 M) —q— (my~(x3) and({m?)~(x%), we are able to find the distribu-
tion parameterx, and a, which are presented in Table I,
Ay, (Amy)? (iiii) as a result, we calculate the ferrofluid magnetization
M(H)=xH, X:XL{ 1+ + } H—O0, (32) in the arbitrary values of an external field. The compari-
3 144 son, presented in Fig. 8, shows a very accurate agreement
(33 between the developed modé&é?2) and the experimental
data. Besides that, the expressi©o88)—(35) allow us to de-

A
He=H+ oMy (H)+ —7

nkT 47 nkT termine the ferrofluid fractional distribution by the particle
M(H)=| M=~ T) +? F) + Hoe (39 size(Fig. 9), which is of great importance for many applica-
tions.
Here, the additional term in the effective fiettl, is pro- It should be noted that the saturation magnetizatidns

portional to the derivative of the Langevin magnetization,of both ferrofluids are close, but the initial susceptibilities
and results in the additional term in magnetic susceptibility differ by the four times(Table ). The reason is that the
The asymptotics of the weak magnetic fiel@®8) coincide  ferrofluid 2 contains a number of big particlésg. 9), mag-
with the expressiori20), and the asymptotics of the strong netic moments of which are greatly correlated. The latter
magnetic fieldg34) correspond with the first order perturba- leads to a faster increase of magnetization 2 in the weak
tion model[13]. The functionf(x) stands for the continuous Magnetic fields as compared with magnetizatiofcdrves 1
ferroparticle distribution density by the magnetic coreand 2, Fig. 8

diameters.
We have tested the mod€2) on the experimental mag- VII. CONCLUSION
netization curve$12,17] for the ferrofluids with the satura-
tion magnetizatiorM..=87.1 and 88.6& A / m. The particle With the help of the BBGKI method the ferrofluid mag-

polydispersity was described by the gamma distribution,  netization was expressed in terms of the pair correlation
function of the ferroparticle system. This new approach al-

x| qexpl —x/Xq) lows us to develop the cluster expansion of the ferrofluid
Xo —F( at1) ' (35 magnetizatior{polar fluid polarization over both the particle
concentratiom and the interparticle dipole-dipole interaction

wherex, anda are the parameters of the distribution density,Uq in an arbitrary valued external field. An important advan-
andI'(z) stands for the gamma function. The magnetizationfage of the method is that the determination of the pair cor-
curves were calculated in four stages according to the magelation function up to the order of n*,U gives the mag-
netogranulometric algorithn(i) with the help of the strong netization in terms of the order nk*?, Uk+1

field asymptotics(34) the fitting of the experimental data The exact expressions for the ferroflwd initial magnetic
gives us the particle number densityand the mean mag- susceptibility and the polar fluid dielectric constant were ob-
netic momentM..=n{m); (ii) the weak field asymptotics tained under the condition that the interparticle dipole-dipole
(33 allows us to obtain the Langevin susceptibility and,correlations linear ilJ4 have been taken into account. We

1
fo0 =~

M (kt/m) f&®) 1
2
! 0.1
50
2
0.05F
0 20 40 60 H (kdA/m) ] ] 1
o _ _ 0 5 10 15 *x(nm)
FIG. 8. Magnetization curves of dense ferrofluids. Points repre-
sent the experimental dafd2] (O and 3 and[17] (¢ and 2; FIG. 9. Ferroparticle distribution density by the magnetic core
curves represent the modified mean-field ma8@). diameters. Curves correspond to the ferrofluids 1 arfBi@. 8).
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have shown that the result of the Weiss mean-field modefical method of determination of the effective field, acting on
will appear while neglecting the presence of excluded vol-a single particle. The obtained expression for magnetization
umes for interacting particles due to the central interparticleallows us to determine the correct fractional contents and
interaction. The obtained expressions for the dielectric condescribes very accurately the total magnetization curves even
stant of both the dipolar hard sphere fluid and the Stockfor ferrofluids with the maximum allowable concentration of
mayer fluid were compared with the known computer calcua magnetic phase 18%. This is caused by the fact that our
lations. Our results describe well the data of computekesult is expressed on the basis of the modified mean-field
modeling and substantiate that the dielectric properties ofnodel. We have shown that such an approach represents a
dense polar fluids are influenced not only by the dipole-special form of perturbation theory, when the ferrofluid mag-
dipole interaction but the central interparticle correlations asetization is evaluated as an expansion over the Langevin
well. magnetization. The explicit form of this expansion is con-
Applying our results to dense ferrocolloids we have stud-rolled by the pair correlations of ferroparticle magnetic mo-
ied the dependence of the initial magnetic susceptibility omments.
the stabilization method of a magnetic suspension; this de-
pendence was shown to be very weak for real ferrofluids.
This conclusion justifies the validity of the obtained expres- ACKNOWLEDGMENTS
sion for the initial susceptibility in a form of the expansion
over the universal parameter—the Langevin susceptibility. This work has been carried out with the financial support
The theory presented gives the accurate description of thef the Russian Basic Research Foundati@rants Nos.
temperature dependence of the magnetic susceptibility fdd0-02-17731, 01-01-00058, and 01-02-1607the research
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the second order perturbation method over the dipole-dipolby Award No. REC-005 of the US Civilian Research and
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APPENDIX A

Calculating the derivatives in expressi), we get

M= L9 kT In C
= vm( n Q)

kT 9 | sinha\N

vl @

—kTaﬁﬁNIdn oy BFI— B

=Vo ik Rk i exp(—BHy,—BHs—BHy)

kT N A N A R R m N
= \Tbi=l Riiﬂl J dQ, exq—BHm—,BHS—BHd)ﬁ 21 COSw;
N N
nm. @ . . . .
=6R1 dﬂl(sinha expla COSwl)COSwliIJZ Rii:l_[2 O, exp(— BH— BHy)

=nmh1J’ dQ, cosw;g;(ri,Q4).

Here we define the one-patrticle distribution function as the Gibbs distribution averaging over the coordinates and orienta-
tions of all particles except one according to

expla CoSwq)

Q

a
sinha

N N
izﬂz F}ii];[z Q; exp(— BHs— BHy).

91(r1’91):(
Assuming that for a homogeneous ferrofluid the functigrdoes not depend on, and ¢, we come to the expression

1=
M =nm§f COSwg1(wq)SiNw; dw;.
0
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APPENDIX B

Let us calculate the derivative of the functign(w;) with respect to the angle variable;:

dgi(w;) d a eX[(aCOSa)l)N A N N
oy —d—m(sinha) o LLRILL & exet— A BRY)
a | explacosw,) N N
:_asmwl(sinha> 3 liljzﬁiilzlz Q; exp(— BHs— BHY)
( a )exp(acosm)ﬁ ﬁ R . d % Ug(1j)
T\ sinha o b Rill Qeexp=BHs=BHa G- 20 |~ g
_ N—1 expla coswy) . ~ dUg(12) 1y . o
=~ asinoyg;(w)~ (Sinc:m> o Rl g T RIT © exp(~pA,—pHy
dU4(12
=—asinw;g;(w1) - fdrzf dQZ%gZ(rlervﬂlaQZ)

Here we define the pair correlation functign as the Gibbs distribution averaging over the coordinates and orientations of

all particles except two according to

2exf a(cosw; + COSw,)]

o
gZ(rl’rz’Ql'QZ)EQZ(lz):(sinha)

|

92(12 =

a 2
sinha

n’:lz

N N
) IT RIT & exp— A~ BAY)
Q =3 =3

exp] a(cosw;+ CoSw,)]9,(12),

N
[ R O exp(—pH<—pH)/Q.

The functiong,(12) has the meaning of the pair correlation functip12), separating out the one-particle distribution
functions of an ideal paramagnetic g&s: (a/sinha)exp(acosw,),i=1,2.
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