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Optimal Joint Probing and Transmission
Strategy for Maximizing Throughput in

Wireless Systems
Prasanna Chaporkar and Alexandre Proutiere

Abstract—In broadcast fading channel, channel variations can
be exploited through what is referred to as multi-user diversity
and opportunistic scheduling for improving system performance.
To achieve the gains promised by this kind of diversity, the
transmitter has to accurately track the channel variations of
the various receivers, which consumes resources (time, energy,
bandwidth), and thus reduces the resources remaining for ef-
fective data transmissions. The transmitter may decide not to
acquire or probe the channel conditions of certain receivers,
either because these receivers are presumably experiencing severe
fading, or because the transmitter wishes to spare resources for
data transmissions. It may also decide to transmit to a receiver
without probing its channel; in such cases, the transmitter
guesses the channel state, which often results in a reduction
of the transmission rate compared to when the transmitter
knows the channel state. Ultimately, the transmitter has to
decide to which receiver it should transmit. In this paper, we
identifying the joint probing and transmission strategies realizing
the optimal trade-off between the channel state acquisition and
the effective data transmission. The objective is to maximize the
system throughput. Finally, we propose several extensions of the
proposed strategy, including a scheme to maximize the system
utility and a scheme to ensure the system stability.

Index Terms—Limited information MAC, stochastic control,
generalized optimal stopping time problem.

I. INTRODUCTION

FADING variations between the transmitter and the re-
ceiver have traditionally been considered to have an

adverse impact on the performance of the communication
in wireless systems. It is well known that the capacity of
the AWGN point-to-point channel with ergodic fading is less
than that of the unfaded AWGN channel even when the
channel side information (CSI) is available at the transmit-
ter and the receiver [1], [2]. Recently however, Knopp and
Humblet [3] have shown that fading could be exploited to
increase the throughput in broadcast systems, where a single
transmitter has to send data to several receivers with various
and independent fading conditions. There, the throughput
improvement is achieved by always transmitting to receivers
with relatively favorable channel conditions. When the number
of receivers is sufficiently large, there is always, and with high
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probability, a receiver whose channel conditions are better than
in average. This principle is often termed multi-user diversity,
and transmitting to users with relatively favorable conditions
is referred to as opportunistic scheduling.

This promise of throughput gain via multi-user diversity
instigated significant research efforts in developing theoretical
and practical opportunistic scheduling schemes. Such schemes
have been designed for various performance objectives. For
example, Lyapunov-based opportunistic scheduling schemes
that can provide the required throughput to each of the
receivers when doing so is at all possible have been proposed
in [4], [5]; schemes that provide delay differentiation are
proposed in [6], [7], [8]; schemes that minimize the maximum
mean queueing delay are developed in [9]; and more recently,
opportunistic schedulers that maximize/minimize certain util-
ity while providing the required throughput to each of the
receivers have been proposed in e.g. [10], [11], [12], [13].

In all the work mentioned above, the basic underlying
assumption is that the CSI between the transmitter and each
of the receivers are known at both ends. But, the CSI is
not automatically available, instead it has to be acquired; and
this acquisition consumes resources like time, bandwidth and
power, e.g. in CDMA/HDR cellular systems [10], a dedicated
channel for each receiver is maintained for communicating the
CSI to the base station. Moreover, the resource consumption
is proportional to the number of receivers in the system. Thus,
one has to carefully evaluate the trade-off between resource
consumption in acquiring CSI and the performance improve-
ment by opportunistically using the acquired information. In
this paper, our aim is to evaluate this trade-off and propose an
optimal CSI acquisition and transmission policy to maximize
the rate at which the transmitter can send data to the receivers,
i.e. to maximize the system throughput.

We motivate the problem with the following example.

Example 1: Consider a broadcast channel with two re-
ceivers, e.g., the down-link of a cellular network or of a
wireless LAN. Time is slotted, and a slot is of unit duration.
Here, the slot is assumed to represent the coherence time of
the channels. We further assume that the receivers experience
independent and identically distributed (i.i.d.) fading in each
slot. Specifically, let the maximum rate of transmission in any
slot be 1 with probability 1/2 and 2 w.p. 1/2 independently
for each of the receivers given that CSI is known to both, the
transmitter and the receiver. Also, let β denote the fraction
of slot duration required to probe a receiver and acquire its
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CSI. In this setting, we compare two probing and transmission
strategies π1 and π2. Under π1, the transmitter probes both
receivers, and then transmits to the receiver with the best
channel state. Ties are broken arbitrarily. Under π2, the trans-
mitter probes one receiver at random, and transmits to it at the
maximum rate possible. Policy π1 spends 2β units of time per
slot to acquire the channel states, and transmits at an expected
rate of 7/4 in the remainder of the slot; while π2 spends only
β units of time per slot to acquire the CSI, but transmits at
a smaller expected rate of 3/2 in the remainder of the slot.
Thus, the expected throughput under π1 is 7(1−2β)/4, while
that under π2 is 3(1 − β)/2. Note that if β ≤ 1/8, then π1

has a higher throughput than that of π2. But, when β > 1/8,
the throughput under π2 is higher.
The above example demonstrates that the probing and trans-

mission strategy should be designed by taking into account
the cost for probing, which is time in the example. Since,
the channel states change at each slot, whose duration is the
coherence time of the channels, the CSI obtained in a given
slot can not be used in subsequent slots. Thus, if the time
required for probing a receiver consumes a significant portion
of the coherence time, then probing only a small number of
receivers may provide the optimal throughput. On the other
hand, if the time required for probing is a small fraction of
the coherence time, then probing a larger number of receivers
may be optimal as it allows to discover receivers with high
channel gains and thereby to achieve a high throughput.
In Example 1, policy π1 can be trivially modified to provide

better throughput in the following way. If at the first probe,
π1 finds a receiver to which transmission at rate 2 is possible,
then it does not probe the second receiver as no further
improvement in the transmission rate is possible. With this
modification, π1 achieves throughput of 7

4

(
1 − 10

7 β
)
instead

of 7
4 (1 − 2β). This shows that the decision to probe further

should depend on the channel states observed in the previous
probes.
Another problem in designing an optimal probing and

transmission strategy is that of deciding the order in which the
receivers should be probed. In Example 1, we have considered
i.i.d. channel states, and hence probing sequence does not
matter. But, in the following example we demonstrate that
when the channel states are not i.i.d. across receivers, then
the sequence in which receivers are probed has a significant
bearing of the achievable throughput.
Example 2: Consider the same settings as in Example 1,

except that the channel gains are not i.i.d. across receivers.
Specifically, in each slot, let the maximum rate to receiver R1

be 2 w.p. (k− 1)/k and k w.p. 1/k, and for receiver R2 let it
be 1 w.p. (2k − 1)/2k and 2k w.p. 1/2k. Now, the expected
transmission rates to R1 and R2 are

2(k−1)
k +1 and 2k−1

2k +1,
respectively. Thus, for k > 3/2, the expected rate to R1 is
strictly greater than that to R2. Fix k > 3/2. In this setting,
one would intuitively expect that probing R1 first should be
optimal as it provides a higher expected rate, but we show
that if β < 2k2

8k2−7k+2 , then probing R2 first provides a better
throughput. Specifically, we show that the optimal policy π�

is, in every slot, to probe R2 first. If the achievable rate is
2k then transmit to R2, otherwise probe R1 and transmit to
it at the appropriate rate. The expected throughput of π� is

(1 − β) + (1 − 2β)6k2−7k+2
2k2 . To show that π� achieves the

highest throughput, it suffices to compare it with policy π1

that probes R1 and transmits at appropriate rate, and with
policy π2 that probes R1 first. If the achievable rate is k,
then π2 transmits to R1, otherwise it probes R2 and transmits
to it if the achievable rate is 2k, else it transmits to R1 at
rate 2. Note that the throughput of π1 is (1−β)

[
2(k−1)

k + 1
]
,

while that of π2 is (1 − β) + (1 − 2β)3k2−4k+1
k2 . It is easy

to verify that throughput of π2 is always smaller than that
of π�, while the throughput of π1 is smaller than that of π�

when β < 2k2

8k2−7k+2 . Thus, probing R2 provides the optimal

throughput for β < 2k2

8k2−7k+2 .
The above example demonstrates that the system throughput

depends on the order in which the receivers are probed.
The example also demonstrates that heuristics like probing
receivers in the order of their expected rates may not be
optimal.
Until now we have considered a case where the transmitter

transmits only to a probed receiver. But, in practice the
transmitter may decide to transmit to a receiver by guessing,
instead of probing, its CSI. Guessing saves the time required
to probe the receiver, and this time may be used for the actual
data transmission. But, the rate of transmission to an un-
probed receiver can not be greater than the rate of this receiver
averaged over its fading conditions. Clearly, the opportunity
to guess leads to a more complicated possible trade-off: A
probing and transmission strategy has to adaptively decide
whether to (i) transmit to a probed receiver, (ii) probe a
new receiver, or (iii) guess the channel state of an un-probed
receiver and transmit to this receiver. The decision will depend
upon the fraction of the channel coherence time required to
probe a receiver, the receivers’ channel gain distributions, and
the channel gain values observed for the probed receivers.
Our aim is to obtain a probing and transmission strategy
maximizing the expected system throughput.
Though we have motivated the problem for broadcast fading

channel, similar problem exists in other wireless systems of
practical interest. We present the following example.

Opportunistic spectrum access in multi-channel wireless
networks: In future wireless systems, a receiver will be able
to access a large number of channels. For example, in IEEE
802.11 based wireless LANs, three orthogonal channels are
available for communication. Also, in other systems such as
cognitive radio systems, the transmitter has to choose the
frequency band to communicate so as to avoid interference
with licensed or unlicensed receivers. Here, to maximize its
throughput, the transmitter should use a channel with high
SINR. Thus, again, the transmitter has to probe channels to
look for the best possible and this has a cost, as it reduces the
time remaining for the effective transmission. The problem is
clearly identical to the first problem mentioned above.
In this paper, we formulate the problem of designing an

optimal probing and transmission strategy as a stochastic
control problem (Section II), and explain how this problem
is different from the classical stochastic control problems. We
derive structural properties of optimal probing and transmis-
sion strategies, and in some special cases of practical impor-
tance, we completely characterize these strategies (Section III).
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We then illustrate our theoretical findings through numerical
results (Section IV), and conclude the paper (Section IV) by
proposing several extensions of the work.

II. PROBLEM FORMULATION AND RELATED WORK

A. System Model and Problem Formulation

We consider a system with N receivers whose channel
conditions vary over time. Time is slotted, and the channel
conditions of the various receivers are assumed to remain
constant for the duration of one slot, i.e., the coherence time
of the channels are larger than one slot; these conditions may
change at the slot boundaries. In other words, we consider the
block fading model [2]. Denote by ci(t) the channel state of
user i during slot t. Now the transmission rate at which a user
whose channel is in state c ∈ R

+ can receive is denoted by
R(c) where R(·) is an increasing function. For example,R can

represent Shannon limit: R(c) = W log2

(
1 + Pc

WN0

)
, where

W is the channel bandwidth and P, N0 are the transmission
power and the noise power spectral density, respectively. Here
the channel state c represents the fraction of transmission
power received by the user. We assume that the channel
states are independent across receivers, but the distributions
of the channel state of each receiver may be different. For
a given receiver, the channel states are i.i.d. across slots
with cumulative distribution function (c.d.f.) Fi(·) (Fi(a) =
Pr[ci(t) ≤ a]). In the following, we denote by Ci a generic
random variable (r.v.) with c.d.f. Fi. We assume that Fi is
known to the transmitter and the receiver.
At the beginning of each time slot, the sender can decide

to probe some channels, to transmit to one of the probed
receivers, or to transmit to a receiver that has not been probed1.
We assume that probing the channel state of a receiver takes
a proportion β of the slot duration. Hence, in a given slot,
when the transmitter decides to transmit to a receiver whose
channel state is c, where c can be either known or unknown,
the throughput during this slot is:

T = (1 − β|P|)R(c),

where P denotes the set of probed receivers in that slot, and
|P| is the cardinality of this set. We denote by P the set
{1, . . . , N} \ P .
Definition 1 (Probing Strategy): A probing strategy is an

algorithm that given the set P of probed receivers and the
channel gains for the receivers in P , decides whether to probe
a receiver in P ; and if the decision is to probe, then it also
decides which receiver should be probed.
Definition 2 (Transmission Strategy): A transmission strat-

egy is a rule that identifies a receiver to which the transmitter
should transmit given the set P of probed receivers and the
channel gains for the receivers in P .
We note that a transmission policy need not always transmit

to a receiver in P , but it may also decide to guess the channel
gain for a receiver in P and transmit to it.
Definition 3 (Joint Probing and Transmission Strategy): A

joint probing and transmission strategy π is an algorithm that

1Note here that transmitting to an un-probed receiver requires advanced
adaptive coding schemes, and often, it is not possible. That is why the case
where the sender has to probe a channel before using it is quite relevant.

given the set P of probed receivers and the channel gains for
the receivers in P , decides among one of the following three
actions: (i) transmit to some receiver i ∈ P , (ii) transmit to
some receiver i ∈ P, (iii) probe some receiver i ∈ P .

Definition 4 (System Throughput): Let Bπ(t) denote the
number of bits transmitted in slot t under policy π. Then,
the system throughput under π is

T π def= lim inf
t→∞

∑t
s=1 Bπ(s)

t
.

Our problem is to design a joint probing and transmission
strategy that maximizes the system throughput. Such a strategy
is said to be optimal. Since the system is i.i.d. across slots,
by the strong law of large numbers, maximizing the system
throughput is equivalent to maximizing the expected through-
put in each slot. For notational simplicity, we consider any
given slot and drop time t from the notation.
We formulate the problem of maximizing the expected

throughput in a slot as a stochastic control problem. The
formulation is as follows. Assume that the receivers in set
Pk has been already probed, where the subscript k indicates
that |Pk| = k (k users have been probed already). Denote
by u the largest channel gain among the receivers in Pk; we
say that the system is in state (Pk, u). Note that since the
system throughput is maximized by transmitting at the highest
possible rate, we only need to maintain the maximum observed
channel gain u. Then a strategy π has the following possible
control actions in state (P , u)):

1) Transmit to the receiver with the best probed channel.
In that case, the throughput will be: Ttr(Pk, u) = (1 −
kβ)R(u).

2) Transmit to a receiver that has not been probed. In
that case, the throughput will be: Tg(Pk, u) = (1 −
kβ)maxi∈Pk

Rg(i), where Rg(i) denotes the expected
rate at which the transmitter can send data to user i
without knowing its current channel state. The exact
value of Rg(i) depends on the advanced coding and
signaling schemes used in the system. For example,
if the receiver knows the channel state, which is the
case when the transmitter broadcasts pilot signal at
the beginning of the slot, then Rg(i) can be close to
E[R(Ci)]. To achieve the latter rate, the coding scheme
should be able to reveal the ergodic nature of the
channel. This is not always possible depending on the
system considered. Hence, it will be relevant to study
the special case where transmitting to an un-probed user
is not allowed.

3) Probe one more receiver (say i) from the set P . In
this case, the system state changes from (Pk, u) to
(Pk+1, u∨ ci) given that the channel state of the newly
probed user is ci, and where Pk+1 = Pk ∪ {i}. The
operator ∨ is defined by a ∨ b = max(a, b).

In cases (i) and (ii), we say that we retire. In cases (ii)
and (iii), the strategy has also to define to which receiver to
transmit and which receiver to probe, respectively. We denote
by T π(Pk, u) the average throughput achieved by strategy π,
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starting from system state (Pk, u). Also denote by T �(Pk, u)
the average throughput of an optimal strategy starting from
system state (Pk, u). Now, T �(Pk, u) is given by the following
Bellman’s equation for all k, Pk and u.

T �(Pk, u)
= max {Ttr(Pk, u), Tg(Pk, u),

max
i∈Pk

{Ei [T �(Pk ∪ {i}, u∨ Ci)]}}, (1)

where Ei[·] is the expectation taken w.r.t. Fi. Thus, in each
state (Pk, u), the optimal control decision corresponds to the
term that achieves the maximum in (1), e.g., if Ttr(Pk, u)
achieves the maximum then the optimal decision is to transmit.
Note that at the beginning of every slot, the state is (∅, 0),
where ∅ denotes the empty set. Our aim is to obtain an optimal
strategy π� in the sense that T π�

(∅, 0) = T �(∅, 0).
Before providing some properties of an optimal strategy π∗,

we first explain how the problem considered here is different
than all other stochastic control problems previously analyzed.

B. Related work

The problem of identifying optimal joint probing and trans-
mission strategies has been addressed in the literature recently
only [14], [15], [16], [17], [18]. It falls into the broad class
of stochastic control problems [19]. However, as explained in
[20], it does not correspond to any of the existing classical con-
trol problems such as multi-armed bandits, optimal sampling
order, or optimal stopping problems. In the various versions
of the multi-armed bandit problems [21], [22], acquiring the
state of an arm (or of a channel here) before using it is not
allowed. Optimal sampling order of random variables has been
investigated in many contexts, see e.g. [23], [24]; however, in
all existing work, these variables can take 2 values only (On or
Off channels here), and exploiting a variable that has not been
probed is not allowed. Finally, in usual stopping time problems
[25], one has to select between two possible actions, proceed
further or stop; this can be applied to our problem only when
all channels are equivalent [15], i.e., when they have the same
statistical distribution. The latter assumption is never valid in
practical scenarios. In any case, stopping time problems are
very challenging and most of them are open [19].
We discuss now papers specifically related to optimal joint

probing and transmission strategies. In most of these papers
(see e.g., [15], [20]), a linear cost structure is used, which
means that the reward or throughput can be written as: T =
R(c) − |P|β. This considerably simplifies the analysis, al-
though characterizing an optimal strategy is an open problem,
unless transmitting to an un-probed user is not allowed [20].
In practice, the cost structure is logarithmic, as in our model
where log T = log R(c) + log(1 − β|P|). To our knowledge,
[18] is the only paper aiming at analyzing the latter model, but
the results in [18] are very preliminary: only rough structural
properties of the optimal probing and scheduling strategy are
stated without proof. In the present work, we provide general
structural properties of the optimal strategy, but also exactly
characterize this strategy in specific but relevant cases.

III. STRUCTURAL PROPERTIES OF THE OPTIMAL
STRATEGY

In this section, we state some structural properties that
an optimal probing and transmission strategy should have.
Specifically, when the system is in some state (Pk, u), we
will give conditions under which an optimal strategy should
either transmit to one of the probed users, or transmit to an
un-probed user, or probe another user. These conditions do
not fully characterize an optimal strategy, as it remains to
define which user to probe next if the strategy decides to
further probe. The latter question is a much more challenging
issue than deriving the basic structural properties of an optimal
strategy. We address this question of obtaining optimal probing
strategy in certain special cases of practical interest.
We start our exploration in a special case where guessing

is not allowed, i.e., in the state (Pk, u), a joint probing and
transmission strategy can either transmit to some i ∈ Pk or
probe some j ∈ Pk. This special case is of practical interest
as already explained in Section II. Additionally, studying this
special case provides valuable insights in designing optimal
policy when guessing is allowed, as we shall see in Section
III-B.

A. Optimal Strategy when Guessing is not Allowed

When guessing is not allowed, the Bellman’s equation (1)
reduces to

T �(Pk, u)
= max{Ttr(Pk, u),

max
i∈Pk

{Ei [T �(Pk ∪ {i}, u ∨ Ci)]}} . (2)

We note that when the number of possible channel states
is finite for each user, it is indeed possible to solve (1),
and thereby obtain an optimal strategy. But, the brute force
computation has exponential (in terms of number of users)
complexity as the quantity T �(Pk, u) has to be evaluated for
every subset Pk. So, deriving properties of optimal strategies
is crucial, either to exactly characterize these strategies or to
reduce their computational complexity.
Let ak

def= (1 − kβ). Define Tpr(i),tr(Pk, u) def=
ak+1Ei[R(u ∨ Ci)], for i ∈ Pk, and Tpr,tr(Pk, u) def=
ak+1 maxi∈Pk

Ei[R(u∨Ci)]. The quantity Tpr(i),tr(Pk, u) is
the expected throughput that can be achieved, starting from
state (Pk, u), when we probe just one additional user i ∈ Pk

and then transmit to the best probed user. We will show that to
obtain an optimal transmission strategy, it suffices to consider
the one-step-look-ahead throughput Tpr,tr(Pk, u), rather than
T �(Pk, u) in (2). Since unlike T �(Pk, u), Tpr,tr(Pk, u) can be
computed with complexity O(N), this considerably reduces
the complexity of computing an optimal strategy. Let π�

NG

denote the optimal policy when guessing is not allowed.
Theorem 1: Let (Pk, u) be the system state. Then, π�

NG

transmits to the receiver with the best channel gain in Pk if
and only if Ttr(Pk, u) ≥ Tpr,tr(Pk, u).

Proof: The proof is presented in Appendix I.
Theorem 1 states that π�

NG can determine when to probe
by considering one-step-look-ahead throughput only. But,
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Theorem 1 does not determine which user to probe when
π�

NG decides to probe an additional receiver. We believe
that obtaining an optimal probing strategy is much more
challenging question in general settings, and it remains open.
As Example 2 demonstrates, probing a receiver i ∈ Pk that
maximizes Tpr(i),tr(Pk, u) may not be optimal. Recall that
in the example, receiver 1 maximizes one-step-look-ahead
throughput in state (∅, 0), but probing user 2 was optimal for
certain values of β. Nevertheless we are able to determine an
optimal probing strategy when the channels are stochastically
ordered as defined below.
Definition 5 (Stochastically Ordered Channels): The chan-

nels of the N users are stochastically ordered if there exists a
permutation σ of {1, . . . , N} such that for all i, j, if σ(i) ≤
σ(j), then Cσ(j) ≤st Cσ(i), where X ≤st Y if and only
if for all increasing function f such that E[f(Y )] < +∞,
E[f(X)] ≤ E[f(Y )].
Without loss of generality, when the channels are stochas-

tically ordered, we assume that the permutation σ is σ(i) = i
for all i. Note that having a stochastic order on the channels
is equivalent to having a similar order for the corresponding
rates (i.e., Cj ≤st Ci iff R(Cj) ≤st R(Ci)). An example
of ordered channels is when one can write Ci = E[Ci]Y
where Y is a fixed r.v., i.e., when the channels have similar
distributions but different means. This is a quite usual fading
model in wireless networks. In these settings, we obtain an
optimal probing strategy.
Theorem 2: If the channels are stochastically ordered, then

when Tpr,tr(Pk, u) > Ttr(Pk, u), the optimal decision is to
probe the user j ∈ Pk such that for all i ∈ Pk, Ci ≤st Cj .

Proof: The proof is presented in Appendix II.
Theorems 1 and 2 provide a full description of the optimal

probing and transmission strategy π�
NG when the channels are

stochastically ordered. Remark that even though the results
of these theorems seem quite intuitive, as often in stochastic
control problems, their proofs are far from being trivial; and as
illustrated in the two examples presented in introduction, in-
tuitive decisions may sometimes be sub-optimal. The optimal
strategy is summarized in the following corollary.
Corollary 1: When the channels are stochastically ordered,

the one-step-look-ahead strategy is optimal. The optimal one-
step-look-ahead strategy is as follows: when the system is in
state (Pk, u):
(i) If Tpr,tr(Pk, u) ≥ Ttr(Pk, u), then we should probe the
stochastically largest un-probed user,
(ii) otherwise, we should transmit to the user i ∈ Pk such that
ci = u.
In the following subsection we obtain structural properties

of the optimal policy π� when guessing is allowed.

B. Optimal Strategy when Guessing is Allowed

First, we show that in many states, the optimal policy when
guessing is allowed (denoted by π�) takes the same decisions
as the policy π�

NG. Specifically, we have the following result.
Theorem 3: In every state (Pk, u) such that Ttr(Pk, u) ≥

Tg(Pk, u), π� and π�
NG take identical decisions. Moreover, af-

ter probing a receiver in state (Pk, u), we also have in the new
system state, say (Pk+1, u

′), Ttr(Pk+1, u
′) ≥ Tg(Pk+1, u

′).

Proof: The proof is presented in Appendix III.
Theorem 3 states that once we have probed a receiver with

channel gain large enough to provide a greater throughput
than that we would obtain by guessing and transmitting to
any other un-probed receiver, the optimal policy does not need
to consider guessing any further. In other words, the optimal
decisions from this state is either to transmit to the probed
receiver or to probe a new receiver, but never to guess and
transmit to an un-probed receiver. Thus, after reaching a state
(Pk, u) such that Ttr(Pk, u) ≥ Tg(Pk, u), the optimal policy
π� is as described in Corollary 1.
In view of Theorem 3, we have characterized π� except

in states (Pk, u) such that Ttr(Pk, u) < Tg(Pk, u). Now,
we provide the structural properties of π� in these states.
First, we introduce some notation. For a receiver i, let ug(i)

be a state such that R(ug(i)) = Rg(i) (ug(i) denotes the
channel state corresponding to the rate one would obtain
by guessing and transmitting to the receiver i; without loss
of generality,we assume that such state exists). Also, let
ug(Pk)

def= maxi∈Pk
{ug(i)}.

Theorem 4: In every state (Pk, u) such that Ttr(Pk, u) <
Tg(Pk, u):
1) If Tpr,tr(Pk, u) ≥ Tg(Pk, u), then π� probes some
receiver i ∈ Pk.

2) If Tpr,tr(Pk, u) < Tg(Pk, u), then π� satisfies:

a) If Tpr,tr(Pk, ug(Pk)) ≤ Ttr(Pk, ug(Pk)), then π�

guesses and transmits to j = arg maxi∈Pk
{ug(i)}.

b) If there exists j ∈ Pk such that
Tpr(j),tr(Pk, ug(Pk∪{j})) ≥ Ttr(Pk, ug(Pk)),
then π� probes some i ∈ Pk.

Proof: The proof is presented in Appendix III.
Theorems 3 and 4 provide quite detailed structure properties

of the optimal strategy when guessing is allowed. Furthermore,
we know which user to probe next when the system state
(Pk, u) is such that Ttr(Pk, u) ≥ Tg(Pk, u). To fully charac-
terize the optimal strategy, one need to identify which user to
probe next when the system state is such that Ttr(Pk, u) <
Tg(Pk, u). This problem remains open even in the case where
the optimal control problem has a linear cost structure as in
[20]. Fortunately, in practical scenarios, as observed in the next
section, states such that Ttr(Pk, u) < Tg(Pk, u) appear rarely,
which simplifies the characterization of the optimal strategy.

IV. EXTENSIONS: UTILITY AND QUEUES

A. Maximizing System Utility

In the case of the broadcast channel, one may propose to
impose fairness among receivers, i.e., to maximize a certain
notion of system utility instead of the system throughput as we
have done so far. Denote by U(·) a concave non-decreasing
utility function, and denote by Bπ

i (t) the throughput received
by user i under strategy π in slot t. The long-term throughput
of user i is then T π

i = lim inft→∞ 1
t

∑t
s=1 Bπ

i (s). Now the
objective is to maximize

∑N
i=1 U(T π

i ). Finally, let B̂π
i (t) be

the expected (with respect to the channel state distributions)
throughput received by user i. A natural candidate algorithm
to maximize the system utility is the following gradient algo-
rithm: each time slot t, choose joint probing and transmission
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Fig. 1. Average throughput of the various strategies as the number of users
N increases - Exponential channels with different means - β = 0.1 (upper
figure), 0.05 (middle figure), 0.02 (lower figure).

strategy as follows.

max
π

N∑
i=1

B̂π
i (t) × U ′(ti(t)), (3)

ti(t + 1) = (1 − η)ti(t) + ηti(t).

Note that solving (3) is equivalent to maximizing a weighted
sum of expected throughputs each time slot. This can be done
as in Section III. The above algorithm is expected to maximize
the system utility when the parameter η tends to 0. We do not
provide a detailed analysis here, and reserve it for future work.
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Fig. 2. Decision thresholds as a function of the set of already probed users
- β = 0.05, N = 20 users.

B. Queue Stability

Alternatively, one can also study the system with queues
corresponding to each of the receivers in which the bits
arriving from the higher layer are stored. The problem, in these
settings, is to obtain a scheduling policy that stabilizes the
system, i.e., provides the finite expected delay to each of the
users. Let Qi(t) denote the queue length of user i in slot t. It is
well known that the max-weight policies stabilize the system
if doing so is possible [26]. We can use a similar idea here
and choose joint probing and transmission strategy that solves
maxπ{

∑N
i=1 Qi(t)× B̂π

i (t)} given the current queue lengths.
Since, Qi(t) is known, finding the maximum is equivalent to
maximizing the weighted sum of the throughputs, which can
be done using results in Section III. Again, a detailed analysis
will be provided in future work.

V. NUMERICAL RESULTS

In this section, we give some numerical experiments illus-
trating the theoretical findings of the previous sections. We
compare the following probing and transmission strategies: (a)
the optimal strategy when guessing is allowed (π∗

NG); (b) the
optimal strategy when guessing is not allowed (π∗); (c) the
strategy where all channels are probed before transmission;
(d) the strategy where no channel is probed, i.e., where
the transmission is made on the channel with the highest
average state. The policy π∗

NG is obtained using brute force
computations in which the results from the previous section
have been utilized.
We consider an asymmetric fading scenario: the channel

states of the various users are exponentially distributed but
with different means. We further assume that these averages
are ordered, i.e., the channels are stochastically ordered. The
averages are linearly decreasing with the channel index i. For
a given channel state, the corresponding rate follows Shannon
formula (P = 40dBm, N0 = −100dBm,W = 1). With a path
loss exponent equal to -3.5, the user with the worst average
channel is located roughly 2 times further from the transmitter
than the user with the best channel.
In Figure 1, we present the average throughputs of strategies

(a)-(d) when the number of users grows and for different
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values of β, the proportion of slot required to probe a channel.
Note that the optimal strategies with or without guessing have
very similar performance except when the probing cost β
is very large. In fact, in this example, it turns out that the
optimal strategy transmits to a un-probed user very rarely,
and only when a lot of users have been probed already and
when the observed channel state is still low. This observation
is confirmed in Figure 2: here we consider the case where
β = 0.05 and N = 20 users. The curve T(probe,transmit)
represents the value of the maximum channel state for which
it is better to further probe than transmit to an already probed
user. T(guess) shows the maximum channel state for which it
is optimal to guess and transmit to a user that has not been
probed.

VI. CONCLUSION

In exploiting multi-user diversity, there is an inherent trade-
off between the consumption of resources to probe the chan-
nel states of the receivers, and the throughput improvement
obtained by opportunistic scheduling. We have shown that
acquiring the CSI of all the receivers can in fact reduce the
system throughput compared to that obtained when CSI of
only a few receivers are acquired. We have proposed guide-
lines to the design of a joint probing and transmission strategy
that maximizes the system throughput. Additionally, we have
fully characterized the optimal strategy in some specific, but
relevant, cases. We also mention how our framework can be
used to provide fairness and to ensure queue stability.

APPENDIX

APPENDIX I
PROOF OF THEOREM 1

We prove the theorem using the following two supporting
lemmas.
Fix the set Pk and define Dk as follows:

Dk = {u : Ttr(Pk, u) ≥ Tpr,tr(Pk, u)}. (4)

Lemma 1: There exists umax(Pk) such that Dk = {u : u ≥
umax(Pk)}.

Proof: Let u ∈ Dk and consider any u′ > u.

(1 − kβ)R(u) ≥ (1 − (k + 1)β) max
i∈Pk

{Ei [R(u ∨ Ci)]} ,

Now, it follows that

(1 − kβ)R(u)
≥ (1 − (k + 1)β)Ei [R(u ∨ Ci)] ∀ i ∈ Pk,

= (1 − (k + 1)β)
[
R(u)Fi(u) +

∫ ∞

u

R(x)dFi(x)
]

≥ (1 − (k + 1)β)
[
R(u)Fi(u′) +

∫ ∞

u′
R(x)dFi(x)

]
.

From above, we can conclude the following.

(1 − kβ)R(u)[1 − Fi(u′)]

≥ (1 − kβ)
∫ ∞

u′
R(x)dFi(x) − βEi [R(u ∨ Ci)] ,

⇒ (1 − kβ)R(u′)[1 − Fi(u′)]

≥ (1 − kβ)
∫ ∞

u′
R(x)dFi(x) − βEi [R(u′ ∨ Ci)] . (5)

(5) holds for every i ∈ Pk, and the lemma is proved. Note
that to obtain (5), we used the fact that R(·) and Fi(·) are
monotonically non-decreasing.
Lemma 2: Fix any sequence of sets of probed users such

that Pk+1 = Pk∪{i} for some i ∈ Pk for k ∈ {0, . . . , N−1}.
We have: for all k, Dk ⊆ Dk+1, or equivalently umax(Pk) ≥
umax(Pk+1).

Proof: The proof is by contradiction. Assume that there
exist u such that u ∈ Dk, but u �∈ Dk+1. Thus,

(1 − (k + 1)β)R(u)
< (1 − (k + 2)β) max

i∈Pk+1

{Ei [R(u ∨ Ci)]} ,

⇒ (1 − kβ)R(u) − βR(u)
< (1 − (k + 1)β) max

i∈Pk+1

{Ei [R(u ∨ Ci)]}
−β max

i∈Pk+1

{Ei [R(u ∨ Ci)]} ,

⇒ Ttr(Pk, u) − βR(u)
< (1 − (k + 1)β) max

i∈Pk

{Ei [R(u ∨ Ci)]}
−β max

i∈Pk+1

{Ei [R(u ∨ Ci)]} ,

⇒ Ttr(Pk, u) − βR(u)
< Tpr,tr(Pk, u) − β max

i∈Pk+1

{Ei [R(u ∨ Ci)]} ,

⇒ Ttr(Pk, u) − Tpr,tr(Pk, u)
< βR(u) − β max

i∈Pk+1

{Ei [R(u ∨ Ci)]}

⇒ 0 <

[
R(u) − max

i∈Pk+1

{Ei [R(u ∨ Ci)]}
]

.

Note that the last relation above provides the required contra-
diction as u ≤ (u ∨ Ci).
Next we prove Theorem 1.

A. Proof of Theorem 1

Fix arbitrary PN−1 ⊃ Pk, and let us assume that the
users in PN−1 are probed. Then, the resulting system state
is (PN−1,∨i∈PN−1ci). Note that ∨i∈PN−1ci ≥ u as u =
∨i∈Pk

ci and Pk ⊂ PN−1. Thus, by Lemma 1, ∨i∈PN−1ci ∈
Dk, and by Lemma 2, ∨i∈PN−1ci ∈ DN−1. Thus, by (4),

Ttr(PN−1,∨i∈PN−1ci)
≥ Tpr,tr(PN−1,∨i∈PN−1ci)
= max

i∈PN−1

{
E[Ttr(PN−1 ∪ {i},∨i∈PN−1ci ∨ Ci)]

}
= max

i∈PN−1

{
E[T �(PN−1 ∪ {i},∨i∈PN−1ci ∨ Ci)]

}
.

The last relation follows because after probing the last user,
the optimal decision is to transmit as it the only decision. Now,
from (2), it follows that

T �(PN−1,∨i∈PN−1ci) = Ttr(PN−1,∨i∈PN−1ci). (6)

Note that (6) holds for any PN−1 ⊃ Pk and for any values
of ci’s for i ∈ PN−1 \ Pk.
Next consider any state (PN−2,∨i∈PN−2ci) that can appear

after probing N − 2 users starting from (Pk, u). As argued
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before, here also we can conclude that ∨i∈PN−2ci ∈ DN−2.
Thus,

Ttr(PN−2,∨i∈PN−2ci)
≥ Tpr,tr(PN−2,∨i∈PN−2ci)
= max

i∈PN−2

{
E[Ttr(PN−2 ∪ {i},∨i∈PN−2ci ∨ Ci)]

}
= max

i∈PN−2

{
E[T �(PN−2 ∪ {i},∨j∈PN−2cj ∨ Ci)]

}
.

The last equality follows from (6) as (6) holds for any PN−1 ⊃
Pk and for any values of ci’s for i ∈ PN−1 \ Pk. But, with
(2), this implies that

T �(PN−2,∨i∈PN−2ci) = Ttr(PN−2,∨i∈PN−2ci),

for any PN−2 ⊃ Pk and for any values of ci’s for i ∈ PN−2 \
Pk.
Reproducing the above reasoning, we get the result by

induction down to k.

APPENDIX II
PROOF OF THEOREM 2

Proof: We prove the result by induction on the number
of un-probed users. When this number is equal to 1, the result
holds since we can only probe this user. Now assume the result
holds when the number of un-probed users is strictly smaller
than N−k. Let us establish the result when the number of un-
probed users is exactly equal to N − k. We use contradiction.
Denote by (Pk, u) the system state, and let the optimal policy
probe receiver i instead of stochastically largest j in Pk. For
brevity define: αi = umax(Pk ∪ {i}), αj = umax(Pk ∪ {j}),
and α = umax(Pk ∪ {i, j}). Note that αi ≥ αj .
First, note that if u ≥ αi, then after probing i or j, the

optimal policy π∗ will transmit by Theorem 1. Thus, it is then
optimal to probe j. From now on we assume that u ≤ αi.
We compare the expected throughputs obtained starting

from state (Pk, u) (a) when first probing i and then j, and
(b) when first probing j and then i.

• In scenario (a), probing i results in a channel state xi. By
induction, we know that the next user to probe should be
j. Then if xi ≥ αi, we should not probe j and transmit.
If xi < αi, we should probe j. Denote by xj the state
of channel j. If (u ∨ xi ∨ xj) ≥ α, we should transmit;
otherwise we should probe further.

• In scenario (b), we first probe j. If xj ≥ αj , we should
transmit. Otherwise, we probe i. Then if (u∨xi∨xj) ≥ α,
we transmit; otherwise we probe further.

We just need to compare the expected throughput in scenarios
(a) and (b) in cases where we transmit after probing i and/or j.
This is simply due to the fact that if we have to probe further
after i and j, the systems (a) and (b) are identical. Denote by
T (a)(u) and T (b)(u) the expected throughput in scenarios (a)
and (b) when we do not probe more users than i and j:

T (a)(u)

= ak+1

∫ ∞

αi

dFi(x)R(x)

+ak+2

∫ αi

0

dFi(x)
∫ ∞

0

dFj(y)1u∨x∨y≥αR(u ∨ x ∨ y),

T (b)(u)

= ak+1

∫ ∞

αj

dFi(x)R(x ∨ u)

+ak+2

∫ αj

0

dFj(x)
∫ ∞

0

dFi(y)1u∨x∨y≥αR(u ∨ x ∨ y),

where ak = (1−kβ). We want to prove thatG(u) = T (b)(u)−
T (a)(u) ≥ 0. We prove this using the following two lemmas.
Lemma 3: For all u ≤ αj , we have G(u) = G(αj).
Proof: First note that when u ≤ α, then T (a) and T (b)

are independent of u, and so is G(u). Now assume that α ≤
u ≤ αj . The first terms in T (a) and T (b) do not depend on u.
Furthermore their second terms are respectively equal to:

ak+2

∫ αi

0

dFi(x)
∫ ∞

0

dFj(y)1x∨y≥αR(x ∨ y)

−
∫ ∫

Γ(α,u)

dFi(x)dFj(y) (R(x ∨ y) − R(u)) ,

and

ak+2

∫ αj

0

dFj(x)
∫ ∞

0

dFi(y)1x∨y≥αR(x ∨ y)

−
∫ ∫

Γ(α,u)

dFi(x)dFj(y) (R(x ∨ y) − R(u)) ,

where Γ(α, u) = {(x, y) : α ≤ x, y ≤ u}. We deduce that
indeed G(u) is independent of u when u ≤ αj . Thus, G(u) =
G(αj).
Lemma 4: For all u such that αj ≤ u ≤ αi, G(u) ≥ 0.
Proof: Because of the space constraints, we prove the

result in the discrete setting. The proof is using the perturba-
tion approach. Without loss of generality, let N be the channel
state space. Denote by pi(l) the probability that the channel
of user i is in state l. Observe that when Fi = Fj , the result
holds. Now we assume the result is true for Fj and show that
increasing stochastically Fj does not change this conclusion.
We use F+

j defined by: for ε > 0, for a particular l0 ∈ N in the
support of Fj , p

+
j (l0) = pj(l0)−ε, p+

j (l0+1) = pj(l0+1)+ε

and for all l �= l0, l0 + 1, p+
j (l) = pj(l). If C+

j ∼ F+
j , then

Cj ≤st C+
j . ε is meant to be chosen as small as we wish.

Note that using this kind of perturbations, we can start from
Fi and modify it to obtain Fj (it can be proved by coupling
arguments). Now it can be shown that the function G+(u)
obtained with F+

j instead of Fj is such that:

G+(u)
≥ G(u) + o(ε)

+ε × 1{l0≥u} × (R(l0 + 1) − R(l0))
×(ak+1 − ak+2Fi(αi ∨ l0)) + o(ε), (7)

where 1A is the indicator of event A. Note that the difference
between G(u) and G+(u) may come from the variation of Fj ,
which may imply a modification of αi. The latter modification
holds only in the very specific cases where ak+2E[R(αi ∨
Cj)] = ak+1R(αi), which simplifies the analysis.
From (7), we conclude that G+(u) ≥ 0.
Note that Lemma 4 shows that G(u) ≥ 0 for every u ∈

[αj , αi]. Now, Lemma 3 shows that G(u) = G(αj) for every
u ∈ [0, αj ]. Thus, G(u) ≥ 0 for every u ∈ [0, αi]. This proves
Theorem 2.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on December 30, 2008 at 06:16 from IEEE Xplore.  Restrictions apply.



1554 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 8, OCTOBER 2008

APPENDIX III
PROOFS FOR THE RESULTS IN SECTION III-B

A. Proof of Theorem 3

Proof: First, note that as we probe more and more users
the maximum rate at which one can transmit increases mono-
tonically, while the maximum rate at which one can guess
and transmit decreases monotonically. To see this, consider
two system state (Pk, u) and (Pk+1, u

′), where Pk ⊂ Pk+1.
Then, clearly u ≤ u′. Thus, the rate at which one can
transmit in state (Pk, u) (equals R(u)) is less than or equal
to that in state (Pk+1, u

′) (equals R(u′)). Now, the maximum
rate at which one can guess and transmits in state (Pk, u)
(equals maxi∈Pk

{Rg(i)}) is less than or equal to that in state
(Pk+1, u

′) (equals maxi∈Pk+1
{Rg(i)}). Thus, from a state

(Pk, u) satisfying Ttr(Pk, u) ≥ Tg(Pk, u), every subsequent
state that can be reached by probing a new receiver (say
(Pk+1, u

′)) also satisfies Ttr(Pk+1, u
′) ≥ Tg(Pk+1, u

′). Thus,
from any such state (1) reduces to (2). Since the decision
process depends only on the current state and the future
evolution, the optimal decision process from state (Pk, u) is
exactly the same as that when guessing is not allowed.

B. Proof of Theorem 4

Proof: Statement 1) of the theorem follows from (1) and
the fact that

Tpr,tr(Pk, u) ≤ max
i∈Pk

{Ei [T �(Pk ∪ {i}, u ∨ Ci)]} .

Now, we prove the statement 2-a) of the theorem. Let us as-
sume that the system state is (Pk, ug(Pk)). Note that by defini-
tion of ug(Pk), Ttr(Pk, ug(Pk)) ≥ Tg(Pk, ug(Pk)). Thus, The-
orem 3 applies. Since, by assumption, Tpr,tr(Pk, ug(Pk)) ≤
Ttr(Pk, ug(Pk)), the optimal decision in this state is to transmit
to user with channel state ug(Pk). But, in actual system, the
system state is (Pk, u) with u < ug(Pk) as Ttr(Pk, u) <
Tg(Pk, u). Now, note that T ∗(Pk, u) is a monotonically in-
creasing function of u. Thus, T ∗(Pk, u) ≤ T ∗(Pk, ug(Pk)) =
Ttr(Pk, ug(Pk)) = Tg(Pk, u). But, Tg(Pk, u) ≤ T ∗(Pk, u) by
(1). This concludes the proof.
Finally, we prove the statement 2-b) of the theorem.

Proof is by contradiction. Assume that π∗
NG retires in state

(Pk, u). Thus, by (1) and since Ttr(Pk, u) < Tg(Pk, u),
T ∗(Pk, u) = Tg(Pk, u) = Ttr(Pk, ug(Pk)). Now, consider
another strategy π which, in state (Pk, u) probes user j
such that Tpr(j),tr(Pk, ug(Pk∪{j})) > Ttr(Pk, ug(Pk)), and
then transmits to the user with the best channel if (u ∨
cj) ≥ ug(Pk∪{j}) or guesses and transmit to receiver j1
such that Rg(j1) = R(ug(Pk∪{j})). Note that T π(Pk, u) =
Tpr(j),tr(Pk, ug(Pk∪{j})) > T ∗(Pk, u). This concludes the
proof.
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