
On-line Debugging Methods and Tools in Movie-based Programming

DMITRY VAZHENIN, ALEXANDER VAZHENIN
Graduate School Department

University of Aizu
Tsuruga, Ikki-machi, Aizu-Wakamatsu, Fukushima

JAPAN
d8052102@u-aizu.ac.jp, vazhenin@u-aizu.ac.jp

Abstract: - Movie-based programming focuses on a representation of computational process similar to a movie
demonstration. It is possible by correlating animation frames with solution steps. Like in conventional movie
frame is representing a part of a process. Typically, one frame corresponds to logically completed part of an
algorithm like one iteration of iterative method. By its nature the animation frame is an image, and the
execution frame is a source code snippet, both are produced by corresponding component of a system. Both a
movie and program can synchronously be generated and debugged. This allows that debugging operations can
be implemented in any stage of the movie/program design. In this paper, we discuss main stages of the
movie/program design and propose the new visual debugging schemes allowing to implement debugging
process at all design stages. We demonstrate how some typical programming mistakes can be easily avoided
or discovered/fixed by means of the movie-based programming software that integrate traditional debugging
attributes such as breakpoints with multimedia formulas backtracking methods.

Key-Words: - Visual Programming, Movie-based programming, Debugging of Algorithms and Programs,
Matrix Computing, Formula Backtracking

1 Introduction

Debuggers are universal tools for understanding
what is going on when a program is executed. Using
a debugger, one can execute the program in a
specific environment, stop the program under
specific conditions, and examine or alter the content
of the program variables or pointers. Traditional
command-line oriented debuggers allowed only a
simple textual representation of the program
variables (program state) [1]. Textual representation
did not change even when modern debuggers came
with a graphical user interface. Although variable
names became accessible by means of menus, the
variable values were still presented as text, including
structural information, such as pointers and
references. Likewise, the program execution is
available only as a series of isolated program stops.
In contrast to traditional textual programming
languages, where multi-dimensional structures are
encoded into one-dimensional strings according to
some intricate syntax, Visual Programming
essentially remove this layer of abstraction and
allows the programmers to directly observe and
manipulate the complex software structures.
 Compared to traditional debuggers, the techniques
of visual debugging allow quicker exploration and
understanding of what is going on in a program [2].
As shown in [3], the visual languages variety

corresponding environments may be classified
according to the types and extents of visual
expressions used including possibility to involve
visual debugging mechanism.
 The animated visual 3D programming language
SAM (Solid Agents in Motion) for parallel systems
specification and animation was proposed in [4]. A
SAM program is a set of interacting agents
synchronously exchanging messages. The SAM
objects can have an abstract and a concrete, solid 3D
presentation. While the abstract representation is for
programming and debugging, the concrete
representation is for animated 3D end user
presentations.
 Tanimoto [5] states that “Data Factory”
indicates visual dataflow environment. In this
model, users can control icons prepared with
mathematical operations in the layout where
mathematical methods are connected to others
like belt conveyers in the factory. JAVAVIS was
developed as a tool to support teaching object-
oriented programming concepts with Java [6].
This tool monitors a running Java program and
visualizes its behavior with two types of UML
diagrams, which are de-facto standards for
describing the dynamic aspects of a program,
namely object and sequence diagrams. We can
characterize most of the mentioned systems as
very special. They are mostly focused on solving
specific problems.

SELECTED TOPICS in APPLIED COMPUTER SCIENCE

ISSN: 1792-4863 418 ISBN: 978-960-474-231-8

 A declarative and visual debugging environment
for Eclipse called JIVE presented in [7]. In contrast
with traditional step-by-step debugging procedures,
authors present a declarative approach consisting of
a flexible set of queries over a program's execution
history as well as over individual runtime states.
This runtime information is depicted in a visual
manner during program execution in order to aid the
debugging process. The current state of execution is
depicted through an enhanced object diagram, and a
sequence diagram depicts the history of execution.
Authors present details of the JIVE architecture and
its integration into Eclipse.
 To conclude this brief review, we would like to
mention that approaches described are mostly
focused on improving the run-time debugging
operating with the executable code. The embedding
the debug operations at the earlier stages of the
software design still needs to be supported by new
programming tools.
 Multimedia approach for interactive
specifications of applied algorithms and data
representations is based upon a collection of
computational schemes represented in the "film"
format proposed in [8]. In [9,10], we presented an
extension of this approach called the Movie-
Based Programming. The programming process is
in manipulating with special movie-program
objects (MP-objects) generating automatically a
part of an executable code as well as producing
frames, which are adequate to the code generated.
Both movie and program can synchronously be
generated and debugged. This allows that debugging
operations can be implemented in any stage of the
movie/program design. In this paper, we discuss
main stages of the movie/program design and
propose the new visual debugging schemes allowing
to implement debugging process at any such a stage.
We demonstrate how some typical programming
mistakes can be easily avoided or discovered/fixed
by means of the movie-based programming software
that integrate traditional debugging attributes such
as breakpoints with multimedia formulas
backtracking methods.
 The rest of the paper is organized as follows. In
Section 2, we discuss a concept of the Movie-based
Programming and show main elements of Movie-
based Multimedia Environment for Programming
and Algorithms Design. The third section describes
debugging movie-based algorithms and programs
together with the main user’s design. In Section 4,
the movie-program execution environment and run-
time debugging tools are demonstrated. The last
section contains conclusion and future research
topics.

2 Movie-based Programming Concepts

2.1 Main Elements and Definitions
Movie-based programming is mainly focucing on a
representation of computational process similar to a
movie demonstration by correlating animation
frames with solution steps. Like in a conventional
movie, a frame is representing a part of a process.
Typically, one frame corresponds to a logically
completed part of an algorithm like one iteration of
iterative method (Fig.1).

Fig.1 Algorithmic movie example

 According to its nature, we distinguish two types
of frames. The animation frame is actually an
image that can be animated in order to improve the
user’r perception. According to matrix structures,
Each frame highlights and flashes some elements of
parameterized matrix structures defining operations
or formulas. Different operations can be coded by
different colours. Special Control Lines (I1, I2, J1,
J2 in Fig. 1) are used to reference these areas of
activities. They can change their placement inside
matrix during frame transitions.
 The execution frame is a source code snippet. As
shown below, both are produced by a corresponding
component of system. We are calling such a basic
component a Movie-Program (MP) Metaframe
because of presence of these dualistic features.
 A Film (or MP-film) is a sequence of metaframes.
It is possible to have a film collection in which each
film is independent from other films, but films can
be nested. Any film is able to produce animation and
execution frames. The Fig. 2 shows an example of
the animation frames producing process.

SELECTED TOPICS in APPLIED COMPUTER SCIENCE

ISSN: 1792-4863 419 ISBN: 978-960-474-231-8

MetaframesMetaframes

Fig.2 Animation frames producing process

 A metaframe is a basic producer of executing and
animation frames depending on the type and
specifications. Table 1 contains a classification of
main metaframes.

Table 1 Classification of Metaframes

Icon Metaframe Definition

Head Metaframe is the first (topmost)
metaframe in any Film containing
description of data structures and
variables used in a current film.

Single Metaframe is a metaframe
which represents the one algorithmic
step and generates one animation
frame.

Episode Metaframe produces a series
of frames. The main feature of episode
is that the same operations should be
implemented in all frames until
episode condition is true. It is
primarily used to specify iterative
process since it produces instances of
the same frame with different
parameters.

IF-Metaframe is to skip or process
selected groups of stills. The user
should specify a logical conditional
expression as well as mark stills that
will be processed for true and false
cases correspondingly.

WHILE-Metaframe is to repeat the
processing of stills marked while a
condition is true.

CALL-Metaframe is to pass
processing to other MP-film.

2.3 System Architecture
Fig. 3 shows main components the Movie-based
Multimedia Environment for Programming
Algorithm Design. To design the movie-based
algorythms/programs, the user should work with the
Film Editor in order to specify MP-film metaframes
and their parameters. The Movie-Generator and
Player generates a series of animation frames as
shown in Fig. 2. The Executable Code Generator
produces an executable code in two modes. The first
mode called a Movie-based Program has a structure
exactly corresponding to the algorithmic movie. In
the second mode EC-generator produces the final
executable program according to the target machine
requirements. Program Executor, Debugger and
Data Visualizer are to support executing and
debugging the Movie-based program. The Manager
controls all system operations and data access
procedures. The user can design his/her algorithm
using metaframes and films stored in the Metaframe
and Film Database. It is also possible to customize
this library by adding user-designed components.

 2.3 Algorithm/Program Design Stages
The general scheme of the movie-based
algorithm/program design includes the following
four stages:

1. Creating the prototype MP-film which is a shape

of computing. It defines only a distribution of
computations over metaframes. In other words,
the it defines only a distribution of activities on
structure elements in time.

2. Creating the complete MP-film according to the
concrete application requirements. For each
metaframe, it is necessary to attach
computational formulas to active structure
nodes defined in a prototype film. To provide
debugging procedures, these formulas are
extended by special breakpoint operators and
references allowing to monitor structure data as
well as check correctness the index expressions
defining references to structure elements.

3. Generating, Executing and Run-time
Debugging of Movie-based Program using
special monitor controlling the program
execution and visualizing matrix data.

4. Exporting algorithmic movie and program to
the target machine.

SELECTED TOPICS in APPLIED COMPUTER SCIENCE

ISSN: 1792-4863 420 ISBN: 978-960-474-231-8

Fig. 3 Movie-based Programming Architecture

3 Design/Debugging Metaframes
In this paper we are focused on design and
debugging matrix algorithms that operate with
matrices and vectors. Therefore, our following
analysis will be based on basic features of these 2D-
structures.

3.1 MP-structures, Control Lines and CF-
formulas

Each metaframe contains a set of traversal schemes
specifying coloured domains in corresponding
structure. Each schema has its own colour and
formula sequence attached to this colour. The same
nesting scheme is always reflected in the
corresponding program source code. Each still
produces one or several static frames representing
skeleton steps of computation and hiding formulas.
 Actually, any algorithm represents data structures
as well as an order of operations or formulas
implementing on structure elements or nodes.
Therefore, MP-structures are other important
components of each MP-film. Each MP-structure

includes the following attributes:
1. The unique structure name is to identify a

structure from other structures.
2. Parameters or variables are for defining

structure size, for example, number of rows and
number of columns for matrix structures.
Importantly, these parameters have two values.
The first value is used for an animation movie,
and the second is used for generating program.

3. Structure control components are used to
reference activities areas inside a structure. This
means that control objects divide a structure into
zones each of which can have individual color.
Different colors mean that different operations
can be implemented on the corresponding nodes.
For matrices, we have a deal with vertical (J-
lines), horizontal (I-lines) and diagonal lines (D-
lines). They can change their placement inside
matrix during frame transitions.

4. Structure variables can be simple doubles,
integers, etc. as well as a composite type like
strings, complex numbers, etc. Each structure can
have several variables.

SELECTED TOPICS in APPLIED COMPUTER SCIENCE

ISSN: 1792-4863 421 ISBN: 978-960-474-231-8

 Fig. 4 shows a screenshoot of the system GUI and
illustrates the mentioned above definitions. The
main order of operations is defined by metaframes
generating computational steps and corresponding
movie frames. The Control Flow Formulas or CF-
formulas are introduced to coordinate operations
between frames as well as program the control lines
behavior. As shown in Fig. 4, attributes and features
of the matrix structure can easily be presented. In
this example, there are a matrix with sizes of 8x9,
nodes arranged into two triangular and two diagonal

shapes as well as control lines (I1,I2, J1 and J2).
This structure has name “SLAE” with the variable A
declared, and two domains composed by a
corresponding color. Each domain consists of two
sub-domains which nodes have the same color and
are aligned to corresponding control lines and
structure bounds. The placement of each sub-
domain is defined by positions and combination of
control line as well as a shape type like triangle,
rectangle, line, diagonal, etc.

Fig. 4 Metaframe editing window

 Involving rules showed in Fig. 5, the user can
specify control lines behavior as well as define a
corresponding number of MP-frames or program
iterations will be generated. The user should specify
the Episode Rule that provide condition to finish
episode. The system check this condition and trying
to calculate the number of frames generated. Is this
number is infinite or more than maximum defined
by the user the system will stop frame and
executable code generation.
 The important debugging components is the
tracing of all control line positions. The user can
watch animation frames visualizing control line
movement during frames transitions, or use the
compact representation of these behaviors in
graphical form. In the first mode, the user can watch
all animations or provide one-by-one scrolling of all
frames in the corresponding episode. In the second
approach, the system paints graphics reflecting

numerical representations of the control line
positions during frames transitions.

Fig. 5 Control Flow Rulers

SELECTED TOPICS in APPLIED COMPUTER SCIENCE

ISSN: 1792-4863 422 ISBN: 978-960-474-231-8

3.2 References and Tracing of C-formulas
Actually, CF-formulas are to create a shape of
computing and define a distribution of computations
over MP-nodes. In other words, an algorithmic
movie shows data structures and some activities on
these structures. To precisely specify their activities
according to the apllication feature, it is necessary to
attach arithmetical and/or logical formulas to
corresponding nodes. These formulas are called
Computational formulas or C-formulas. We define
a C-formula as a subprogram containing a sequence
of arithmetical and logical expressions. Each C-
formula includes the following components: MP-
expressions, Control structures, Regular text. MP-
expressions are to specify data access and
operations on structure nodes (Fig. 6). 0

Fig. 7 C-formulas Attachment Interface

 The C-formula notation is close to the
conventional mathematical expressions. We are
enhancing C-formulas by using special multimedia
attributes like images, symbols and tables in order to
improve the formula perception (Fig. 7).

Fig. 8 C-formulas Examples

 Special attention in our approach is devoted to the
debugging of references that define placement or
coordinates of elements in the matrix structure. To
define references, it is necessary to specify index
expressions that make difficulties for debugging for
complex index expressions. Accordingly, we

propose understandable references by visual
specification of index expressions that are useful to
specify complex index expressions in compact and
accessible forms.
 As shown in Fig. 9, visual references are formed
according position of the current matrix element that
can be divided into three groups. Group 1 contains
basic references like take column number of current
element. Group 2 contains reference operators for
specifying placement neibors of element on vertical,
horizontal, and diagonal positions. Group 3 contains
local group operations on neiboring elements like
sums, pruducts, etc. The operators proposed have a
compact and understable form that can simplify the
debugging process.

Fig. 9 Visual references to matrix elements

 During formula attachment, system provides
visualizing and controlling all references to the
structure elements. This allows debugging film
structure and formulas activity during design-time.

SELECTED TOPICS in APPLIED COMPUTER SCIENCE

ISSN: 1792-4863 423 ISBN: 978-960-474-231-8

The formula tracing technique is used visualizing
nodes referred by a formula on a particular frame
(Fig. 10).

Fig. 10 Formula Tracing

 Each C-formula is parsed in order to extract
indices of nodes where data access is performed.
Those nodes are marked as active with 'read', 'write'
and 'read-write' access type. This allows visualizing
any wrong access even before program execution
(Fig. 11).

Correct formulaCorrect formula

Wrong formulaWrong formula

Fig. 11 Formula Tracung Example

4 Run-Time Debugging
The Run-Time Debugging Monitor is a software
component to verify a movie-based program during
its run-time implementation.

4.1 Debugging Operators
The data-flows and control-flows are conducted
using special debugging operators. There are three
type of debugging operators: Visualization Invoker
allows showing an image reflecting the data. Pause
is to set a breakpoint, and Kill stops program
execution (Table 3). Visualization Invoker operator
has a variable name and structure size as
parameters. Pause and Kill operators have no
parameters.

Table. 3 Debugging operators

Operation Image Notation in formula

Visualization
invoker

Pause

Kill

 Those operators can be inserted into movie-
program by using formula attachment interface (Fig.
12). The user can specify an operation by clicking
focusing a particular formula input area in the left
panel an clicking appropriate button from a right
panel. If Visualization Invoker is specified, the
system also offers to choose the name of variable to
be visualized.

Fig. 12 Computational formulas and debugging
operators in the formula attachment interface

4.2 Execution Environment
Run-time debugging monitor uses a special
interface panel to demonstrate execution status of a
program and the status of data in a program at the
particular moment (Fig. 13). This panel contains the
information about a metaframe number and frame
position inside of metaframe, to point the user to a
place of a movie-program where the stop is
occurred. When a breakpoint have reached, the
program is paused, and the data visualization panel
is invoked reflecting the most recent state of data
structure specified by the the most recent
Visualization Invoker operator. It means that
Visualization Invoker operator should be specified
before any breakpoint in a formula. There are two

SELECTED TOPICS in APPLIED COMPUTER SCIENCE

ISSN: 1792-4863 424 ISBN: 978-960-474-231-8

layers in the panel: control lines and matrix
structure visualization layers.

Fig. 12 Run-time Debugging Monitor Window

 Matrix structure visualization layer shows a grid
with colored elements in cells. Those cells are
reflecting the data values of structure variables
according to a scale (Fig. 13, right). Four scales are
used to demonstrate the data: binary portray, sign
portray, value spectrum portray and diagonal
dominance portray. Control lines visualization layer
demonstrates actual positions of control lines of a
structure on current frame. The combination of two
frames allows the user to understand the data-flow
and control-flow consistency of a debugging
program.

5 Conclusion

The Movie-based Programming allows manipulating
with MP-metaframes that are objects allowing
automatically and synchronously generating movie
frames and adequate executable code. As we
demonstrated, debugging operations can be
implemented simultaneously with designing the MP-
film. The important feature of our approach is in
separating design/debugging procedures of the
algorithm structure (prototype film) from the final
application area (complete film). This allows
designing/debugging the most common part of
different applications and reducing the programming
efforts. The C-formula debugging environment
provides additional possibilities to collect and
visualize a history of references to the structures and
data. The Run-Time Debugging makes possible

verifying a movie-based program data-flow using
corresponding breakpoints. The visualization tool
allows to debug applications working with the huge
amount of data. Recently, the presnted environment
is used in “Software engineering” educational
course.
 Our future investigations are oriented to extend a
number of structure types by including trees, linked
lists, 3D-structures.

References:
[1] Th. Grotker, Ul. Holtmann, H. Keding, M.

Wloka, The Developer's Guide to Debugging,
Springer Verlag, 2008.

[2] http://encyclopedia2.thefreedictionary.com
[3] P.T. Cox, Visual programming languages,

Encyclopedia of Computer Science and
Engineering, B.W. Wah (Ed.), John Wiley &
Sons Inc., Hoboken, 2008.

[4] C. Geiger, W, Mueller, W. Rosenbach, SAM -
An Animated 3D Programming Language, Proc.
of the 1998 IEEE Symposium on Visual
Languages, Halifax Canada, 1998, pp. 228 -
235.

[5] S. Tanimoto, Programming in a Data Factory,
Proc. of Human Centric Computing Languages
and Environments, Auckland, 2003, pp. 100-107.

[6] R. Oechsle, and T. Schmitt, JAVAVIS:
Automatic Program Visualization with Object
and Sequence Diagrams Using the Java Debug
Interface (JDI), LNCS, Vol. 2269, Springer-
Verlag, 2002, pp. 1-15.

[7] J. Czyz, Bh. Jayaraman, Declarative and visual
debugging in Eclipse, Proceedings of the 2007
OOPSLA workshop on eclipse technology
eXchange, Montreal, Quebec, Canada, 2007, pp.
31-35.

 [8] N. Mirenkov, A. Vazhenin, R. Yoshioka, Ts.
Ebihara, at al., Self-Explanatory Components: A
New Programming Paradigm, Int. Jour. of Soft.
Eng. and Knowledge Eng., vol. 11, No. 1, 2001,
pp. 5-36.

[9] D. Vazhenin, A. Vazhenin, and N. Mirenkov,
Movie-based Multimedia Environment for
Programming and Algorithms Design, LNCS,
Springer-Verlag, Vol. 3333, Part III, 2004, pp.
533-541.

[10] D. Vazhenin, A. Vazhenin, MP-templates
Operating Toolkit in Movie-based Programming,
Proc. of Japan-China Workshop on Frontier of
Computer Science and Technology, Nagasaki,
Japan, 2008, pp. 67-73.

SELECTED TOPICS in APPLIED COMPUTER SCIENCE

ISSN: 1792-4863 425 ISBN: 978-960-474-231-8

