THE MÖBIUS FUNCTION OF SEPARABLE AND DECOMPOSABLE PERMUTATIONS

ALEXANDER BURSTEIN, VÍT JELÍNEK, EVA JELÍNKOVÁ, AND EINAR STEINGRÍMSSON

Abstract. We give a recursive formula for the Möbius function of an interval \([\sigma, \pi]\) in the poset of permutations ordered by pattern containment in the case where \(\pi\) is a decomposable permutation, that is, consists of two blocks where the first one contains all the letters \(1, 2, \ldots, k\) for some \(k\). This leads to many special cases of more explicit formulas. It also gives rise to a computationally efficient formula for the Möbius function in the case where \(\sigma\) and \(\pi\) are separable permutations. A permutation is separable if it can be generated from the permutation 1 by successive sums and skew sums or, equivalently, if it avoids the patterns 2413 and 3142. A consequence of the formula is that the Möbius function of such an interval \([\sigma, \pi]\) is bounded by the number of occurrences of \(\sigma\) as a pattern in \(\pi\). We also show that for any separable permutation \(\pi\) the Möbius function of \((1, \pi)\) is either 0, 1 or \(-1.1.\) Introduction

Let \(S_n\) be the set of permutations of the integers \(\{1, 2, \ldots, n\}\). The union of all \(S_n\) for \(n = 1, 2, \ldots\) forms a poset \(P\) with respect to pattern containment. That is, we define \(\sigma \leq \pi\) in \(P\) if there is a subsequence of \(\pi\) whose letters are in the same order of size as the letters in \(\sigma\). For example, \(132 \leq 24153\), because 2, 5, 3 appear in the same order of size as the letters in 132. We denote the number of occurrences of \(\sigma\) in \(\pi\) by \(\sigma(\pi)\), for example \(132(24153) = 3\), since 243, 253 and 153 are all the occurrences of the pattern 132 in 24153.

A classical question to ask for any combinatorially defined poset is what its Möbius function is. For our poset \(P\) this seems to have first been mentioned explicitly by Wilf [8]. The first result in this direction was given by Sagan and Vatter [5], who showed that an interval \([\sigma, \pi]\) of layered permutations is isomorphic to a certain poset of compositions of an integer, and they gave a formula for the Möbius function in this case. A permutation is layered if it is the concatenation of decreasing sequences, such that the letters in each sequence are smaller than all letters in subsequent sequences. Further results were given by Steingrímsson and Tenner [7], who showed that the Möbius function \(\mu(\sigma, \pi)\) is 0 whenever the complement of the occurrences of \(\sigma\) in \(\pi\) contains an interval block, that is, when \(\pi\) has a segment of two or more consecutive letters that form a segment of values, where none of these consecutive letters belongs to any occurrence of \(\sigma\) in \(\pi\). One example of such a pair is \((132, 598342617)\), where the letters 342 do not belong to any occurrence of 132 in 598342617. Steingrímsson and Tenner [7] also described certain intervals where the Möbius function is either 1 or \(-1.\)

Key words and phrases. Möbius function, pattern poset, decomposable permutations, separable permutations.

Jelínek and Steingrímsson were supported by grant no. 090038012 from the Icelandic Research Fund. Jelínek was also supported by grant Z130-N13 from the Austrian Science Foundation (FWF).

Jelínková was supported by project 1M0021620838 of the Czech Ministry of Education.
In this paper, we focus on permutations that can be expressed as direct sums or skew sums of smaller permutations. A direct sum of two permutations $\alpha$ and $\beta$, denoted by $\alpha + \beta$, is the concatenation $\alpha \beta'$, where $\beta'$ is obtained by incrementing each element of $\beta$ by $|\alpha|$. For example, $31426587$ can be written as a direct sum $3142+2143$. Similarly, a skew sum $\alpha \ast \beta$ is the concatenation $\alpha'\beta$ where $\alpha'$ is obtained by incrementing $\alpha$ by $|\beta|$.

A permutation that can be written as a direct sum of two nonempty permutations is decomposable. The decomposition of a permutation $\pi$ is an expression $\pi = \pi_1 + \pi_2 + \cdots + \pi_k$ in which each summand $\pi_i$ is indecomposable. A permutation is separable if it can be obtained from the singleton permutation $1$ by iterating direct sums and skew sums (for an alternative definition see Section 2).

Our main result is a set of recurrences for computing the Möbius function $\mu(\sigma, \pi)$ when $\pi$ is decomposable. If $\pi_1 + \cdots + \pi_k$ is the decomposition of $\pi$, then these recurrences express $\mu(\sigma, \pi)$ in terms of Möbius functions involving the summands $\pi_i$.

In the special case when $\pi$ is separable, these recurrences provide a polynomial-time algorithm to compute $\mu(\sigma, \pi)$. These recurrences also allow us to obtain an alternative combinatorial interpretation of the Möbius function of separable permutations, based on the concept of ‘normal embeddings’. This interpretation of $\mu$ generalizes previous results of Sagan and Vatter [5] for layered permutations.

Using these expressions of the Möbius function in terms of normal embeddings, we derive several bounds on the values of $\mu(\sigma, \pi)$ for $\sigma$ and $\pi$ separable. In [7], Steingrímsson and Tenner conjectured that for permutations $\sigma$ and $\pi$ avoiding the pattern 132 (or any one of the patterns 213, 231, 312) the absolute value of the Möbius function of the interval $[\sigma, \pi]$ is bounded by the number of occurrences of $\sigma$ in $\pi$. We prove this conjecture for the more general class of separable permutations (for arbitrary $\sigma$ and $\pi$ this bound does not hold in general). In particular, if $\pi$ has a single occurrence of $\sigma$ then $\mu(\sigma, \pi)$ is either 1, 0 or $-1$. We also prove a generalization of another conjecture mentioned in [7], showing that for any separable permutation $\pi$, $\mu(1, \pi)$ is either 1, 0 or $-1$.

For a non-separable decomposable permutation $\pi$, our recurrences are not sufficient to compute the value of $\mu(\sigma, \pi)$. Nevertheless, they allow us to give short simple formulas in many special cases.

For instance, suppose that $\sigma$ is indecomposable and that $\pi$ is decomposable and of length at least 3. Then we show that $\mu(\sigma, \pi)$ can only be nonzero if all the blocks in the decomposition of $\pi$ are equal to the same permutation $\pi' > 1$, except possibly the first and the last block, which may be equal to 1. In such cases, $\mu(\sigma, \pi)$ equals $(-1)^i\mu(\sigma, \pi')$, where $i \in \{0, 1, 2\}$ is the number of blocks of $\pi$ that are equal to 1.

As another simple example, our results imply that when $\sigma$ and $\pi$ are permutations with decompositions $\sigma = \sigma_1 + \sigma_2$ and $\pi = \pi_1 + \pi_2$, with $\pi_1$ and $\pi_2$ both different from 1, then $\mu(\sigma, \pi) = \mu(\sigma_1, \pi_1)\mu(\sigma_2, \pi_2)$ if $\pi_1 \neq \pi_2$, and $\mu(\sigma, \pi) = \mu(\sigma_1, \pi_1)\mu(\sigma_2, \pi_2) + \mu(\sigma, \pi_1)$ if $\pi_1 = \pi_2$.

The paper is organized as follows: In the next section we provide necessary definitions. In Section 3 we present the main results, the recursive formulas for reducing the computation of the Möbius function of decomposable permutations to that of indecomposable permutations. Section 4 deals with the case of separable permutations and their normal embeddings. Finally, in Section 5 we mention some open problems, in particular questions about the topology of the order complexes of intervals in our poset, which we have not dealt with in the present paper.
THE MÖBIUS FUNCTION OF SEPARABLE AND DECOMPOSABLE PERMUTATIONS

2. Definitions and Preliminaries

An interval \([σ, π]\) in a poset \((P, \leq)\) is the set \(\{ρ: σ ≤ ρ ≤ π\}\). In this paper, we deal exclusively with intervals of the poset of permutations ordered by pattern containment.

The Möbius function \(μ(σ, π)\) of an interval \([σ, π]\) is uniquely defined by setting \(μ(σ, σ) = 1\) for all \(σ\) and requiring that

\[
\sum_{ρ∈[σ, π]} μ(σ, ρ) = 0
\]

for every \(σ < π\). When \(σ ≤ π\), we define \(μ(σ, π)\) to be zero.

An equivalent definition is given by Philip Hall’s Theorem \([6, \text{Proposition 3.8.5}]\), which says that

\[
μ(σ, π) = \sum_{C∈C(σ, π)} (-1)^{L(C)} = \sum_{i} (-1)^{l_i},
\]

where \(C(σ, π)\) is the set of chains in \([σ, π]\) that contain both \(σ\) and \(π\), \(L(C)\) denotes the length of the chain \(C\), and \(c_i\) is the number of such chains of length \(i\) in \([σ, π]\). A chain of length \(i\) in a poset is a set of \(i + 1\) pairwise comparable elements \(x_0 < x_1 < \cdots < x_i\). For details and further information, see \([6]\).

The direct sum, \(α + β\), of two nonempty permutations \(α\) and \(β\) is the permutation obtained by concatenating \(α\) and \(β\), where \(β\) is \(β\) with all letters incremented by the number of letters in \(α\). A permutation that can be written as a direct sum of two non-empty permutations is decomposable, otherwise it is indecomposable. Examples are \(2314576 = 231 + 12 + 21\), and \(231\), which is indecomposable. In the skew sum of \(α\) and \(β\), denoted by \(α * β\), we increment the letters of \(α\) by the length of \(β\) to obtain \(α'\) and then concatenate \(α'\) and \(β\). For example, \(6743512 = 12 * 213 * 12\).

We say that a permutation is skew-indecomposable if it cannot be written as a skew sum of smaller permutations.

A decomposition of \(π\) is an expression \(π = π_1 + π_2 + \cdots + π_k\) in which each summand \(π_i\) is indecomposable. The summands \(π_1, \ldots, π_k\) will be called the blocks of \(π\).

Every permutation \(π\) has a unique decomposition (including an indecomposable permutation \(π\), whose decomposition has a single block \(π\)).

A permutation is separable if it can be generated from the permutation \(1\) by iterated sums and skew sums. In other words, a permutation is separable if and only if it is equal to \(1\) or it can be expressed as a sum or skew sum of separable permutations.

Being separable is equivalent to avoiding the patterns 2413 and 3142, that is, containing no occurrences of either. Separable permutations have nice algorithmic properties. For instance, Bose, Buss and Lubiw \([2]\) have shown that it can be decided in polynomial time whether \(σ ≤ π\) when \(σ\) and \(π\) are separable, while for general permutations the problem is NP-hard.

It is sometimes convenient to allow permutations to have zero length, while in other situations, the permutations are assumed to be nonempty. The unique permutation of length 1 is denoted by \(1\), and the unique permutation of length 0 is denoted by \(∅\). We make it a convention that the permutation \(∅\) is neither decomposable nor indecomposable. In other words, whenever we say that a permutation \(π\) is decomposable (or indecomposable), we automatically assume that \(π\) is nonempty.

Suppose that \(π\) is a nonempty permutation with decomposition \(π_1 + \cdots + π_n\). For an integer \(i \in \{0, \ldots, n\}\), we let \(π_{≤i}\) denote the sum \(π_1 + π_2 + \cdots + π_i\), and let \(π_{>i}\) denote the sum \(π_{i+1} + \cdots + π_n\). An empty sum of permutations is assumed to be
equal to \( \emptyset \), so in particular \( \pi_{\leq 0} = \pi_{> n} = \emptyset \). Any permutation of the form \( \pi_{\leq i} \) for some \( i \) will be called a prefix of \( \pi \), and any permutation of the form \( \pi_{> j} \) is a suffix of \( \pi \). Note that \( \mu(\emptyset, \emptyset) = 1 \), \( \mu(\emptyset, 1) = -1 \), and it is easily seen that \( \mu(\emptyset, \pi) = 0 \) for any \( \pi > 1 \).

3. The Main Results

Throughout this section, we assume that \( \sigma \) is a nonempty permutation with decomposition \( \sigma_1 + \cdots + \sigma_m \) and that \( \pi = \pi_1 + \cdots + \pi_n \) is a decomposable permutation (so \( n \geq 2 \) and, in particular, \( \pi \) is nonempty). The goal in this section is to prove a set of recurrences that allow us to express the Möbius function \( \mu(\sigma, \pi) \) in terms of the values of the form \( \mu(\sigma', \pi') \), where \( \pi' \in \{\pi_1, \ldots, \pi_n\} \) is a block of \( \pi \) and \( \sigma' \) is a sum of consecutive blocks of \( \sigma \). Note that \( \sigma \) may itself be indecomposable, in which case \( m \) is equal to 1 and \( \sigma_1 = \sigma \).

There are two main recurrences to prove, dealing respectively with the cases \( \pi_1 = 1 \) and \( \pi_1 > 1 \).

Proposition 1 (First Recurrence). Let \( \sigma \) and \( \pi \) be nonempty permutations with decompositions \( \sigma = \sigma_1 + \cdots + \sigma_m \) and \( \pi = \pi_1 + \cdots + \pi_n \), where \( n \geq 2 \). Suppose that \( \pi_1 = 1 \). Let \( k \geq 1 \) be the largest integer such that all the blocks \( \pi_1, \ldots, \pi_k \) are equal to \( 1 \). Then

\[
\mu(\sigma, \pi) = \begin{cases} 
0 & \text{if } k - 1 > \ell, \\
-\mu(\sigma_{> k-1}, \pi_{> k}) & \text{if } k - 1 = \ell, \\
\mu(\sigma_{> k}, \pi_{> k}) - \mu(\sigma_{> k-1}, \pi_{> k}) & \text{if } k - 1 < \ell.
\end{cases}
\]

Note that the suffixes \( \sigma_{> k-1}, \sigma_{> k} \) and \( \pi_{> k} \) in the statement of Proposition 1 may be empty. This first recurrence shows how to compute the Möbius function when \( \pi \) starts with \( 123 \cdots k \) for some \( k \geq 1 \). The second recurrence takes care of the remaining cases, that is, when \( \pi \) does not start with \( 1 \).

Proposition 2 (Second Recurrence). Let \( \sigma \) and \( \pi \) be nonempty permutations with decompositions \( \sigma = \sigma_1 + \cdots + \sigma_m \) and \( \pi = \pi_1 + \cdots + \pi_n \), where \( n \geq 2 \). Suppose that \( \pi_1 > 1 \). Let \( k \geq 1 \) be the largest integer such that all the blocks \( \pi_1, \ldots, \pi_k \) are equal to \( \pi_1 \). Then

\[
\mu(\sigma, \pi) = \sum_{i=1}^{m} \sum_{j=1}^{k} \mu(\sigma_{\leq i}, \pi_1) \mu(\sigma_{> i}, \pi_{> j}).
\]

Note that Propositions 1 and 2 remain true when all the direct sums are replaced with skew sums, and the decompositions are replaced with skew decompositions. To see this, it is enough to observe that if \( \tilde{\pi} \) denotes the reversal of \( \pi \) (i.e., \( \tilde{\pi} \) is the permutation obtained by reversing the order of elements of \( \pi \)), then \( \mu(\sigma, \pi) = \mu(\tilde{\sigma}, \tilde{\pi}) \) for any \( \sigma \) and \( \pi \), since \([\sigma, \pi] \) and \([\tilde{\sigma}, \tilde{\pi}] \) are isomorphic posets.

Before we prove the above two recurrences, we give three corollaries to provide some idea of how the second recurrence can be used. When we write \( k \times \pi \) we mean a sum \( \pi + \pi + \cdots + \pi \) with \( k \) summands.

Corollary 3. Let \( \sigma, \pi \) and \( k \) be as in Proposition 2 and suppose that \( \sigma \) is indecomposable, that is, \( m = 1 \). Then

\[
\mu(\sigma, \pi) = \begin{cases} 
\mu(\sigma, \pi_1), & \text{if } \pi = k \times \pi_1 \\
-\mu(\sigma, \pi_1), & \text{if } \pi = k \times \pi_1 + 1 \\
0, & \text{otherwise}
\end{cases}
\]
If, on the other hand, \( \pi \) has more than one block, with \( \pi_j > j \) for all \( j \leq n \), then \( \mu(\pi) = 0 \).

Proof. Since \( m = 1 \), Equation (3) takes the form

\[
\mu(\sigma, \pi) = \sum_{j=1}^{k} \mu(\sigma_{11}, \pi_1)\mu(\sigma_{1j}, \pi_{j+1}) = \sum_{j=1}^{k} \mu(\sigma, \pi_1)\mu(\emptyset, \pi_{j+1}) = \mu(\sigma, \pi_1)\mu(\emptyset, \pi_k),
\]

where the last equality follows from the fact that \( \mu(\emptyset, \pi_{j+1}) \) is equal to 0 whenever \( \pi_{j+1} \) has more than one block.

We have \( \mu(\emptyset, \pi_{j+1}) = 1 \) when \( \pi_{j+1} = \emptyset \), \( \mu(\emptyset, \pi_{j+1}) = -1 \) when \( \pi_{j+1} = 1 \), and \( \mu(\emptyset, \pi_{j+1}) = 0 \) otherwise. In particular, \( \mu(\emptyset, \pi_{j+1}) \) can only be nonzero either when \( k = n \) and \( \pi = k \times \pi_1 \), or when \( k = n - 1 \) and \( \pi = k \times \pi_1 + 1 \). \( \square \)

Corollary 3 implies that if \( \sigma \) is indecomposable and \( \pi \) is decomposable, then almost always \( \mu(\sigma, \pi) = 0 \), since the two exceptions for \( \pi \) given in the corollary are of a proportion that clearly goes to zero among decomposable permutations as their length goes to infinity.

**Corollary 4.** With \( \sigma \) and \( \pi \) as in Proposition 3, assume that \( \sigma \) and \( \pi \) decompose into exactly two blocks, with \( \sigma = \sigma_1 + \sigma_2 \) and \( \pi = \pi_1 + \pi_2 \), and that \( \pi_1, \pi_2 \geq 1 \). Then

\[
\mu(\sigma, \pi) = \begin{cases} 
\mu(\sigma_1, \pi_1)\mu(\sigma_2, \pi_2), & \text{if } \pi_1 \neq \pi_2 \\
\mu(\sigma_1, \pi_1)\mu(\sigma_2, \pi_2) + \mu(\sigma, \pi_1) & \text{if } \pi_1 = \pi_2
\end{cases}
\]

Proof. If \( \pi_1 \neq \pi_2 \) (so \( k = 1 \)), then the summation in Equation (3) expands into

\[
\mu(\sigma, \pi) = \mu(\sigma_1, \pi_1)\mu(\sigma_2, \pi_2) + \mu(\sigma, \pi_1).
\]

Since \( \pi_2 \geq 1 \), the second summand vanishes and \( \mu(\sigma, \pi) = \mu(\sigma_1, \pi_1)\mu(\sigma_2, \pi_2) \).

If, on the other hand, \( \pi_1 = \pi_2 \), then Equation (3) states that \( \mu(\sigma, \pi) \) is equal to

\[
\mu(\sigma_1, \pi_1)\mu(\sigma_2, \pi_2) + \mu(\sigma_1, \pi_1)\mu(\sigma_2, \emptyset) + \mu(\sigma_1, \pi_1)\mu(\emptyset, \pi_2) + \mu(\sigma_1, \pi_1)\mu(\emptyset, \emptyset) = \mu(\sigma_1, \pi_1)\mu(\sigma_2, \pi_2) + \mu(\sigma_1, \pi_1).
\]

**Remark 5.** An obvious question to ask is whether the product formula \( \mu(\sigma, \pi) = \mu(\sigma_1, \pi_1)\mu(\sigma_2, \pi_2) \), in the case when \( \pi_1 \neq \pi_2 \), is a result of the interval \((\sigma, \pi)\) being isomorphic to the direct product of the intervals \([\sigma_1, \pi_1]\) and \([\sigma_2, \pi_2]\). Although this seems to occur frequently, it does not hold in general.

The following corollary is an immediate consequence of Proposition 1 (the case when \( k - 1 = \ell = 0 \)).

**Corollary 6.** Suppose \( \sigma \) and \( \pi \) are permutations of length at least two, such that neither begins with 1. Then \( \mu(\sigma, 1 + \pi) = -\mu(\sigma, \pi) \).

Both recurrences (Propositions 1 and 2) are proved using arguments that involve cancellation between certain types of chains in the poset of permutations. Let us first introduce some useful notation. For a chain \( C = \{\alpha_0 < \alpha_1 < \cdots < \alpha_k\} \) of permutations let \( L(C) \) denote the length of \( C \), which is one less than the number of elements of \( C \). The weight of \( C \), denoted by \( w(C) \), is the quantity \((-1)^{L(C)} \). If \( \mathcal{C} \) is any set of chains, then the weight of \( \mathcal{C} \) is defined by

\[
w(\mathcal{C}) = \sum_{C \in \mathcal{C}} w(C) = \sum_{C \in \mathcal{C}} (-1)^{L(C)}.
\]
Recall that $\mathcal{E}(\sigma, \pi)$ is the set of all the chains from $\sigma$ to $\pi$ that contain both $\sigma$ and $\pi$. We know that $\mu(\sigma, \pi) = w(\mathcal{E}(\sigma, \pi))$, by Philip Hall’s Theorem.

For a chain $C = \{a_0 < a_1 < \cdots < a_k\}$ and a permutation $\beta$, we let $\beta + C$ denote the chain $\{\beta + a_0 < \beta + a_1 < \cdots < \beta + a_k\}$. The chain $C + \beta$ is defined analogously.

3.1. Proof of the first recurrence. Let us now turn to the proof of Proposition 1.

Suppose that $\sigma$, $\pi$, $m$, $n$, $k$, and $\ell$ are as in the statement of the proposition. For a permutation $\tau \in S$, define the degree of $\tau$, denoted by $\deg(\tau)$, to be the largest integer $d$ such that $\tau$ can be expressed as $d \times 1 + \tau'$ for some (possibly empty) permutation $\tau'$. In particular, we have $k = \deg(\pi)$ and $\ell = \deg(\sigma)$.

Let $C = \{\tau_0 < \tau_1 < \cdots < \tau_p\}$ be a chain of permutations. We say that a permutation $\tau_i \in C$ is the pivot of the chain $C$, if $\deg(\tau_i) < \deg(\tau_j)$ for each $j > i$, and $\deg(\pi) = \deg(\tau_i)$ for each $j \leq i$. In other words, the pivot is the element of the chain with minimum degree, and if there are more elements of minimum degree, the pivot is the largest of them.

Let $\rho$ denote the permutation $\pi_{\geq 1}$. Obviously $\deg(\rho) = k - 1$ and $1 + \rho = \pi$. We partition the set of chains $\mathcal{E}(\sigma, \pi)$ into three disjoint subsets, denoted by $\mathcal{E}_a$, $\mathcal{E}_b$, and $\mathcal{E}_c$, and we compute the weight of each subset separately. A chain $C \in \mathcal{E}(\sigma, \pi)$ belongs to $\mathcal{E}_a$ if its pivot is the permutation $\pi$, the chain $C$ belongs to $\mathcal{E}_b$ if its pivot is the permutation $\rho$, and $C$ belongs to $\mathcal{E}_c$ otherwise. We now separate the main steps of the proof into independent claims.

Claim 7. If $\deg(\sigma) < \deg(\pi)$ (so $\ell < k$), then $\mathcal{E}_a$ is empty. Otherwise, $w(\mathcal{E}_a) = \mu(\sigma_{> k}, \pi_{> k})$.

Proof. Obviously, if $\deg(\sigma) < \deg(\pi)$, then no chain from $\sigma$ to $\pi$ can have $\pi$ as pivot, because the pivot must have minimal degree among the elements of the chain. Thus, $\mathcal{E}_a$ is empty.

Assume now that $\deg(\sigma) \geq \deg(\pi)$. We show that there is a length-preserving bijection between the set of chains $\mathcal{E}(\sigma_{> k}, \pi_{> k})$ and the set of chains $\mathcal{E}_b$. Indeed, take any chain $C \in \mathcal{E}(\sigma_{> k}, \pi_{> k})$, and create a new chain $f(C) = (k \times 1) + C$. Then $f(C)$ is a chain from $\sigma$ to $\pi$, and since every element of $f(C)$ has degree at least $k$, while $\pi$ has degree exactly $k$, we see that $\pi$ is the pivot of $f(C)$. Hence $f(C) \in \mathcal{E}_a$.

On the other hand, if $C'$ is any chain from $\mathcal{E}_a$, we see that each element of $C'$ has degree at least $k$, because $\pi$ has degree $k$ and is the pivot of $C'$. Thus, every element $\tau' \in C'$ is of the form $k \times 1 + \tau$ for some $\tau$, and hence there exists a chain $C \in \mathcal{E}(\sigma_{> k}, \pi_{> k})$ such that $C' = f(C)$. Since $f$ is clearly injective and length-preserving, we conclude that $w(\mathcal{E}_a) = w(\mathcal{E}(\sigma_{> k}, \pi_{> k})) = \mu(\sigma_{> k}, \pi_{> k})$, as claimed.

Claim 8. If $\deg(\sigma) < \deg(\rho)$ (so $\ell < k - 1$), then $\mathcal{E}_b$ is empty. Otherwise, $w(\mathcal{E}_b) = -\mu(\sigma_{> k - 1}, \pi_{> k})$.

Proof. If $\deg(\sigma) < \deg(\rho)$ then $\rho$ cannot be the pivot of any chain containing $\sigma$ and $\mathcal{E}_b$ is empty.

Assume now that $\deg(\sigma) \geq \deg(\rho)$. We will describe a parity-reversing bijection $f$ between the set of chains $\mathcal{E}(\sigma_{> k - 1}, \pi_{> k})$ and the set of chains $\mathcal{E}_c$. Take a chain $C \in \mathcal{E}(\sigma_{> k - 1}, \pi_{> k})$. Define a new chain $C'$ by $C' = ((k - 1) \times 1) + C$. Notice that $C'$ is a chain from $\sigma$ to $\rho$ whose pivot is $\rho$ and whose length is equal to the length of $C$. Define the chain $f(C)$ by $f(C) = C' \cup \{\pi\}$. Then the chain $f(C)$ belongs to $\mathcal{E}_c$ and has length $L(C) + 1$. It is again easy to see that $f$ is a bijection between
\( \mathcal{C}(\sigma_{>k-1}, \pi_{>k}) \) and \( \mathcal{C}_b \), which shows that
\[
w(\mathcal{C}_b) = -w(\mathcal{C}(\sigma_{>k-1}, \pi_{>k})) = -\mu(\sigma_{>k-1}, \pi_{>k}),
\]
as claimed. \( \Box \)

**Claim 9.** \( w(\mathcal{C}_c) = 0. \)

**Proof.** We construct a parity-reversing involution \( f : \mathcal{C}_c \to \mathcal{C}_c \). Let \( C \) be a chain from \( \mathcal{C}_c \), let \( \tau \) be its pivot, and let \( \tau' \) be the successor of \( \tau \) in \( C \). By definition of \( \mathcal{C}_c \), \( \tau \) is not equal to \( \pi \), so \( \tau' \) is well defined. From the definition of a pivot, we know that \( \deg(\tau) < \deg(\tau') \). Let us distinguish two cases:

1. If \( \tau' = 1 + \tau \), we define a new chain \( f(C) \) by \( f(C) = C \setminus \{\tau'\} \). Note that in this case, we know that \( \tau' \) is different from \( \pi \), because otherwise \( \tau \) would be equal to \( \rho \), contradicting the definition of \( \mathcal{C}_c \). Thus, \( f(C) \in \mathcal{C}_c \). Note that \( \tau \) is a pivot of \( f(C) \).
2. If \( \tau' \neq 1 + \tau \), then we easily deduce that \( \tau' > 1 + \tau \) (recall that \( \deg(\tau') > \deg(\tau) \)). We then define a new chain \( f(C) = C \cup \{1 + \tau\} \), in which the new element \( 1 + \tau \) is inserted between \( \tau \) and \( \tau' \).

The mapping \( f \) is easily seen to be an involution on the set \( \mathcal{C}_c \) that preserves the pivot and maps odd-length chains to even-length chains and vice versa. This shows that \( w(\mathcal{C}_c) = 0 \), as claimed. \( \Box \)

From these claims, Proposition 1 easily follows. Indeed, Claim 9 implies that \( \mu(\sigma, \pi) = w(\mathcal{C}_a) + w(\mathcal{C}_b) \). From Claims 7 and 8 we deduce the values of \( \mu(\sigma, \pi) \):

- If \( k - 1 > \ell \) then both \( \mathcal{C}_a \) and \( \mathcal{C}_b \) are empty and \( \mu(\sigma, \pi) = 0 \).
- If \( k - 1 = \ell \) then \( \mathcal{C}_a \) is empty and \( \mu(\sigma, \pi) = w(\mathcal{C}_b) = -\mu(\sigma_{>k-1}, \pi_{>k}) \).
- If \( k - 1 < \ell \), then \( \mu(\sigma, \pi) = w(\mathcal{C}_a) + w(\mathcal{C}_b) = \mu(\sigma_{>k}, \pi_{>k}) - \mu(\sigma_{>k-1}, \pi_{>k}) \).

This completes the proof of Proposition 1.

### 3.2. Proof of the second recurrence.

It remains to prove Proposition 2. The proof is again based on cancellation among the chains from \( \sigma \) to \( \pi \). Before stating the proof, we need more terminology and several lemmas.

Let \( \alpha, \beta \), and \( \rho \) be any permutations. We say that \( \alpha \) is a \( \rho \)-tight subpermutation of \( \beta \), denoted by \( \alpha <^\rho \beta \), if \( \alpha < \beta \) but \( \rho + \alpha \) is not contained in \( \beta \). We say that a chain \( \{\alpha_0 < \alpha_1 < \cdots < \alpha_k\} \) is \( \rho \)-tight if \( \alpha_{i-1} <^\rho \alpha_i \) for every \( i = 1, \ldots, k \). Let \( \mathcal{C}^\rho(\alpha, \beta) \) be the set of all the \( \rho \)-tight chains from \( \alpha \) to \( \beta \).

The following simple properties of \( \rho \)-tightness follow directly from the definitions, and they are presented without proof.

**Lemma 10.** For arbitrary permutations \( \alpha, \beta, \gamma \), and \( \rho \), we have \( \alpha + \gamma <^\rho \beta + \gamma \) if and only if \( \alpha <^\rho \beta \).

**Lemma 11.** If \( \rho \) is a nonempty indecomposable permutation, and if \( \alpha \) and \( \beta \) are arbitrary permutations, then \( \rho + \alpha <^\rho \beta + \alpha \) if and only if \( \alpha <^\rho \beta \).

The next lemma shows the relevance of \( \rho \)-tightness for the computation of \( \mu \).

**Lemma 12.** Let \( \beta \) be a permutation with decomposition \( \beta = \beta_1 + \beta_2 + \cdots + \beta_p \). Let \( \rho \) be a nonempty indecomposable permutation, and let \( \alpha \) be any permutation.

1. If \( \rho \neq \beta_1 \), then \( \mu(\alpha, \beta) = w(\mathcal{C}^\rho(\alpha, \beta)) \).
2. If \( \rho = \beta_1 \), then \( \mu(\alpha, \beta) = w(\mathcal{C}^\rho(\alpha, \beta)) - w(\mathcal{C}^\rho(\alpha, \beta_{>1})) \).
Let us first deal with the first claim of the lemma. Let us define \( \mathcal{E} = \mathcal{C}(\alpha, \beta) \setminus \mathcal{C}^\rho(\alpha, \beta) \) to be the set of all the chains from \( \alpha \) to \( \beta \) that are not \( \rho \)-tight. The first part of the lemma is equivalent to saying that \( w(\mathcal{E}) = 0 \). To prove this, we find a parity-reversing involution \( f \) on the set \( \mathcal{E} \).

Consider a chain \( C = \{ \alpha = \alpha_0 < \alpha_1 < \cdots < \alpha_q = \beta \} \in \mathcal{E} \). Since \( C \) is not \( \rho \)-tight, there is an index \( i \) such that \( \rho + \alpha_i \leq \alpha_{i+1} \). Fix the smallest such value of \( i \). We distinguish two cases: either \( \rho + \alpha_i < \alpha_{i+1} \), or \( \rho + \alpha_i = \alpha_{i+1} \).

If \( \rho + \alpha_i < \alpha_{i+1} \), define a new chain \( f(C) = C \cup \{ \rho + \alpha_i \} = \{ \alpha = \alpha_0 < \alpha_1 < \cdots < \alpha_i < \rho + \alpha_i < \alpha_{i+1} < \cdots < \alpha_q = \beta \} \).

On the other hand, if \( \rho + \alpha_i = \alpha_{i+1} \), define a new chain \( f(C) = C \setminus \{ \rho + \alpha_i \} = \{ \alpha = \alpha_0 < \alpha_1 < \cdots < \alpha_i < \alpha_{i+2} < \cdots < \alpha_q = \beta \} \).

Note that, since we assume that \( \rho \neq \beta_1 \) and that \( \rho \) is indecomposable, we know that \( \rho + \alpha_i \) is not equal to \( \beta \). Moreover, in the chain \( f(C) \) the element \( \alpha_i \) is not a \( \rho \)-tight subpermutation of its successor in the chain. Thus, we see that \( f(C) \) is a chain from \( \mathcal{E} \). It is easy to see that \( f \) is an involution, and that it reverses the parity of the length of the chain, showing that \( w(\mathcal{E}) = 0 \). This proves the first part of the lemma.

Let us prove the second part. Assume that \( \rho = \beta_1 \), that is, \( \beta = \rho + \beta_2 \). Consider a chain \( C \) from \( \alpha \) to \( \beta \), and let \( \alpha_0, \alpha_1, \ldots, \alpha_q \) be the elements of \( C \). We say that the chain \( C \) is almost \( \rho \)-tight if its second largest element \( \alpha_{q-1} \) is equal to \( \beta_{1} \) and if \( \alpha_{i-1} < \alpha_i \) for each \( i \leq q-1 \). Note that an almost \( \rho \)-tight chain is never \( \rho \)-tight, because \( \beta_{1} \) is not a \( \rho \)-tight subpermutation of \( \beta = \rho + \beta_2 \).

We partition the set \( \mathcal{C}(\alpha, \beta) \) into three disjoint sets \( \mathcal{C}_a, \mathcal{C}_b, \) and \( \mathcal{C}_c \), where \( \mathcal{C}_a \) is the set \( \mathcal{C}^\rho(\alpha, \beta) \) of \( \rho \)-tight chains, \( \mathcal{C}_b \) is the set of almost \( \rho \)-tight chains, and \( \mathcal{C}_c \) contains the chains that neither \( \rho \)-tight nor almost \( \rho \)-tight.

Consider again the mapping \( f \) defined in the proof of the first part of the lemma. This mapping, restricted to the set \( \mathcal{C}_c \), is easily seen to be a parity-reversing involution on \( \mathcal{C}_c \), which shows that \( w(\mathcal{C}_c) = 0 \). This means that \( \mu(\alpha, \beta) = w(\mathcal{C}_a) + w(\mathcal{C}_b) \).

Furthermore, note that an almost \( \rho \)-tight chain from \( \alpha \) to \( \beta \) consists of a \( \rho \)-tight chain from \( \alpha \) to \( \beta_2 \) followed by \( \beta \), and conversely, any \( \rho \)-tight chain from \( \alpha \) to \( \beta_1 \) can be extended to an almost \( \rho \)-tight chain from \( \alpha \) to \( \beta \) by adding the element \( \beta \). Thus, we see that \( w(\mathcal{C}_b) = -w(\mathcal{C}^\rho(\alpha, \beta_{1})) \). This implies that \( \mu(\alpha, \beta) = w(\mathcal{C}^\rho(\alpha, \beta_{1})) \), as claimed.

The next lemma is an easy consequence of Lemma 12.

**Lemma 13.** Let \( \beta \) be a permutation with decomposition \( \beta = \beta_1 + \beta_2 + \cdots + \beta_p \). Let \( \rho \) be an indecomposable permutation, and let \( \alpha \) be any permutation. Let \( q \geq 0 \) be the largest integer such that the blocks \( \beta_1, \beta_2, \ldots, \beta_q \) are all equal to \( \rho \). Then

\[
w(\mathcal{C}^\rho(\alpha, \beta)) = \sum_{i=0}^{q} \mu(\alpha, \beta_{i+1}).
\]

**Proof.** Proceed by induction on \( q \). If \( q = 0 \), the claim reduces to the identity \( w(\mathcal{C}^\rho(\alpha, \beta)) = \mu(\alpha, \beta) \), which follows from the first part of Lemma 12. Suppose that \( q > 0 \). Then the second part of Lemma 12 applies and we get that

\[
\mu(\alpha, \beta) = w(\mathcal{C}^\rho(\alpha, \beta)) - w(\mathcal{C}^\rho(\alpha, \beta_{1})),
\]
which is equivalent to

\[(4) \quad w(\mathcal{C}^\varnothing(\alpha, \beta)) = \mu(\alpha, \beta) + w(\mathcal{C}^\varnothing(\alpha, \beta_{>1})).\]

By induction, we know that

\[w(\mathcal{C}^\varnothing(\alpha, \beta_{>1})) = \sum_{i=0}^{q-1} \mu(\alpha, (\beta_{>1})_{>i}) = \sum_{i=1}^{q} \mu(\alpha, \beta_{>i}).\]

Combining this with (4), we obtain the desired identity. □

Before we proceed towards the proof of Proposition 2, we need to introduce more definitions. Let \(\beta\) be a permutation with decomposition \(\beta_1 + \cdots + \beta_p\) into indecomposable blocks, let \(\alpha\) be any permutation. Let \(C\) be a chain of permutations, with elements \(\alpha = \alpha_0 < \alpha_1 < \cdots < \alpha_q = \beta\). We express each element \(\alpha_i\) of the chain as a sum of two permutations, called head and tail, denoted respectively as \(h_i(C)\) and \(t_i(C)\), with \(\alpha_i = h_i(C) + t_i(C)\). The head and tail are defined inductively as follows: for \(i = q\), we have \(\alpha_i = \alpha_q = \beta\) and we define \(h_q(C) = \beta_1\) and \(t_q(C) = \beta_{>1}\).

Suppose now that the head and tail of \(\alpha_i\) have been already defined, and let us define head and tail of \(\alpha_{i-1}\). Let us put \(\gamma = \alpha_{i-1}\), and assume that \(\gamma\) has decomposition \(\gamma_1 + \gamma_2 + \cdots + \gamma_t\) into indecomposable blocks. Let \(j\) be the smallest integer such that \(\gamma_{>j} \leq t_i(C)\). It then follows that \(\gamma_{\leq j} \leq h_i(C)\). We define \(h_{i-1}(C) = \gamma_{\leq j}\) and \(t_{i-1}(C) = \gamma_{>j}\). In other words, the tail of \(\alpha_{i-1}\) is its longest suffix that is contained in the tail of \(\alpha_i\).

If the chain \(C\) is clear from the context, we write \(h_i\) and \(t_i\) instead of \(h_i(C)\) and \(t_i(C)\). Note that \(h_0 \leq h_1 \leq \cdots \leq h_q\) and \(t_0 \leq t_1 \leq \cdots \leq t_q\).

We say that the chain \(C\) of length \(q\) is split if there is an index \(s \in \{0, \ldots, q\}\) such that \(t_0 = t_1 = \cdots = t_s\) and \(h_s = h_{s+1} = \cdots = h_q\). Such an index \(s\) is then necessarily unique. The next lemma demonstrates the relevance of these notions.

**Lemma 14.** Let \(\beta\) be a permutation with decomposition \(\beta_1 + \beta_2 + \cdots + \beta_p\) such that \(\beta_1 \neq 1\). Let \(\alpha\) be an arbitrary permutation. Let \(\mathcal{C}^\ast\) be the set of all the chains from \(\mathcal{C}(\alpha, \beta)\) which are split and \(1\)-tight. Then \(\mu(\alpha, \beta) = w(\mathcal{C}^\ast)\).

**Proof.** By the first part of Lemma 12, we know that \(\mu(\alpha, \beta)\) is equal to \(w(\mathcal{C}^\varnothing(\alpha, \beta))\), that is, to the total weight of all the \(1\)-tight chains from \(\alpha\) to \(\beta\). Define the set \(\mathcal{E} = \mathcal{C}^\varnothing(\alpha, \beta) \setminus \mathcal{C}^\ast\) of all the \(1\)-tight, non-split chains from \(\alpha\) to \(\beta\).

To prove the lemma, we need to show that \(w(\mathcal{E}) = 0\). To achieve this, we again use a parity-reversing involution \(f\) on the set \(\mathcal{E}\). Consider a chain \(C \in \mathcal{E}\) with elements \(\alpha_0 < \alpha_1 < \cdots < \alpha_q\). Since \(C\) is not split, there must exist an index \(j \in \{1, \ldots, q\}\) such that either

1. \(h_{j-1} < h_j\) and \(t_{j-1} < t_j\), or
2. \(h_{j-1} = h_j < h_{j+1}\) and \(t_{j-1} < t_j = t_{j+1}\).

Fix such an index \(j\) as large as possible and distinguish two cases depending on which of the two above-mentioned possibilities occur for this index \(j\).

**Case 1.** Assume that \(h_{j-1} < h_j\) and \(t_{j-1} < t_j\). Let us write \(h = h_{j-1} + h_j\), \(t = t_{j-1}\), and \(T = t_j\), so we have \(\alpha_{j-1} = h + t\) and \(\alpha_j = h + T\). Define a permutation \(\gamma = h + T\), and a new chain \(f(C) = C \cup \{\gamma\}\). Note that since \(C\) is a \(1\)-tight chain, and in particular \(\alpha_{j-1} < \alpha_j\), we also have \(\alpha_{j-1} < \gamma < \alpha_j\), and hence \(f(C)\) is a \(1\)-tight chain as well.

We need to prove that \(f(C) \in \mathcal{E}\), which follows easily from the following claim.
Claim 15. Each permutation of $C$ has the same head and tail in $f(C)$ as in $C$. The permutation $\gamma = h + T$ has head $h$ and tail $T$ in $f(C)$.

Proof of Claim 15. It is clear that the claim holds for all the permutations that are greater than $\gamma$.

It is also easy to see that the claim holds for $\gamma$. Indeed, the successor of $\gamma$ in $f(C)$ is the permutation $H + T$, whose tail is $T$. Since the tail of $\gamma$ cannot be greater than $T$ and since $\gamma = h + T$, it follows that the tail of $\gamma$ is $T$ and its head is $h$.

Let us now consider the permutation $\alpha_{j-1} = h + t$. The successor of $\alpha_{j-1}$ in $C$ is the permutation $\alpha_j = H + T$, and the successor of $\alpha_{j-1}$ in $f(C)$ is the permutation $\gamma = h + T$. Since the two successors have the same tail $T$, and since the tail of a permutation only depends on the tail of its successor, we see that $\alpha_{j-1}$ has the same tail (and hence also the same head) in $f(C)$ as in $C$.

From these facts, the claim immediately follows.

We may now conclude that $f(C) \in \hat{C}$, and turn to the second case of the proof of the lemma.

Case (2). Assume now that $h_{j-1} = h_j < h_{j+1}$ and $t_{j-1} = t_j = t_{j+1}$. Let us define $h = h_{j-1} = h_j$, $H = h_{j+1}$, $t = t_{j-1}$, and $T = t_j = t_{j+1}$. In particular, $\alpha_{j-1} = h + t$, $\alpha_j = h + T$, and $\alpha_{j+1} = H + T$. Define the chain $f(C) = C \setminus \{\alpha_j\}$.

We claim that $f(C)$ is 1-tight. To see this, it is enough to prove $h + t = 1 < H + T$. Assume, for a contradiction, that $1 + h + t \leq H + T$. In any occurrence of $1 + h + t$ inside $H + T$, the prefix $1 + h$ must occur inside $H$, otherwise we get a contradiction with the assumption that $t$ is the tail of $\alpha_{j-1}$. This shows that $1 + h \leq H$, and hence $1 + h + T = 1 + \alpha_j \leq \alpha_{j+1} = H + T$, contradicting the assumption that $C$ is 1-tight. To finish the proof of the lemma, we need one more claim.

Claim 16. Each permutation of $f(C)$ has the same head and tail in $f(C)$ as in $C$.

Proof of Claim 16. It is enough to prove the claim for the permutation $\alpha_{j-1} = h + t$, because any other permutation of $f(C)$ has the same successor in $f(C)$ as in $C$. For $\alpha_{j-1}$, the claim follows from the fact that the successor of $\alpha_{j-1}$ in $C$ has the same tail as the successor of $\alpha_{j-1}$ in $f(C)$. This completes the proof of the claim.

We now see that even in this second case, $f(C)$ belongs to $\hat{C}$.

Combining the two cases described above, we see that $f$ is a parity-reversing involution of the set $\hat{C}$. This means that $w(\hat{C}) = 0$, and consequently, $\mu(\alpha, \beta) = w(C^*)$, as claimed. This completes the proof of the lemma.

Finally, we can prove Proposition 1. Assume that $\sigma$ is a permutation with decomposition $\sigma_1 + \cdots + \sigma_m$ and that $\pi$ is a permutation with decomposition $\pi_1 + \cdots + \pi_n$, where $n \geq 2$ and $\pi_1 > 1$. Let $k \geq 1$ be the largest integer such that all the blocks $\pi_1, \ldots, \pi_k$ are equal to $\pi_1$. Recall that our goal is to prove identity (3), which reads as follows:

$$\mu(\sigma, \pi) = \sum_{i=1}^{m} \sum_{j=1}^{k} \mu(\sigma_{\leq i}, \pi_1)\mu(\sigma_{> i}, \pi_{> j}).$$

Let $C^*$ be the set of 1-tight split chains from $\sigma$ to $\pi$. From Lemma 13 we know that $\mu(\sigma, \pi) = w(C^*)$. For a chain $C \in C^*$, let $t_0(C)$ be the tail of the element $\sigma \in C$, which is the smallest element in the chain. By definition, $t_0(C)$ is a suffix
of $\sigma$, that is, it is equal to $\sigma_{>i}$ for some value of $i \in \{0, \ldots, m\}$. Define, for each $i \in \{0, \ldots, m\}$, the set of chains
\[ \mathcal{C}_i = \{ C \in \mathcal{C}^*, t_0(C) = \sigma_{>i} \}. \]
The sets $\mathcal{C}_i$ form a disjoint partition of $\mathcal{C}^*$. We will now compute the weight of the individual sets $\mathcal{C}_i$.

Claim 17. Let $C$ be a chain from $\mathcal{C}^*$. Every element of $C$ has nonempty head. Consequently, $t_0(C)$ is never equal to $\sigma$, and hence $\mathcal{C}_0$ is empty.

Proof. Suppose that $C$ has an element with empty head. Let $\alpha$ be the largest such element. By definition, the element $\pi \in C$ has head equal to $\pi_1$, so $\alpha \neq \pi$. In particular, $\alpha$ has a successor $\alpha'$ in $C$, and $\alpha'$ has nonempty head. Let $h'$ and $t'$ be the head and tail of $\alpha'$. By assumption, $h'$ is nonempty, which means that $1 \leq h'$. Moreover, $\alpha \leq t'$, because $\alpha$ is its own tail. This means that $1 + \alpha \leq \alpha'$, which is impossible because the chains in $\mathcal{C}^*$ are assumed to be $1$-tight.

This shows that every element of $C$ has nonempty head, and the rest of the claim follows directly. \qed

Claim [17] implies that $w(\mathcal{C}_0) = 0$, and hence $\mu(\sigma, \pi) = \sum_{i \geq 1} w(\mathcal{C}_i)$. It remains to determine the value of $w(\mathcal{C}_i)$ for $i > 0$.

Fix an integer $i \in \{1, \ldots, m\}$. Define $h = \sigma_{\leq i}$, $t = \sigma_{>i}$, $H = \pi_1$, and $T = \pi_{>1}$. Note that in a chain $C \in \mathcal{C}_i$, the permutation $\sigma$ has head $h$ and tail $t$, while the permutation $\pi$ has head $H$ and tail $T$.

Claim 18. With the notation as above,
\[ w(\mathcal{C}_i) = w(\mathcal{C}^1(h, H))w(\mathcal{C}^H(t, T)). \]

Proof. Let us write $\mathcal{C}' = \mathcal{C}^1(h, H)$ and $\mathcal{C}'' = \mathcal{C}^H(t, T)$. We will provide a bijection $f: \mathcal{C}' \times \mathcal{C}'' \to \mathcal{C}_i$, which maps a pair of chains $(C_1, C_2) \in \mathcal{C}' \times \mathcal{C}''$ to a chain $f(C_1, C_2) \in \mathcal{C}_i$ whose length is equal to $L(C_1) + L(C_2)$. Such a bijection immediately implies the identity $w(\mathcal{C}_i) = w(\mathcal{C}')w(\mathcal{C}'')$ from the claim.

The definition of the mapping $f$ is simple: for $C_1 \in \mathcal{C}'$ and $C_2 \in \mathcal{C}''$, define $f(C_1, C_2)$ to be the concatenation of the two chains $C_1 + t$ and $H + C_2$. This is well defined, since the maximum of $C_1 + t$ is the permutation $H + t$, which is also equal to the minimum of the chain $H + C_2$. Thus, $f(C_1, C_2)$ is a chain of length $L(C_1) + L(C_2)$. Let us denote this chain by $C$.

We now show that $C$ belongs to $\mathcal{C}_i$. Let us call the two sub-chains $C_1 + t$ and $H + C_2$ respectively the bottom part and the top part of $C$. Note that the permutation $H + t$ is the unique element of $C$ belonging both to the top part and to the bottom part.

By construction, $C$ is a chain from $\sigma$ to $\pi$. The bottom part of $C$ is a $1$-tight chain, because $C_1$ was assumed to be $1$-tight (see Lemma [10]). Similarly, by Lemma [11] the top part of $C$ is a $1$-tight chain, because $C_2$ is $H$-tight and $H$ is indecomposable. This shows that the chain $C$ is $1$-tight.

Our next step is to prove that every element in the top part of $C$ has head equal to $H$, and that every element in the bottom part of $C$ has tail equal to $t$. Assume that this statement is false, and let $\alpha$ be the largest element of $C$ for which it fails. Clearly, $\alpha \neq \pi$, so $\alpha$ has a successor $\beta$ in $C$. Suppose first that $\alpha$ belongs to the top part of $C$. Then $\alpha$ can be written as a sum $H + \alpha'$ for some $\alpha' \in C_2$, and likewise $\beta = H + \beta'$ for $\beta' \in C_2$. By the choice of $\alpha$, we know that the head of $\beta$ is $H$ and hence its tail is $\beta'$. Since $\alpha' < \beta'$, the tail of $\alpha$ contains $\alpha'$. On the other hand, the only suffix of $\alpha$ longer than $\alpha'$ is the permutation $\alpha$ itself, because $H$ is
indecomposable. By Claim 17, the head of $\alpha$ must be nonempty, which means that the head of $\alpha$ can only be equal to $H$, which contradicts our choice of $\alpha$.

Suppose now that $\alpha$ does not belong to the top part of $C$. Then $\beta$ belongs to the bottom part of $C$ (and possibly to the top part as well). Consequently, $\alpha$ can be written as $\alpha' + t$ and $\beta$ can be written as $\beta' + t$, with $\alpha', \beta' \in C_1$. We also know that $t$ is the tail of $\beta$. This makes it clear that $t$ is the tail of $\alpha$ as well, which is a contradiction.

This proves that all the elements of the top part of $C$ indeed have head $H$, and all the elements in the bottom part have tail $t$. This shows that $C$ is a split chain and also that $t_0(C) = t$. We have shown that $C \in \mathcal{C}$.

It is clear that $f$ is an injective mapping. To complete the proof of the claim, it only remains to show that $f$ is surjective, that is, for every $C \in \mathcal{C}$, there are chains $(C_1, C_2) \in \mathcal{C'} \times \mathcal{C''}$ with $f(C_1, C_2) = C$.

Choose a chain $C \in \mathcal{C}$. Since $C$ is split, it must contain the element $H + t$. Call the elements of $C$ contained in $H + t$ the bottom part of $C$, and the elements containing $H + t$ the top part of $C$. The definition of split chain further implies that all the elements in the top part have the same head $H$ and all the elements in the bottom part have the same tail $t$. Hence, the bottom part of the chain $C$ has the form $C_1 + t$ for some chain $C_1 \in \mathcal{C}(h, H)$. Similarly, the top part has the form $H + C_2$ for a chain $C_2 \in \mathcal{C}(t, T)$. Since $C$ is 1-tight, we may use Lemmas 10 and 11 to see that $C_1$ is 1-tight and $C_2$ is $H$-tight, showing that $(C_1, C_2) \in \mathcal{C'} \times \mathcal{C''}$. Since $f(C_1, C_2) = C$, we see that $f$ is the required bijection.

We now have all the necessary ingredients to finish the proof of Proposition 2. Let us write $H = \pi_1$ and $T = \pi_{>1}$. From our results, we get

$$\mu(\sigma, \pi) = w(\mathcal{C}(\sigma, \pi))$$

$$= w(\mathcal{C'}) \quad \text{by Lemma 13}$$

$$= \sum_{i=1}^{m} w(\mathcal{C}_i) \quad \text{by Claim 17}$$

$$= \sum_{i=1}^{m} w(\mathcal{C}_i(\sigma_{\leq i}, H))w(\mathcal{C''}(\sigma_{>i}, T)) \quad \text{by Claim 18}$$

$$= \sum_{i=1}^{m} \mu(\sigma_{\leq i}, H)w(\mathcal{C''}(\sigma_{>i}, T)) \quad \text{by first part of Lemma 12}$$

$$= \sum_{i=1}^{m} \mu(\sigma_{\leq i}, H)\sum_{j=0}^{k-1} \mu(\sigma_{>i}, T_{>j}) \quad \text{by Lemma 13}$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{k} \mu(\sigma_{\leq i}, \pi_1)\mu(\sigma_{>i}, \pi_{>j}) \quad \text{since } T_{>j} = \pi_{>j+1}$$

Thus, Proposition 2 is now proved.

We now present some consequences of Propositions 1 and 2.

**Corollary 19.** There is an algorithm that, given two separable permutations $\sigma$ and $\pi$, computes the value of $\mu(\sigma, \pi)$ in time polynomial in $|\sigma| + |\pi|$.

**Proof.** Let $\pi = \pi_1\pi_2 \cdots \pi_n$ be a separable permutation. For two integers $i, j$ with $1 \leq i \leq j \leq n$, let $\pi[i, j]$ denote the subpermutation of $\pi$ order-isomorphic to the
sequence \( \pi_1, \pi_{i+1}, \ldots, \pi_j \). Note that \( \pi[i, j] \) is also separable. We call \( \pi[i, j] \) a range subpermutation of \( \pi \).

Suppose that \( \sigma = \sigma_1 \cdots \sigma_m \) and \( \pi = \pi_1 \cdots \pi_n \) are two separable permutations. Our goal is to compute \( \mu(\sigma, \pi) \). We will use a straightforward dynamic programming algorithm to perform this computation. We will compute all the values of the form \( \mu(\sigma[i, j], \pi[k, \ell]) \), for all quadruples \((i, j, k, \ell)\) satisfying \(1 \leq i \leq j \leq m\) and \(1 \leq k \leq \ell \leq n\). For each such quadruple \((i, j, k, \ell)\) we store the value of \( \mu(\sigma[i, j], \pi[k, \ell]) \) once we compute it, so that we do not need to compute this value more than once, even though we may need it several times to compute other values of \( \mu \).

There are \( O(m^2 n^2) \) quadruples \((i, j, k, \ell)\) to consider, and for each such quadruple, we may use Propositions 1 and 2 to express \( \mu(\sigma[i, j], \pi[k, \ell]) \) as a combination of polynomially many values of the form \( \mu(\sigma'[i', j'], \pi'[k', \ell']) \) where \( \sigma'[i', j'] \) and \( \pi'[k', \ell'] \) are range subpermutations of \( \sigma[i, j] \) and \( \pi[k, \ell] \) with \( \pi'[k', \ell'] \neq \pi[k, \ell] \). Therefore, we can in polynomial time compute all the values of the form \( \mu(\sigma[i, j], \pi[k, \ell]) \), including \( \mu(\sigma, \pi) = \mu(\sigma[1, m], \pi[1, n]) \). \( \square \)

Note that the number of permutations belonging to an interval \([\sigma, \pi]\) may in general be exponential in the size of \( \pi \), even when \( \pi \) and \( \sigma \) are separable. Therefore, computing the Möbius function \( \mu(\sigma, \pi) \) directly from equation (1) would be much less efficient than the algorithm of the previous corollary.

Let us say that a class of permutations \( \mathcal{C} \) is sum-closed if for each \( \pi, \sigma \in \mathcal{C} \), the class \( \mathcal{C} \) also contains \( \pi + \sigma \). Similarly, \( \mathcal{C} \) is skew-closed if \( \pi, \sigma \in \mathcal{C} \) implies \( \pi * \sigma \in \mathcal{C} \). For a set \( \mathcal{P} \) of permutations, the closure of \( \mathcal{P} \), denoted by \( \text{cl}(\mathcal{P}) \), is the smallest sum-closed and skew-closed class of permutations that contains \( \mathcal{P} \). Notice that \( \text{cl}(\{\{1\}\}) \) is exactly the set of separable permutations.

The next corollary is an immediate consequence of Propositions 1 and 2 (see also Corollary 3), and we omit its proof.

**Corollary 20.** Suppose that \( \sigma \) is a permutation that is neither decomposable nor skew-decomposable. Let \( \mathcal{P} \) be any set of permutations. Then

\[
\max\{ |\mu(\sigma, \pi)| ; \pi \in \mathcal{P} \} = \max\{ |\mu(\sigma, \pi)| ; \pi \in \text{cl}(\mathcal{P}) \}.
\]

Moreover, the computation of \( \mu(\sigma, \pi) \) for \( \pi \in \text{cl}(\mathcal{P}) \) can be efficiently reduced to the computation of the values \( \mu(\sigma, \rho) \) for \( \rho \in \mathcal{P} \).

## 4. The Möbius function of separable and decomposable permutations

Let us now consider the values of \( \mu(\sigma, \pi) \) for separable permutations \( \sigma \) and \( \pi \). Our goal is to show that the values of the Möbius function in the poset of separable permutations have a combinatorial interpretation in terms of the so-called normal embeddings, which we define below. This alternative interpretation of the Möbius function generalizes previous results of Sagan and Vatter 5 for the Möbius function of intervals of layered permutations, which we explain at the end of this section.

As a consequence of this new interpretation of the Möbius function, we are able to relate the Möbius function \( \mu(\sigma, \pi) \) to the number of occurrences of \( \sigma \) in \( \pi \), by showing that \( |\mu(\sigma, \pi)| \leq \sigma(\pi) \). We also show that \( \mu(1, \pi) \) is equal to \(-1, 0 \) or \( 1 \) whenever \( \pi \) is separable.

The recursive structure of separable permutations makes it convenient to represent a separable permutation by a tree that describes how the permutation may be obtained from smaller permutations by sums and skew sums. We now formalize this concept. A separating tree \( T \) is a rooted tree \( T \) with the following properties:
Each internal node of $T$ has one of two types: it is either a direct node or a skew node.

Each internal node has at least two children. The children of a given internal node are ordered into a sequence from left to right.

Each separating tree $T$ represents a unique separable permutation $\pi$, defined recursively as follows:

- If $T$ has a single node, it represents the singleton permutation $1$.
- Assume $T$ has more than one node. Let $N_1, \ldots, N_k$ be the children of the root in their left-to-right order, and let $T_i$ denote the subtree of $T$ rooted at the node $N_i$. Let $p_1, \ldots, p_k$ be the permutations represented by the trees $T_1, \ldots, T_k$. Then $T$ represents the permutation $p_1 + \cdots + p_k$ if the root of $T$ is a direct node and $p_1 * \cdots * p_k$ if the root of $T$ is a skew node.

Note that the leaves of $T$ correspond bijectively to the letters of $\pi$. In fact, when we perform a depth-first left-to-right traversal of $T$, we encounter the leaves in the order that corresponds to the left-to-right order of the letters of $\pi$. See Figure 1 for an example.

A given separable permutation may be represented by more than one separating tree. A separating tree is called a reduced tree if it has the property that the children of a direct node are leaves or skew nodes, and the children of a skew node are leaves or direct nodes. Each separable permutation $\pi$ is represented by a unique reduced tree, denoted by $T(\pi)$. We assume that each leaf of $T$ is labelled by the corresponding letter of $\pi$.

This slightly modified concept of separating tree and its relationship with separable permutations have been previously studied in algorithmic contexts [2, 9]. We will now show that the reduced tree allows us to obtain a simple formula for the M"obius function of separable permutations.

Let $[n]$ denote the set $\{1, \ldots, n\}$. Let $\pi = \pi_1 \pi_2 \ldots \pi_n$ and $\sigma = \sigma_1 \sigma_2 \ldots \sigma_m$ be two permutations, with $\sigma \leq \pi$. An embedding of $\sigma$ into $\pi$ is a function $f: [m] \to [n]$ with the following two properties:

- for every $i, j \in [m]$, if $i < j$ then $f(i) < f(j)$ (so $f$ is monotone increasing).
- for every $i, j \in [m]$, if $\sigma_i < \sigma_j$, then $\pi_{f(i)} < \pi_{f(j)}$ (so $f$ is order-preserving).

Let $f$ be an embedding of $\sigma$ into $\pi$. We say that a leaf $\ell$ of $T(\pi)$ is covered by the embedding $f$ if the letter of $\pi$ corresponding to $\ell$ is in the image of $f$. A leaf is omitted by $f$ if it is not covered by $f$. An internal node is a node that is not a leaf. An internal node $N$ of $T(\pi)$ is omitted by $f$ if all the leaves in the subtree rooted at $N$ are omitted. A node is maximal omitted, if it is omitted but its parent in $T(\pi)$ is not omitted.

Assume that $\pi$ is a separable permutation and $T(\pi)$ its reduced tree. Two nodes $N_1$ and $N_2$ of a tree $T(\pi)$ are called twins if they are siblings having a common parent $P$, they appear consecutively in the sequence of children of $P$, and the two subtrees of $T$ rooted at $N_1$ and $N_2$ are isomorphic, that is, they only differ by the labeling of their leaves, but otherwise have the same structure. In particular, any two adjacent leaves are twins.

A run under a node $N$ in $T$ is a maximal sequence $N_1, \ldots, N_k$ of children of $N$ such that each two consecutive elements of the sequence are twins. Note that the sequence of children of each internal node is uniquely partitioned into runs, each possibly consisting of a single node. A leaf run is a run whose nodes are leaves, and a non-leaf run is a run whose nodes are non-leaves. The first (leftmost) element
of each run is called the leader of the run and the remaining elements are called followers.

Using the tree structure of $T(\pi)$, we will show that $\mu(\sigma, \pi)$ can be expressed as a signed sum over a set of embeddings of $\sigma$ into $\pi$ that have a special structure. Following the terminology of Sagan and Vatter [5], we call these special embeddings normal.

**Definition 21.** Let $\sigma$ and $\pi$ be separable permutations, let $T(\pi)$ be the reduced tree of $\pi$. An embedding $f$ of $\sigma$ into $\pi$ is called normal if it satisfies the following two conditions.

- If a leaf $\ell$ is maximal omitted by $f$, then $\ell$ is the leader of its corresponding leaf run.
- If an internal node $N$ is maximal omitted by $f$, then $N$ is a follower in its non-leaf run.

Let $N(\sigma, \pi)$ denote the set of normal embeddings of $\sigma$ into $\pi$. The defect of an embedding $f \in N(\sigma, \pi)$, denoted by $d(f)$, is the number of leaves that are maximal omitted by $f$. The sign of $f$, denoted by $\text{sgn}(f)$, is defined as $(-1)^{d(f)}$.

We now present our main result.

**Theorem 22.** If $\sigma$ and $\pi$ are (possibly empty) separable permutations, then

$$
\mu(\sigma, \pi) = \sum_{f \in N(\sigma, \pi)} \text{sgn}(f).
$$

Consider, as an example, the two permutations $\pi$ and $\sigma$ depicted on Figure 1. The children of the root of $T(\pi)$ are partitioned into three runs, where the first run has three internal nodes, the second run has a single leaf, and the last run has a single internal node. Accordingly, there are five normal embeddings of $\sigma$ into $\pi$, depicted in Figure 2. Of these five normal embeddings, two have sign -1 and three have sign 1, giving $\mu(\sigma, \pi) = 1$.

![Figure 1. The separating trees of two permutations $\sigma$ and $\pi$](image)

**Proof of Theorem 22.** Let $\overline{\mu}(\sigma, \pi)$ denote the value of $\sum_{f \in N(\sigma, \pi)} \text{sgn}(f)$. Our goal is to prove that $\overline{\mu}(\sigma, \pi)$ is equal to $\mu(\sigma, \pi)$. We proceed by induction on $|\pi|$. For $\sigma = \pi$, we clearly have $\overline{\mu}(\sigma, \pi) = \mu(\sigma, \pi) = 1$, and if $\pi$ does not contain $\sigma$, then $\overline{\mu}(\sigma, \pi) = \mu(\sigma, \pi) = 0$.

Suppose now that $\sigma < \pi$. Since $\pi$ is separable, it is decomposable or skew-decomposable. Assume, without loss of generality, that $\pi$ is decomposable. Let $\pi_1 + \cdots + \pi_n$ be its decomposition. Since the values of $\mu(\sigma, \pi)$ are uniquely determined by the recurrences of Proposition 1 and 2, it is enough to show that $\overline{\mu}$ satisfies the same recurrences.
Figure 2. The normal embeddings of $\sigma$ in $\pi$ (see Figure [1]), together with their signs. The leaves covered by the embedding are represented by black disks, the leaves that are maximal omitted are represented by empty circles. Dotted lines represent subtrees rooted at a maximal omitted internal node. Note that the leaves of such subtrees do not contribute to the sign of the embedding.

Consider first the case when $\pi_1 = 1$, which is treated by Proposition [1]. Let $\sigma_1 + \cdots + \sigma_m$ be the decomposition of $\sigma$, let $k = \deg(\pi)$ and let $\ell = \deg(\sigma)$. This means that the leftmost $k$ leaves of $T(\pi)$ are all children of the root node, and they form a leaf run. Therefore, in any normal embedding, all the $k - 1$ leaves representing $\pi_2, \ldots, \pi_k$ are covered, because they are followers of $\pi_1$. Necessarily, any element of $\sigma$ that is embedded to one of the first $k$ elements of $\pi$ must be one of the first $\ell$ elements of $\sigma$. Consequently, if $k - 1 > \ell$, there is no normal embedding of $\sigma$ into $\pi$, and $\overline{\mu}(\sigma, \pi) = 0$.

Suppose now that $k - 1 = \ell$. Then, in any normal embedding $f \in N(\sigma, \pi)$, the element $\pi_1$ is omitted, the elements representing $\sigma_1, \ldots, \sigma_{k-1}$ are embedded on $\pi_2, \ldots, \pi_k$, and the elements of $\sigma_{>k-1}$ are embedded to the elements $\pi_{>k}$. The restriction of $f$ to $\sigma_{>k-1}$ is a normal embedding $f'$ from the set $N(\sigma_{>k-1}, \pi_{>k})$, and conversely, a normal embedding $f'$ from $N(\sigma_{>k-1}, \pi_{>k})$ can be uniquely extended into an embedding $f \in N(\sigma, \pi)$. We then have $d(f) = 1 + d(f')$, because $\pi_1$ is the only maximal omitted leaf of $f$ that is not a maximal omitted leaf of $f'$. This shows that $\overline{\mu}(\sigma, \pi) = -\overline{\mu}(\sigma_{>k-1}, \pi_{>k})$.

Assume now that $k - 1 < \ell$. Let $N^+(\sigma, \pi)$ denote the set of normal embeddings of $\sigma$ into $\pi$ that cover the element $\pi_1$, and let $N^-(\sigma, \pi)$ be the set of those that omit $\pi_1$. By the same argument as in the previous paragraph, we see that $N^+(\sigma, \pi)$ is mapped by a sign-preserving bijection to $N(\sigma_{>k}, \pi_{>k})$, and
\( N^{-}(\sigma, \pi) \) is mapped by a sign-reversing bijection to \( N(\sigma_{> k-1}, \pi_{> k}) \). Consequently, 
\[
\overline{\mu}(\sigma, \pi) = \overline{\mu}(\sigma_{> k}, \pi_{> k}) - \overline{\mu}(\sigma_{> k-1}, \pi_{> k}).
\]
These arguments show that \( \overline{\mu} \) satisfies the recurrences of Proposition \([1]\).
Assume now that \( \pi_{1} > 1 \), which corresponds to the situation of Proposition \([2]\) Let \( \pi_{1} + \cdots + \pi_{n} \) be the decomposition of \( \pi \), let \( \sigma_{1} + \cdots + \sigma_{m} \) be the decomposition of \( \sigma \), and let \( k \in [n] \) be the largest integer such that \( \pi_{1} = \cdots = \pi_{k} \). The \( n \) blocks of \( \pi \) correspond precisely to \( n \) children of the root of the tree \( T(\pi) \), and the leftmost \( k \) blocks form a non-leaf run. Therefore, each normal embedding \( f \in N(\sigma, \pi) \) must cover the leftmost child of the root, which represents \( \pi_{1} \), but it may omit some of its followers, which represent the blocks \( \pi_{2}, \ldots, \pi_{k} \). Note that the symbols of \( \sigma \) that are embedded into \( \pi_{1} \) by \( f \) must form a prefix of the form \( \sigma_{\leq i} \), for some \( i \in [m] \).
For \( f \in N(\sigma, \pi) \), let \( I(f) \in [m] \) be the largest number \( i \) such that all the symbols of \( \sigma_{\leq i} \) are embedded into \( \pi_{1} \), and let \( J(f) \in [k] \) be the largest number \( j \) such that among the leftmost \( j \) children of the root of \( T(\pi) \), only the node representing \( \pi_{1} \) is covered. Let \( N_{i,j} \) be the set \( \{ f \in N(\sigma, \pi): I(f) = i, J(f) = j \} \). Notice that an embedding \( f \in N_{i,j} \) decomposes in an obvious way into a normal embedding \( f_{1} \in N(\sigma_{\leq i}, \pi_{1}) \) and a normal embedding \( f_{2} \in N(\sigma_{> i}, \pi_{> j}) \), and that we have \( d(f) = d(f_{1}) + d(f_{2}) \), and hence \( \text{sgn}(f) = \text{sgn}(f_{1})\text{sgn}(f_{2}) \). This decomposition is a bijection between \( N_{i,j} \) and \( N(\sigma_{\leq i}, \pi_{1}) \times N(\sigma_{> i}, \pi_{> j}) \). Consequently, we have the identity
\[
\sum_{f \in N_{i,j}} \text{sgn}(f) = \sum_{f_{1} \in N(\sigma_{\leq i}, \pi_{1})} \sum_{f_{2} \in N(\sigma_{> i}, \pi_{> j})} \text{sgn}(f_{1})\text{sgn}(f_{2}) = \overline{\mu}(\sigma_{\leq i}, \pi_{1})\overline{\mu}(\sigma_{> i}, \pi_{> j}).
\]
Summing this identity for each \( i \in [m] \) and each \( j \in [k] \), we conclude that
\[
\overline{\mu}(\sigma, \pi) = \sum_{i=1}^{m} \sum_{j=1}^{k} \overline{\mu}(\sigma_{\leq i}, \pi_{1})\overline{\mu}(\sigma_{> i}, \pi_{> j}),
\]
which is the recurrence of Proposition \([2]\). Therefore, \( \overline{\mu}(\sigma, \pi) = \mu(\sigma, \pi) \). \( \square \)
Let us now state several consequences of Theorem \([22]\).

**Corollary 23.** If \( \pi \) is separable, then \( \mu(1, \pi) \in \{0, 1, -1\} \).

**Proof.** The permutation \( 1 \) can have at most one normal embedding into \( \pi \). Namely, if \( |\pi| > 1 \), then \( T(\pi) \) has at least one leaf \( \ell \) that is not a leader of its leaf run, but each of its ancestors is a leader of its non-leaf run. Such a leaf \( \ell \) must be covered by any normal embedding of any permutation into \( \pi \). \( \square \)

The next corollary confirms a (more general version of a) conjecture of Steingrímsson and Tenner \([7]\).

**Corollary 24.** If \( \pi \) and \( \sigma \) are separable permutations, then \( |\mu(\sigma, \pi)| \) is at most the number of occurrences of \( \sigma \) in \( \pi \).

**Proof.** This follows from the fact that the number of occurrences of \( \sigma \) in \( \pi \) is clearly at least the number of normal embeddings of \( \sigma \) into \( \pi \). \( \square \)

Using Theorem \([22]\) it is easy to show that for \( \pi_{n} = 214365 \cdots (2n)(2n - 1) \), we have \( \mu(12, \pi_{n}) = n - 1 \). Thus, the following result.

**Corollary 25.** The value of the Möbius function on intervals \( [\sigma, \pi] \) is unbounded, even for separable permutations \( \sigma \) and \( \pi \).
Recall that a permutation is *layered* if it is the concatenation of decreasing sequences, such that the letters in each sequence are smaller than all letters in subsequent sequences. One example is the permutation 21365487, whose layers are shown by 21–3–654–87. Sagan and Vatter \cite{Sagan-Vatter} gave a formula for the Möbius function of intervals of layered permutations, and it is easy to see that layered permutations are special cases of separable permutations. Namely, a layered permutation is separable, and its separating tree has depth 2 (except in the trivial cases of the increasing and decreasing permutations), where the children of the root are the layers of the permutation, and the grandchildren of the root are all leaves.

5. Concluding remarks, conjectures and open problems

We have shown in Corollary \ref{cor:moebius} that $\mu(\pi)$ can be computed efficiently when $\sigma$ and $\pi$ are separable. The same argument does in fact apply in a more general form: For any hereditary class $C$ of permutations that is a closure of a finite set of permutations, there is a polynomial-time algorithm to compute $\mu(\sigma, \pi)$ for a given $\sigma$ and $\pi$ in $C$. We do not know whether such an algorithm also exists for more general classes of permutations.

Bose, Buss and Lubiw \cite{Bose-Buss-Lubiw} have shown that it is NP-hard for given permutations $\pi$ and $\sigma$ to decide whether $\pi$ contains $\sigma$. In view of this, it seems unlikely that $\mu(\sigma, \pi)$ could be computed efficiently for general permutations $\sigma$ and $\pi$.

Our results imply that for a separable permutation $\pi$, the Möbius function $\mu(1, \pi)$ has absolute value at most 1. In fact, the class of separable permutations is the unique largest hereditary class with this property, since any hereditary class not contained in the class of separable permutations must contain 2413 or 3142, and $\mu(1, 2413) = \mu(1, 3142) = -3$. It is natural to consider $\mu(1, \pi)$ as a function of $\pi$, and ask whether this function is bounded on a given class of permutations. By Corollary \ref{cor:moebius} if a hereditary class $C$ is a closure of a finite set of permutations, then $\mu(1, \pi)$ is bounded on $C$. We do not know if there is another example of a permutation class on which this function is bounded.

On the other hand, we do not have a proof that $\mu(1, \pi)$ is unbounded on the set of all permutations, although numerical evidence suggests that this is the case. According to our computations, the sequence of maximum values of $|\mu(1, \pi)|$ for $\pi \in S_\infty$, starting at $n = 1$, begins 1, −1, −1, −3, 15, −27, −50, −58, 143, . . .. For these cases ($n \leq 11$), there is, up to trivial symmetries, a unique permutation for which the Möbius function attains this value. These permutations are

\[ 1, 12, 132, 2413, 24153, 351624, 2461735, 35172846, 472951836, 46819210357, 3619411721058 \]

All of the above permutations are *simple* (except for 132, but there are no simple permutations of length 3). A permutation is simple if it has no segment $a_ia_{i+1} \ldots a_{i+k}$ where $1 \leq k < n-1$ and $\{a_i, a_{i+1}, \ldots, a_{i+k}\}$ is a set of consecutive integers (see \cite{Gessel}). Thus, in some (imprecise) sense, simple permutations are the opposite of (skew) decomposable permutations (and, in particular, separable permutations). In particular, a simple permutation can neither be decomposed nor skew decomposed. We are not able to compute $\mu(1, \pi)$ for all permutations $\pi$ of length 12, but for simple permutations $\pi$ the maximum value of $\mu(1, \pi)$ is $-261$, for $\pi = 4 \ 7 \ 2 \ 10 \ 5 \ 1 \ 12 \ 8 \ 3 \ 11 \ 6 \ 9$.

In light of Corollary \ref{cor:moebius} to show that $|\mu(1, \pi)|$ is unbounded, it would suffice to show that the maximum of $|\mu(1, \pi)|$ for permutations $\pi$ of length $n$, for any $n$, is attained only by a permutation $\pi$ that does not start with 1. In that case
\(|\mu(1, 1 + \pi)| = |\mu(1, \pi)|\), so there would be a permutation \(\tau\) of length \(n + 1\) for which \(|\mu(1, \tau)| > |\mu(1, 1 + \pi)| = |\mu(1, \pi)|\).

**Question 26.** For which permutation classes \(\mathcal{C}\) is the function \(\mu(1, \pi)\) bounded on \(\mathcal{C}\)? Is \(\mu(1, \pi)\) unbounded on the set of all permutations? Can non-trivial upper or lower bounds be found for \(\max_{\pi \in \mathcal{S}_n} |\mu(1, \pi)|\), as a function of \(n\)?

We have exhibited several classes of intervals whose Möbius function is zero (and more were presented in [7]). Can the following question be answered precisely?

**Question 27.** When is \(\mu(\sigma, \pi) = 0\)?

For separable permutation \(\pi\), we have shown that \(|\mu(\sigma, \pi)|\) is at most \(\sigma(\pi)\), that is, the number of occurrences of \(\sigma\) in \(\pi\). This is not true for non-separable \(\pi\), even when \(\sigma = 1\), as shown above. However, it might be possible to bound \(|\mu(\sigma, \pi)|\) as a function of \(\sigma(\pi)\).

**Question 28.** Is there an upper bound for \(|\mu(\sigma, \pi)|\) that only depends on \(\sigma(\pi)\)?

The following conjecture has been verified for \(n \leq 10\).

**Conjecture 29.** The maximum value of the Möbius function \(\mu(\sigma, \pi)\) for separable permutations \(\sigma\) and \(\pi\), where \(\pi\) has length \(n \geq 3\), is given by

\[
\max_k \left( n - 1 - k \right).
\]

This maximum is attained by the permutation \(\pi\) that starts with its odd letters in decreasing order, followed by the even letters in decreasing order, and \(\sigma\) of the same form and length \(2 \cdot \lceil (n + 1/2) \rceil - 1\) if the length of \(\pi\) is even, \(2 \cdot (n + 1/2) - 1\) if the length of \(\pi\) is odd.

As an example, \(\mu(13542, 135798642) = 15 = (n-1-2^n)\).

Finally, we mention some questions about the topology of the order complexes of intervals in the poset \(\mathcal{P}\). (For definitions, see [6]). Given an interval \([\sigma, \pi]\), let \(\Delta(\sigma, \pi)\) be the order complex of the poset obtained from \([\sigma, \pi]\) by removing \(\sigma\) and \(\pi\).

**Question 30.**

1. For which \(\sigma\) and \(\pi\) does \(\Delta(\sigma, \pi)\) have the homotopy type of a wedge of spheres?
2. Let \(\Gamma\) be the subcomplex of \(\Delta(\sigma, \pi)\) induced by those elements \(\tau\) of \([\sigma, \pi]\) for which \(\mu(\sigma, \tau) = 0\). Is \(\Gamma\) a pure complex?
3. If \(\sigma\) occurs precisely once in \(\pi\), and \(\mu(\sigma, \pi) = \pm 1\), is \(\Delta(\sigma, \pi)\) homotopy equivalent to a sphere?
4. For which \(\sigma\) and \(\pi\) is \(\Delta(\sigma, \pi)\) shellable?

We should mention that for \(\sigma = 231\) and \(\pi = 231564\), the order complex \(\Delta(\sigma, \pi)\) is not shellable; it consists of two connected components, each of which is contractible. However, removing from \([231, 231564]\) all elements \(\tau\) with \(\mu(231, \tau) = 0\), we obtain a shellable complex, namely a four-element boolean algebra. For parts (2) and (3) in Question 30, we know no counterexamples. Since we have so far only examined intervals of low rank, our evidence is not strong.

**References**


Department of Mathematics, Howard University, Washington DC 20059, USA
E-mail address: aburstein@howard.edu

Fakultät für Mathematik, Universität Wien, Garnisongasse 3, 1090 Wien, Austria
E-mail address: jelinek@kam.mff.cuni.cz

Department of Applied Mathematics, Charles University in Prague, Malostranské nám. 25, 110 00, Prague, Czech Republic
E-mail address: eva@kam.mff.cuni.cz

Department of Computer and Information Sciences, University of Strathclyde, Glasgow G1 1XH, UK
E-mail address: einar@alum.mit.edu