
Alexander Toifl- Development Engineer at Silvaco Europe Ltd
Alexander Toifl
- Development Engineer at Silvaco Europe Ltd
About
16
Publications
924
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
56
Citations
Introduction
Current institution
Silvaco Europe Ltd
Current position
- Development Engineer
Publications
Publications (16)
We present a feature detection method for adaptive grid refinement in hierarchical grids used in process technology computer-aided design topography simulations based on the local curvature of the wafer surface. The proposed feature detection method enables high-accuracy simulations whilst significantly reducing the run-time, because the grid is on...
We present a continuum modeling approach to simulate anisotropic wet etching of single-crystal sapphire employing mixtures of sulfuric acid and phosphoric acid. Wet etching of sapphire leads to the formation of crystal facets with high Miller–Bravais indices. The resulting complex three-dimensional topographies can be exploited to optimize the patt...
We present numerical methods to enable accurate and robust level-set based simulation of anisotropic wet etching and non-planar epitaxy for semiconductor fabrication. These fabrication techniques are characterized by highly crystal orientation-dependent etch/growth rates, which lead to non-convex Hamiltonians in their description by the level-set e...
Technological control of doped regions is exceptionally important for all semiconductor devices. For the wide bandgap semiconductor silicon carbide, the activation state of dopants is determined by the postimplantation annealing step which consequently affects device operation and characteristics. We perform a detailed analysis of the effects of po...
Manufacturing integrated circuits was never a simple process. However, with scaling slowing down more significantly in the single digit nanometer regime due to skyrocketing fabrication costs the need
for comparatively cheap simulation-based predictions has further increased. However, the necessary simulation tools in electronics and specifically in...
Process technology computer-aided design (TCAD) deals with simulating semiconductor device fabrication steps, such as etching and deposition, to enable computer-based device designs. The simulation backends are based on a variety of numerical methods, e.g., particle transport, surface advection, diffusion, and stress calculation, underlining the in...
The development of novel electron devices requires a continuous support by process and device simulations in order to improve electrical properties and reduce production costs. However, an accurate description of the electrical properties of impurities in silicon carbide – a key wide bandgap semiconductor for power devices – is currently not availa...