Alexander Tang

Alexander Tang
University of Western Australia | UWA · School of Biological Sciences

PhD, B.Sc.(Hons.)

About

26
Publications
4,984
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
447
Citations

Publications

Publications (26)
Preprint
Static magnetic stimulation (SMS) is a form of non-invasive brain stimulation that can alter neural activity and induce neural plasticity that outlasts the period of stimulation. While SMS is typically delivered for short periods (e.g., 10 minutes) to alter corticospinal excitability or motor behaviours, the plasticity mechanisms that can be induce...
Preprint
Non-invasive stimulation of deep brain regions has been a major goal for neuroscience and neuromodulation in the past three decades. Transcranial magnetic stimulation (TMS), for instance, cannot target deep regions in the brain without activating the overlying tissues and has a poor spatial resolution. In this manuscript, we propose a new concept t...
Article
Full-text available
Background Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool commonly used to drive neural plasticity in the young adult and aged brain. Recent data from mouse models have shown that even at subthreshold intensities (0.12 T), rTMS can drive neuronal and glial plasticity in the motor cortex. However, the physiological mechan...
Preprint
Full-text available
Background Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool commonly used to drive neural plasticity in the young adult and aged brain. Recent data from mouse models have shown that even at subthreshold intensities (0.12 Tesla), rTMS can drive neuronal and glial plasticity in the motor cortex. However, the physiological me...
Article
Full-text available
Central nervous system myelination increases action potential conduction velocity. However, it is unclear how myelination is coordinated to ensure the temporally precise arrival of action potentials and facilitate information processing within cortical and associative circuits. Here, we show that myelin sheaths, supported by mature oligodendrocytes...
Article
Full-text available
Repetitive transcranial magnetic stimulation (rTMS) is a form of non-invasive brain stimulation frequently used to induce neuroplasticity in the brain. Even at low intensities, rTMS has been shown to modulate aspects of neuronal plasticity such as motor learning and structural reorganisation of neural tissue. However, the impact of low intensity rT...
Article
Full-text available
Although electromagnetic brain stimulation is a promising treatment in neurology and psychiatry, clinical outcomes are variable, and underlying mechanisms are ill-defined, which impedes the development of new effective stimulation protocols. Here, we show, in vivo and ex vivo, that repetitive transcranial magnetic stimulation at low-intensity (LI-r...
Preprint
Full-text available
Myelination of central nervous system axons increases action potential conduction velocity and increases the speed of information transfer. However, it is unclear whether myelination optimizes action potential conduction to achieve synchronicity and facilitate information processing within cortical and associative circuits. Here we show that myelin...
Article
Full-text available
Neuronal activity is a potent extrinsic regulator of oligodendrocyte generation and central nervous system myelination. Clinically, repetitive transcranial magnetic stimulation (rTMS) is delivered to noninvasively modulate neuronal activity; however, the ability of rTMS to facilitate adaptive myelination has not been explored. By performing cre-lox...
Article
Response inhibition, the ability to withhold a dominant and prepotent response following a change in circumstance or sensory stimuli, declines with advancing age. While non-invasive brain stimulation (NiBS) has shown promise in alleviating some cognitive and motor functions in healthy older individuals, NiBS research focusing on response inhibition...
Preprint
Full-text available
Magnetic brain stimulation is a promising treatment in neurology and psychiatry, but clinical outcomes are variable. Unfortunately, mechanisms underlying magnetic stimulation effects are ill-defined, which impedes the development of stimulation protocols appropriate for different neurological conditions. Here we show, in vivo and ex vivo, that repe...
Article
Introduction. Transcranial magnetic stimulation (TMS) is used for treating neurological disorders. Rapid pulses of magnetic field are delivered via a high-current coil situated over the scalp and induce an electric field in the brain. There has been limited fundamental scientific research on TMS and to progress it would be ideal to mimic the electr...
Article
Full-text available
Repetitive transcranial magnetic stimulation (rTMS) is commonly used to modulate cortical plasticity in clinical and non-clinical populations. Clinically, rTMS is delivered to targeted regions of the cortex at high intensities (>1 T). We have previously shown that even at low intensities, rTMS induces structural and molecular plasticity in the rode...
Article
Full-text available
Tinnitus (phantom auditory perception associated with hearing loss) can seriously affect wellbeing. Its neural substrate is unknown however it has been linked with abnormal activity in auditory pathways. Though no cure currently exists, repetitive transcranial magnetic stimulation (rTMS) has been shown to reduce tinnitus in some patients, possibly...
Article
Full-text available
Repetitive transcranial magnetic stimulation (rTMS) is primarily used in humans to change the state of corticospinal excitability. To assess the efficacy of different rTMS stimulation protocols, motor evoked potentials (MEPs) are used as a readout due to their non-invasive nature. Stimulation of the motor cortex produces a response in a targeted mu...
Article
Repetitive transcranial magnetic stimulation (rTMS) has become a popular method of modulating neural plasticity in humans. Clinically, rTMS is delivered at high intensities to modulate neuronal excitability. While the high-intensity magnetic field can be targeted to stimulate specific cortical regions, areas adjacent to the targeted area receive st...
Article
Full-text available
Rodent models of transcranial magnetic stimulation (TMS) play a crucial role in aiding the understanding of the cellular and molecular mechanisms underlying TMS induced plasticity. Rodent-specific TMS have previously been used to deliver focal stimulation at the cost of stimulus intensity (12mT). Here we describe two novel TMS coils designed to del...
Article
Since the development of transcranial magnetic stimulation (TMS) in the early 1980s, a range of repetitive TMS (rTMS) protocols are now available to modulate neuronal plasticity in clinical and non-clinical populations. However, despite the wide application of rTMS in humans, the mechanisms underlying rTMS-induced plasticity remain uncertain. Anima...
Article
Full-text available
Low intensity repetitive Transcranial Magnetic Stimulation (LI-rTMS), a non-invasive form of brain stimulation, has been shown to induce structural and functional brain plasticity, including short distance axonal sprouting. However, the potential for LI-rTMS to promote axonal regeneration following neurotrauma has not been investigated. This study...
Article
Full-text available
Non-invasive stimulation of the human cerebellum, such as by transcranial magnetic stimulation (TMS), is increasingly used to investigate cerebellar function and identify potential treatment for cerebellar dysfunction. However, the effects of TMS on cerebellar neurons remain poorly defined. We applied low-intensity repetitive TMS (LI-rTMS) to the m...

Network

Cited By

Projects

Projects (2)
Project
This project uses diverse approaches (cortical electrophysiology, metabolomics, fMRI) to elucidate the cellular and network mechanisms underlying the clinical efficacy of pulsed magnetic fields on human brain disorders.
Project
neural substrates of tinnitus and tinnitus treatments