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Abstract Chicken repeat 1 (CR1) retroposons are the

most abundant superfamily of transposable elements in the

genomes of birds, crocodilians, and turtles. However, CR1

mobilization remains poorly understood. In this article, I

document that the diverse CR1 lineages of land vertebrates

share a highly conserved hairpin structure and an octamer

microsatellite motif at their very 30 ends. Together with the

presence of these same motifs in the tails of CR1-mobilized

short interspersed elements, this suggests that the minimum

requirement for CR1 transcript recognition and retrotrans-

position is a complex [50-nt structure. Such a highly

specific recognition sequence readily explains why CR1-

dominated genomes generally contain very few retrogenes.

Conversely, the mammalian richness in retrogenes results

from CR1 extinction in their early evolution and subse-

quent establishment of L1 dominance.
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Chicken repeat 1 (CR1) long interspersed elements

(LINEs) are present in virtually all amniotes. They domi-

nate the landscape of transposable elements (TEs) in the

genomes of all major lineages except mammals (Shedlock

et al. 2007; Suh et al. 2015a) and comprise a large diversity

that existed since the days of the amniote ancestor (Suh

et al. 2015a). Notably, CR1 elements are the only TEs that

were active throughout avian evolution and have thus been

widely used as phylogenetic markers [e.g., (Baker et al.

2014; Haddrath and Baker 2012; Kaiser et al. 2007; Kriegs

et al. 2007; Liu et al. 2012; Suh et al. 2011a, b, 2012,

2015a)]. A few of these presence/absence analyses also

revealed that, contrary to earlier assumptions (Hillier et al.

2004; Kapitonov and Jurka 2003), CR1 integration leads to

target site duplication (Silva and Burch 1989; Suh et al.

2012, 2015a, b; Wicker et al. 2005) of usually 4 nt (Suh

et al. 2012) and up to 9 nt (Suh et al. 2015b). However,

despite the expectation that CR1 elements employ target

primed reverse transcription (TPRT) as is the case in other

non-long terminal repeat (non-LTR) retroelements (Luan

et al. 1993), the minimum prerequisites for CR1 transcript

recognition and TPRT initiation have not been investigated

across the diversity of CR1 from land vertebrates.

In this article, I analyzed the 30 untranslated regions

(UTRs) of 119 CR1 subfamilies from amniote and

amphibian genomes that were recently classified into seven

ancient groups with differential retention across amniotes

(Fig. 1a) (Suh et al. 2015a). Note that only CR1 elements

from these organisms, but not other vertebrates, can be

confidently aligned with each other on the nucleotide level

(Suh et al. 2015a). All amniote CR1 subfamilies exhibit an

8-nt microsatellite motif at their very 30 ends, which is

relatively conserved within each of the seven CR1 groups

(Fig. 1b). The only deviation is the avian subfamily CR1-

X3_Pass with a 5-nt microsatellite motif that appears to be

a shortened version of the 50-ATTCTRTG-30 motif of other

CR1 in birds (Fig. 1b, Table S1) (Hillier et al. 2004). The

presence of a similar octamer motif in the amphibian

outgroup suggests that an 8-nt microsatellite (50-
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NNNCTATG-30) is common to nearly all CR1 subfamilies

in land vertebrates.

Directly upstream of this microsatellite motif and a

short spacer (1–16 nt, Table S1) is a short, inverted repeat

region that was previously proposed to be a recognition

site for the cis-encoded reverse transcriptase (Haas et al.

2001; Kajikawa et al. 1997; Suh et al. 2011b). My motif

analysis of this region across all the known CR1 sub-

families of the present dataset further supports this

hypothesis. Most of the highly conserved residues belong

to inverted repeat motifs (IR1 and IR2) that span 8 and 5

nt, respectively (Fig. 1c), and are interspersed by small

insertions or deletions in less conserved parts (Table S1).

Consequently, this *41-nt region forms a stable hairpin in

structural predictions of the RNA transcript (Fig. S1) in

mfold (Zuker 2003). The degrees of conservation of both

this hairpin structure and the aforementioned microsatellite

motif across the studied diversity of CR1 lineages strongly

imply their involvement in the mobilization of CR1

LINEs.

Co-mobilized short interspersed elements (SINEs) con-

stitute an additional line of evidence for minimum

requirements of retrotransposition, given that they ‘mimic’

LINEs by having similar or LINE-derived tails (Ohshima

et al. 1996). For example, Alu SINEs are the most abundant

TE in the human genome and exhibit A-rich 30 ends that

closely resemble those of L1 LINEs (Deininger and Batzer

2002). CR1-mobilized SINEs have been intensely studied

in turtles (Sasaki et al. 2004), and their SINE tails are

nearly identical to 30 ends of CR1 (Fig. 1d). The tails

include the hairpin motifs IR1 and IR2, as well as the 8-nt

microsatellite motif (or a truncated 3-nt version thereof in

CryI) at the very 30 end (Fig. 1d, cf. Figure 1b, c). This

further suggests that the aforementioned motifs are indeed

the minimum sequence requirement for CR1 transcript

recognition and TPRT initiation.

These observations have far-reaching implications. Ret-

rogenes and retropseudogenes are remarkably scarce in birds

(e.g., 51 cases in the chicken genome) compared to[15,000

cases in eutherian mammals (Hillier et al. 2004). One of the
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Fig. 1 The 30 ends of CR1
retroposons are highly

conserved across land

vertebrates. a Simplified

phylogram of the seven ancient

amniote CR1 groups and

amphibian CR1 (Suh et al.

2015a). Maximum likelihood

bootstrap values are shown in

percent. b 8-nt microsatellite

motifs derived from each of the

CR1 groups of panel

a. c Hairpin structure with

inverted repeat motifs (IR1 and

IR2) derived from all 119 CR1

subfamilies. Forward slashes

denote alignment gaps. d CryI

and CryIIB are CR1-mobilized

SINEs from turtles (Sasaki et al.

2004), and exhibit tails with

hairpin and microsatellite

structures highly similar to

those of CR1 (cf. panels b and

c). Nucleotide residues are

numbered backward from the

reverse transcription start site.

Sequence logos of panels b and

c were generated in WebLogo

(Crooks et al. 2004) using the

data shown in Table S1, with

blank nucleotide positions

indicating poorly conserved

residues
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most striking differences between avian and mammalian

genomes is the virtual absence of L1 LINEs in birds and

instead a dominance of CR1 LINEs (Hillier et al. 2004).

Indeed, the similarity between the A-rich 30 end of L1 and

the polyadenylated 30 ends of host mRNAs frequently leads

to diversion of L1 retrotransposition and L1-mediated gen-

eration of retrogenes (Deininger and Batzer 2002; Esnault

et al. 2000). In the case of CR1, the results presented here

strongly suggest that their retrotransposition generally

requires a highly specific hairpin and octamer structure at

the transcript 30 end, thereby largely precluding the recog-

nition of host mRNAs by the enzymatic machinery of CR1.

Further details of CR1 mobilization may be unearthed in

the near future. Although initial analyses of TE landscapes

revealed only inactive CR1 subfamilies [e.g., (Hillier et al.

2004; Wicker et al. 2005)], there is now a growing body of

evidence for the recent activity of CR1 elements in some

birds, crocodilians, and turtles (St. John andQuinn 2008; Suh

et al. 2012, 2015a). The most striking example is the gharial

genome with*2 Mb of identical CR1 copies [mostly CR1-

7B_Gav, (Suh et al. 2015a)], which implies the possibility

for resurrection of an intact CR1 master gene. The foresee-

able study of CR1 activity in vitro promises to reveal the

commonalities and differences between CR1 and L1 retro-

transposition, and thereby their differential potential of

creating retrogenes in avian and mammalian genomes.
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