
Alexander Schlaefer- Hamburg University of Technology
Alexander Schlaefer
- Hamburg University of Technology
About
344
Publications
28,932
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,351
Citations
Introduction
Publications
Publications (344)
Purpose: Comprehensive legal medicine documentation includes both an internal but also an external examination of the corpse. Typically, this documentation is conducted manually during conventional autopsy. A systematic digital documentation would be desirable, especially for the external examination of wounds, which is becoming more relevant for l...
Objective
Automatic segmentation and detection of vestibular schwannoma (VS) in MRI by deep learning is an upcoming topic. However, deep learning faces generalization challenges due to tumor variability even though measurements and segmentation of VS are essential for growth monitoring and treatment planning. Therefore, we introduce a novel model c...
Tissue stiffness is related to soft tissue pathologies and can be assessed through palpation or via clinical imaging systems, e.g., ultrasound or magnetic resonance imaging. Typically, the image based approaches are not suitable during interventions, particularly for minimally invasive surgery. To this end, we present a miniaturized fiber scanning...
Training helps to maintain and improve sufficient muscle function, body control, and body coordination. These are important to reduce the risk of fracture incidents caused by falls, especially for the elderly or people recovering from injury. Virtual reality training can offer a cost-effective and individualized training experience. We present an a...
Soft tissue elasticity is directly related to different stages of diseases and can be used for tissue identification during minimally invasive procedures. By palpating a tissue with a robot in a minimally invasive fashion force-displacement curves can be acquired. However, force-displacement curves strongly depend on the tool geometry which is ofte...
A deformation of the hard palate can occur in spinal muscular atrophy and leads to problems with feeding and swallowing in early childhood. An objective analysis of the palatal changes is therefore desirable for early treatment initiation. In this study, we investigate a deep learning approach to automatically detect deformation in endoscopic image...
During maxillofacial surgery, the precise placement of surgical tools is crucial for accurate implant placement. Particularly if multiple implants are needed, e.g., after cancerous bone removal, visual landmarks might not be obtainable. To this end, we propose a vision-based tracking approach with deep learning. Our markerless tracking approach is...
Purpose
Commonly employed in polyp segmentation, single-image UNet architectures lack the temporal insight clinicians gain from video data in diagnosing polyps. To mirror clinical practices more faithfully, our proposed solution, PolypNextLSTM , leverages video-based deep learning, harnessing temporal information for superior segmentation performan...
Unsupervised Anomaly Detection (UAD) methods rely on healthy data distributions to identify anomalies as outliers. In brain MRI, a common approach is reconstruction-based UAD, where generative models reconstruct healthy brain MRIs, and anomalies are detected as deviations between input and reconstruction. However, this method is sensitive to imperf...
Purpose
Clinical needle insertion into tissue, commonly assisted by 2D ultrasound imaging for real-time navigation, faces the challenge of precise needle and probe alignment to reduce out-of-plane movement. Recent studies investigate 3D ultrasound imaging together with deep learning to overcome this problem, focusing on acquiring high-resolution im...
BACKGROUND
Metastatic dissemination occurring via the cerebrospinal fluid contributes to the poor prognosis in many medulloblastoma patients. It has high prognostic relevance, and its accurate detection is critical for adequate therapy stratification. However, cytological examination is a difficult, time-consuming task and frequently unreliable. We...
Soft tissue elasticity is directly related to different stages of diseases and can be used for tissue identification during minimally invasive procedures. By palpating a tissue with a robot in a minimally invasive fashion force-displacement curves can be acquired. However, force-displacement curves strongly depend on the tool geometry which is ofte...
Purpose
Paranasal anomalies, frequently identified in routine radiological screenings, exhibit diverse morphological characteristics. Due to the diversity of anomalies, supervised learning methods require large labelled dataset exhibiting diverse anomaly morphology. Self-supervised learning (SSL) can be used to learn representations from unlabelled...
Pulmonary nodules may be an early manifestation of lung cancer, the leading cause of cancer-related deaths among both men and women. Numerous studies have established that deep learning methods can yield high-performance levels in the detection of lung nodules in chest X-rays. However, the lack of gold-standard public datasets slows down the progre...
Objective
Computer aided diagnostics (CAD) systems can automate the differentiation of maxillary sinus (MS) with and without opacification, simplifying the typically laborious process and aiding in clinical insight discovery within large cohorts.
Methods
This study uses Hamburg City Health Study (HCHS) a large, prospective, long‐term, population‐b...
Background
Ideally, inverse planning for HDR brachytherapy (BT) should include the pose of the needles which define the trajectory of the source. This would be particularly interesting when considering the additional freedom and accuracy in needle pose which robotic needle placement enables. However, needle insertion typically leads to tissue defor...
Compression-based optical coherence elastography (OCE) enables characterization of soft tissue by estimating elastic properties. However, previous probe designs have been limited to surface applications. We propose a bevel tip OCE needle probe for percutaneous insertions, where biomechanical characterization of deep tissue could enable precise need...
Computed tomography (CT) is a widely used examination technique that usually requires a compromise between image quality and radiation exposure. Reconstruction algorithms aim to reduce radiation exposure while maintaining comparable image quality. Recently, unsupervised deep learning methods have been proposed for this purpose. In this study, a pro...
Training helps to maintain and improve sufficient muscle function, body control, and body coordination. These are important to reduce the risk of fracture incidents caused by falls, especially for the elderly or people recovering from injury. Virtual reality training can offer a cost-effective and individualized training experience. We present an a...
Automatic analysis of colonoscopy images has been an active field of research motivated by the importance of early detection of precancerous polyps. However, detecting polyps during the live examination can be challenging due to various factors such as variation of skills and experience among the endoscopists, lack of attentiveness, and fatigue lea...
Purpose:
Paranasal anomalies are commonly discovered during routine radiological screenings and can present with a wide range of morphological features. This diversity can make it difficult for convolutional neural networks (CNNs) to accurately classify these anomalies, especially when working with limited datasets. Additionally, current approache...
Lung cancer is a serious disease responsible for millions of deaths every year. Early stages of lung cancer can be manifested in pulmonary lung nodules. To assist radiologists in reducing the number of overseen nodules and to increase the detection accuracy in general, automatic detection algorithms have been proposed. Particularly, deep learning m...
The diagnostic value of biopsies is highly dependent on the placement of needles. Robotic trajectory guidance has been shown to improve needle positioning, but feedback for real-time navigation is limited. Haptic display of needle tip forces can provide rich feedback for needle navigation by enabling localization of tissue structures along the inse...
Unlabelled:
Objective: Optical coherence elastography (OCE) allows for high resolution analysis of elastic tissue properties. However, due to the limited penetration of light into tissue, miniature probes are required to reach structures inside the body, e.g., vessel walls. Shear wave elastography relates shear wave velocities to quantitative esti...
Needle positioning is essential for various medical applications such as epidural anaesthesia. Physicians rely on their instincts while navigating the needle in epidural spaces. Thereby, identifying the tissue structures may be helpful to the physician as they can provide additional feedback in the needle insertion process. To this end, we propose...
Background
Radiosurgery is a well‐established treatment for various intracranial tumors. In contrast to other established radiosurgery platforms, the new ZAP‐X® allows for self‐shielding gyroscopic radiosurgery. Here, treatment beams with variable beam‐on times are targeted towards a small number of isocenters. The existing planning framework relie...
Background
Periodic and slow target motion is tracked by synchronous motion of the treatment beams in robotic stereotactic body radiation therapy (SBRT). However, spontaneous, non‐periodic displacement or drift of the target may completely change the treatment geometry. Simple motion compensation is not sufficient to guarantee the best possible tre...
Paranasal anomalies are commonly discovered during routine radiological screenings and can present with a wide range of morphological features. This diversity can make it difficult for convolutional neural networks (CNNs) to accurately classify these anomalies, especially when working with limited datasets. Additionally, current approaches to paran...
Motion compensation in radiation therapy is a challenging scenario that requires estimating and forecasting motion of tissue structures to deliver the target dose. Ultrasound offers direct imaging of tissue in real-time and is considered for image guidance in radiation therapy. Recently, fast volumetric ultrasound has gained traction, but motion an...
In the age of big data availability, data-driven techniques have been proposed recently to compute the time evolution of spatiotemporal
dynamics. Depending on the required a priori knowledge about the underlying processes, a spectrum of black-box
end-to-end learning approaches, physics-informed neural networks, and data-informed discrepancy modelin...
The use of supervised deep learning techniques to detect pathologies in brain MRI scans can be challenging due to the diversity of brain anatomy and the need for annotated data sets. An alternative approach is to use unsupervised anomaly detection, which only requires sample-level labels of healthy brains to create a reference representation. This...
Bone fragility is a profound complication of type 1 diabetes mellitus (T1DM), increasing patient morbidity. Within the mineralized bone matrix, osteocytes build a mechanosensitive network that orchestrates bone remodeling; thus, osteocyte viability is crucial for maintaining bone homeostasis. In human cortical bone specimens from individuals with T...
Robotic assistance in minimally invasive surgery offers numerous advantages for both patient and surgeon. However, the lack of force feedback in robotic surgery is a major limitation, and accurately estimating tool-tissue interaction forces remains a challenge. Image-based force estimation offers a promising solution without the need to integrate s...
Deep learning (DL) algorithms can be used to automate paranasal anomaly detection from Magnetic Resonance Imaging (MRI). However, previous works relied on supervised learning techniques to distinguish between normal and abnormal samples. This method limits the type of anomalies that can be classified as the anomalies need to be present in the train...
Using deep learning techniques, anomalies in the paranasal sinus system can be detected automatically in MRI images and can be further analyzed and classified based on their volume, shape and other parameters like local contrast. However due to limited training data, traditional supervised learning methods often fail to generalize. Existing deep le...
Using deep learning techniques, anomalies in the paranasal sinus system can be detected automatically in MRI images and can be further analyzed and classified based on their volume, shape and other parameters like local contrast. However due to limited training data, traditional supervised learning methods often fail to generalize. Existing deep le...
Artificial Intelligence‐based Computer Aided Diagnostics (AI‐CADx) have been proposed to help physicians in reducing misdetection of polyps in colonoscopy examination. The heterogeneity of a polyp's appearance makes detection challenging for physicians and AI‐CADx. Towards building better AI‐CADx, we propose an attention module called Squeeze and M...
Radiographs are a versatile diagnostic tool for the detection and assessment of pathologies, for treatment planning or for navigation and localization purposes in clinical interventions. However, their interpretation and assessment by radiologists can be tedious and error-prone. Thus, a wide variety of deep learning methods have been proposed to su...
Tissue elasticity contains important information for physicians in diagnosis and treatment, and, e.g., can help in tumor detection because tumors are stiffer than healthy tissue. Ultrasound shear wave elastography imaging (US-SWEI) can be used to estimate tissue stiffness by measuring the velocity of induced shear waves. Commonly, a linear US probe...
Radiographs are a versatile diagnostic tool for the detection and assessment of pathologies, for treatment planning or for navigation and localization purposes in clinical interventions. However, their interpretation and assessment by radiologists can be tedious and error-prone. Thus, a wide variety of deep learning methods have been proposed to su...
The task of medical image classification is increasingly supported by algorithms. Deep learning methods like convolutional neural networks (CNNs) show superior performance in medical image analysis but need a high-quality training dataset with a large number of annotated samples. Particularly in the medical domain, the availability of such datasets...
Medical interventions are often guided by optical tracking systems and optical coherence tomography has shown promising results for markerless tracking of soft tissue. The high spatial resolution and subsurface information contain valuable information about the underlying tissue structure and tracking of certain target structures is in principle po...
The increasing workloads for radiologists in clinical practice lead to the need for an automatic support tool for anomaly detection in brain MRI-scans. While supervised learning methods can detect and localize lesions in brain MRI-scans, the need for large, balanced data sets with pixel-level annotations limits their use. In contrast, unsupervised...
Narrow Band Imaging (NBI) is increasingly being used in laryngology because it increases the visibility of mucosal vascular patterns which serve as important visual markers to detect premalignant, dysplastic and malignant lesions. To this end, deep learning methods have been used to automatically detect and classify the lesions from NBI endoscopic...
Objectives
Motion compensation is an interesting approach to improve treatments of moving structures. For example, target motion can substantially affect dose delivery in radiation therapy, where methods to detect and mitigate the motion are widely used. Recent advances in fast, volumetric ultrasound have rekindled the interest in ultrasound for mo...
Collaborative robotic needle insertions have the potential to improve placement accuracy and safety, e.g., during epidural anesthesia. Epidural anesthesia provides effective regional pain management but can lead to serious complications, such as nerve injury or cerebrospinal fluid leakage. Robotic assistance might prevent inadvertent puncture by pr...
Objectives:
Fast volumetric ultrasound presents an interesting modality for continuous and real-time intra-fractional target tracking in radiation therapy of lesions in the abdomen. However, the placement of the ultrasound probe close to the target structures leads to blocking some beam directions.
Methods:
To handle the combinatorial complexity...
Ultrasound shear wave elasticity imaging is a valuable tool for quantifying the elastic properties of tissue. Typically, the shear wave velocity is derived and mapped to an elasticity value, which neglects information such as the shape of the propagating shear wave or push sequence characteristics. We present 3D spatio-temporal CNNs for fast local...
The detection of lesions in magnetic resonance imaging (MRI)-scans of human brains remains challenging, time-consuming and error-prone. Recently, unsupervised anomaly detection (UAD) methods have shown promising results for this task. These methods rely on training data sets that solely contain healthy samples. Compared to supervised approaches, th...
Ultrasound shear wave elasticity imaging is a valuable tool for quantifying the elastic properties of tissue. Typically, the shear wave velocity is derived and mapped to an elasticity value, which neglects information such as the shape of the propagating shear wave or push sequence characteristics. We present 3D spatio-temporal CNNs for fast local...
Medical cyber-physical systems are safety-critical, and as such, require ongoing verification of their correct behavior, as system failure during run time may cause severe (or even fatal) personal damage. However, creating a verifiable model often conflicts with other application requirements, most notably regarding data precision and model accurac...
Purpose of Review
This review provides an overview of robotic systems in radiotherapy and radiosurgery, with a focus on medical devices and recently proposed research systems. We summarize the key motivation for using robotic systems and illustrate the potential advantages.
Recent Findings
Robotic systems have been proposed for a variety of tasks...
We present Posterior Temperature Optimized Bayesian Inverse Models (POTOBIM), an unsupervised Bayesian approach to inverse problems in medical imaging using mean-field variational inference with a fully tempered posterior. Bayesian methods exhibit useful properties for approaching inverse tasks, such as tomographic reconstruction or image denoising...
We present Posterior Temperature Optimized Bayesian Inverse Models (POTOBIM), an unsupervised Bayesian approach to inverse problems in medical imaging using mean-field variational inference with a fully tempered posterior. Bayesian methods exhibit useful properties for approaching inverse tasks, such as tomographic reconstruction or image denoising...
Lesion detection in brain Magnetic Resonance Images (MRIs) remains a challenging task. MRIs are typically read and interpreted by domain experts, which is a tedious and time-consuming process. Recently, unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results to provide a quick, initial assessment. So far, th...
In pathology and legal medicine, the histopathological and microbiological analysis of tissue samples from infected deceased is a valuable information for developing treatment strategies during a pandemic such as COVID-19. However, a conventional autopsy carries the risk of disease transmission and may be rejected by relatives. We propose minimally...
In pathology and legal medicine, the histopathological and microbiological analysis of tissue samples from infected deceased is a valuable information for developing treatment strategies during a pandemic such as COVID-19. However, a conventional autopsy carries the risk of disease transmission and may be rejected by relatives. We propose minimally...
Bayesian methods feature useful properties for solving inverse problems, such as tomographic reconstruction. The prior distribution introduces regularization, which helps solving the ill-posed problem and reduces overfitting. In practice, this often results in a suboptimal posterior temperature and the full potential of the Bayesian approach is not...
Currently there are no fast and accurate screening methods available for head and neck cancer, the eighth most common tumor entity. For this study we used hyperspectral imaging (HSI), an imaging technique for quantitative and objective surface analysis, combined with deep learning methods for automated tissue classification. As part of a prospectiv...
Since the mechanical properties of gelatin are similar to those of soft biological tissues, gelatin is a commonly used surrogate for real tissues, for example in safety engineering or medical engineering. Additional advantages of gelatin over real tissues are lower costs and better reproducibility of experiments. Therefore, constitutive models of g...
In this paper, we propose Dual Parallel Reverse Attention Edge Network (DPRA-EdgeNet), an architecture that jointly learns to segment an object and its edge. Specifically, the model uses two cascaded partial decoders to form two initial estimates of the object segmentation map and its corresponding edge map. This is followed by a series of object d...
Autonomous systems are often applied in uncertain environments, which require prospective action planning and retrospective data evaluation for future planning to ensure safe operation. Formal approaches may support these systems with safety guarantees, but are usually expensive and do not scale well with growing system complexity. In this paper, w...
Colorectal Cancer(CRC) poses a great risk to public health. It is the third most common cause of cancer in the US. Development of colorectal polyps is one of the earliest signs of cancer. Early detection and resection of polyps can greatly increase survival rate to 90%. Manual inspection can cause misdetections because polyps vary in color, shape,...
Objective
Automated quantification of infratentorial multiple sclerosis lesions on magnetic resonance imaging is clinically relevant but challenging. To overcome some of these problems, we propose a fully automated lesion segmentation algorithm using 3D convolutional neural networks (CNNs).Methods
The CNN was trained on a FLAIR image alone or on FL...
Understanding the underlying pathology in different tissues and organs is crucial when fighting pandemics like COVID-19. During conventional autopsy, large tissue sample sets of multiple organs can be collected from cadavers. However, direct contact with an infectious corpse is associated with the risk of disease transmission and relatives of the d...
Needles are key tools to realize minimally invasive interventions. Physicians commonly rely on subjectively perceived insertion forces at the distal end of the needle when advancing the needle tip to the desired target. However, detecting tissue transitions at the distal end of the needle is difficult since the sensed forces are dominated by shaft...
The distinction between malignant and benign tumors is essential to the treatment of cancer. The tissue's elasticity can be used as an indicator for the required tissue characterization. Optical coherence elastography (OCE) probes have been proposed for needle insertions but have so far lacked the necessary load sensing capabilities. We present a n...
Purpose. Brain Magnetic Resonance Images (MRIs) are essential for the diagnosis of neurological diseases. Recently, deep learning methods for unsupervised anomaly detection (UAD) have been proposed for the analysis of brain MRI. These methods rely on healthy brain MRIs and eliminate the requirement of pixel-wise annotated data compared to supervise...
Medulloblastoma (MB) is a primary central nervous system tumor and the most common malignant brain cancer among children. Neuropathologists perform microscopic inspection of histopathological tissue slides under a microscope to assess the severity of the tumor. This is a time-consuming task and often infused with observer variability. Recently, pre...