About
107
Publications
46,342
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,209
Citations
Citations since 2017
Introduction
I study the Earth system, with a focus on past and future climate change. My work includes (1) Modeling the interactions between ice sheets and climate; (2) Abrupt climate change; (3) Atlantic Meridional Ocean Circulation (AMOC); (4) Heat waves and weather extremes. I also work with engineers to study the impact of climate change on power generation systems.
Additional affiliations
Education
February 2008 - February 2011
September 2000 - May 2005
Publications
Publications (107)
Rate-induced tipping (R-tipping) describes the fact that, for multistable dynamic systems, an abrupt transition can take place not only because of the forcing magnitude, but also because of the forcing rate. In the present work, we demonstrate through the case study of a piecewise-linear oscillator (PLO), that increasing the rate of forcing can mak...
In the last decades, great effort has been made to reconstruct the Laurentide Ice Sheet (LIS) during the Last Glacial Maximum (LGM, ca. 21,000 years before present, 21 kyr ago). Uncertainties underlying its modelling have led to large differences in fundamental features such as its maximum elevation, extension and total volume. However, the uncerta...
Rate-induced tipping (R-tipping) describes the fact that, for multistable dynamic systems, an abrupt transition can take place not only because of the forcing magnitude, but also because of the forcing rate. In the present work, we demonstrate through the case study of a piecewise-linear oscillator (PLO), that increasing the rate of forcing can mak...
The newly developed fast Earth system model CLIMBER-X is presented. The climate component of CLIMBER-X consists of a 2.5-D semi-empirical statistical–dynamical atmosphere model, a 3-D frictional–geostrophic ocean model, a dynamic–thermodynamic sea ice model and a land surface model. All the model components are discretized on a regular lat–long gri...
The temperature distribution in ice sheets is worthy of attention given the strong relation with ice dynamics and the intrinsic information about past surface temperature variations. Here we refine the classical analysis of free oscillations in an ice sheet by analytically solving the thermal evolution of an ice column. In so doing, we provide anal...
The newly developed fast Earth system model CLIMBER-X is presented. The climate component of CLIMBER-X consists of a 2.5D semi-empirical statistical-dynamical atmosphere model, a 3D frictional-geostrophic ocean model, a dynamic-thermodynamic sea ice model and a land surface model. All model components are discretized on a regular lat-lon grid with...
In the last decade, the number of ice-sheet models has increased substantially, in line with the growth of the glaciological community. These models use solvers based on different approximations of ice dynamics. In particular, several depth-integrated dynamics solvers have emerged as fast solvers capable of resolving the relevant physics of ice she...
Over the last decade, the world warmed by 0.25 °C, in-line with the roughly linear trend since the 1970s. Here we present updated analyses showing that this seemingly small shift has led to the emergence of heat extremes that would be virtually impossible without anthropogenic global warming. Also, record rainfall extremes have continued to increas...
Radar reflections from the interior of the Greenland ice sheet contain a comprehensive archive of past accumulation rates, ice dynamics, and basal melting. Combining these data with dynamic ice sheet models may greatly aid model calibration, improve past and future sea level estimates, and enable insights into past ice sheet dynamics that neither m...
In the last decade, the number of ice-sheet models has increased substantially, in line with the growth of the glaciological community. These models use solvers based on different approximations of ice dynamics. In particular, several depth-integrated dynamics approximations have emerged as fast solvers capable of resolving the relevant physics of...
Little is known about the distribution of ice in the Antarctic Ice Sheet (AIS) during the Last Glacial Maximum (LGM). Whereas marine and terrestrial geological data indicate that the grounded ice advanced to a position close to the continental-shelf break, the total ice volume is unclear. Glacial boundary conditions are potentially important source...
Radar reflections from the interior of the Greenland ice sheet contain a comprehensive archive of past accumulation rates and ice dynamics. Combining this data with dynamic ice sheet models may greatly aid model calibration, improve past and future sea level estimates, and enable insights into past ice sheet dynamics that neither models nor data co...
Thermoelectric plants consume large amounts of water for electricity generation, mainly for cooling purposes. The performance and cooling capacity of power plants is thus strongly dependent on rising ambient temperatures. This study investigates the effect of rising ambient temperatures on power-plant performance and water use. A natural gas combin...
We describe the physics and features of the ice-sheet model Yelmo, an open-source project intended for collaborative development. Yelmo is a thermomechanical model, solving for the coupled velocity and temperature solutions of an ice sheet simultaneously. The ice dynamics are currently treated via a “hybrid” approach combining the shallow-ice and s...
Abstract. Little is known about the distribution of ice in the Antarctic ice sheet (AIS) during the Last Glacial Maximum (LGM). Whereas marine and terrestrial geological data indicate that the grounded ice advanced to a position close to the continental-shelf break, the total ice volume is unclear. Glacial boundary conditions are potentially import...
We describe the physics and features of the ice-sheet model Yelmo, an open-source project intended for collaborative development. Yelmo is a thermomechanical model, solving for the coupled velocity and temperature solutions of an ice sheet simultaneously. The ice dynamics are currently treated via a "hybrid" approach combining the shallow-ice and s...
Imposing freshwater flux (FWF) variations in the North Atlantic is an effective method to cause reorganizations of the Atlantic Meridional Overturning Circulation (AMOC) in climate models. Through this approach, models have been able to reproduce the abrupt climate changes of the last glacial period. Such exercises have been useful for gaining insi...
The Northeast Greenland Ice Stream (NEGIS) has been suffering a significant ice mass loss during the last decades. This is partly due to increasing oceanic temperatures in the subpolar North Atlantic, which enhance submarine basal melting and mass discharge. This demonstrates the high sensitivity of this region to oceanic changes. In addition, a re...
The last glacial period (LGP; ca. 110–10 kyr BP) was marked by the existence of two types of abrupt climatic changes, Dansgaard–Oeschger (DO) and Heinrich (H) events. Although the mechanisms behind these are not fully understood, it is generally accepted that the presence of ice sheets played an important role in their occurrence. While an importan...
Temperature reconstructions from Greenland ice-sheet (GrIS) ice
cores indicate the occurrence of more than 20 abrupt warmings during the
last glacial period (LGP) known as Dansgaard-Oeschger (D-O) events. Although
their ultimate cause is still debated, evidence from both proxy data and
modelling studies robustly links these to reorganisations of th...
The Antarctic Ice Sheet (AIS) is the largest ice sheet on Earth and hence a
major potential contributor to future global sea-level rise. A wealth of
studies suggest that increasing oceanic temperatures could cause a collapse
of its marine-based western sector, the West Antarctic Ice Sheet, through the
mechanism of marine ice-sheet instability, lead...
The Northeast Greenland Ice Stream (NEGIS) area has been suffering a significant ice mass loss during the last decades. This is partly due to increasing oceanic temperatures in the subpolar North Atlantic, which enhance submarine basal melting and mass discharge. This demonstrates the high sensitivity of this region to oceanic changes. Alongside, a...
Even if anthropogenic warming were constrained to less than 2 °C above pre-industrial, the Greenland and Antarctic ice sheets will continue to lose mass this century, with rates similar to those observed over the past decade. However, nonlinear responses cannot be excluded, which may lead to larger rates of mass loss. Furthermore, large uncertainti...
Temperature reconstructions from Greenland ice sheet (GrIS) ice cores indicate the occurrence of more than twenty abrupt warmings during the Last Glacial Period (LGP) known as Dansgaard-Oeschger (D-O) events. Although their ultimate cause is still debated, evidence from both proxy data and modelling studies robustly links these to reorganisations o...
The last glacial period (LGP; ca.110–10kaBP) was marked by the existence of two types of abrupt climatic changes, Dansgaard-Oeschger (DO) and Heinrich (H) events. Although the mechanisms behind these are not fully understood, it is generally accepted that the presence of ice sheets played an important role in their occurrence. While an important ef...
The Antarctic Ice Sheet (AIS) is the largest ice sheet on Earth and hence a major potential contributor to future global sea-level rise. A wealth of studies suggest that increasing oceanic temperatures could cause a collapse of its marine-based western sector, the West Antarctic Ice Sheet, through the mechanism of marine ice-sheet instability, lead...
Observations suggest that during the last decades the Greenland Ice Sheet
(GrIS) has experienced a gradually accelerating mass loss, in part due to the
observed speed-up of several of Greenland's marine-terminating glaciers.
Recent studies directly attribute this to warming North Atlantic
temperatures, which have triggered melting of the outlet gla...
The Atlantic meridional overturning circulation (AMOC)-a system of ocean currents in the North Atlantic-has a major impact on climate, yet its evolution during the industrial era is poorly known owing to a lack of direct current measurements. Here we provide evidence for a weakening of the AMOC by about 3 ± 1 sverdrups (around 15 per cent) since th...
Purpose of Review: This paper reviews the recent literature on numerical modelling of the dynamics of the Greenland icesheet with the goal of providing an overview of advancements and to highlight important directions of future research. In particular, the review is focused on large-scale modelling ofthe ice sheet, including future projections, mod...
The last glacial period (LGP; ca. 110–10 ka BP) was marked by the existence of two types of abrupt climatic changes, Dansgaard-Oeschger (D/O) and Heinrich (H) events. Although the mechanisms behind these are not fully understood, it is generally accepted that the presence of ice sheets played an important role in their occurrence. While an importan...
Observations suggest that during the last decades the Greenland Ice Sheet (GrIS) has experienced a gradually accelerating mass loss, in part due to the observed acceleration of several of Greenland’s marine-terminating glaciers. Recent studies directly attribute this to increasing North Atlantic temperatures, which have triggered melting of the GrI...
This paper synthesizes what is known about the physical and biophysical impacts of climate change and their consequences for societies and development under different levels of global warming in Latin America and the Caribbean (LAC). Projections show increasing mean temperatures by up to 4.5 C compared to pre-industrial by the end of this century a...
This paper synthesizes what is known about the physical and biophysical impacts of climate change and their consequences for societies and development under different levels of global warming in Central Asia.
Projections show mean temperatures increasing by up to 6.5 °C compared to pre-industrial by the end of this century across the region. Associ...
The repercussions of climate change will be felt in various ways throughout both natural and human systems in Sub-Saharan Africa. Climate change projections for this region point to a warming trend, particularly in the inland subtropics; frequent occurrence of extreme heat events; increasing aridity; and changes in rainfall---with a particularly pr...
This paper reviews the current
knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5–4 °C above pre-industrial values in the twenty-first century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013b)
. Many of the climate...
The Middle East and North Africa (MENA) region emerges as one of the hot spots for worsening extreme heat, drought and aridity conditions under climate change. A synthesis of peer-reviewed literature from 2010 to date and own modeling work on biophysical impacts of climate change on selected sectors shows that the region is highly affected by prese...
Offline forcing methods for ice-sheet models often make use of an index
approach in which temperature anomalies relative to the present are calculated by
combining a simulated glacial–interglacial climatic anomaly field,
interpolated through an index derived from the Greenland ice-core temperature
reconstruction, with present-day climatologies. An...
Palaeo data suggest that Greenland must have been largely ice free during Marine Isotope Stage 11 (MIS-11). However, regional summer insolation anomalies were modest during this time compared to MIS-5e, when the Greenland ice sheet likely lost less volume. Thus it remains unclear how such conditions led to an almost complete disappearance of the ic...
We present SEMIC, a Surface Energy and
Mass balance model of Intermediate Complexity for
snow- and ice-covered surfaces such as the Greenland ice sheet. SEMIC is fast
enough for glacial cycle applications, making it a suitable replacement for
simpler methods such as the positive degree day (PDD) method often used in ice
sheet modelling. Our model e...
Observations suggest that during the last decades the Greenland Ice Sheet (GrIS) has lost a huge amount of ice, significantly contributing to current sea level rise. A portion of this intensified ice discharge is connected to the observed acceleration of Greenland's marine-terminating glaciers, which recent studies directly attribute to increasing...
Proxy data reveal that in the last glacial-interglacial cycles the Antarctic Ice Sheet (AIS) has experienced changes of its ice volume contributing to past sea-level variations. The AIS is nowadays the largest ice sheet in the world and potentially the largest contributor to a future long term sea-level rise. Because it suffers no significant ablat...
We present SEMIC, a Surface Energy and Mass balance model of Intermediate Complexity for snow and ice covered surfaces such as the Greenland ice sheet. SEMIC is fast enough for glacial cycle applications, making it a suitable replacement for simpler methods such as the positive degree day method often used in ice sheet modelling. Our model explicit...
Renewable energy sources can offer isolated communities the opportunity to regulate their energy use in a manner that best suits their needs. This paper presents the simulation and thermodynamic evaluation of a stand-alone hybrid power plant exclusively using renewable energy sources and storage technologies for the energy autonomy of a Mediterrane...
Significance
This work contributes to the scientific effort focused on developing an accurate assessment of the impact that global warming will have on the Greenland ice sheet. By focusing on the last interglacial, a period warmer than today, we learn about the sensitivity of the ice sheet to climate change. We combine data and model simulations to...
Significance
Anthropogenic sea level rise poses challenges to coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we present an approach that combines information about the equilibrium sea level response to global warming and last century's observed contribution from the indivi...
This work presents the simulation and evaluation of a renewable hybrid power plant for off-grid fully autonomous operation on an intermediate-sized island in the Aegean Sea. A stand-alone energy system including storage facilities is simulated, optimized and analyzed relying on real-case weather and demand data of a relatively large remote communit...
Dansgaard-Oeschger (D/O) events were recurrent glacial abrupt climatic transitions between cold and warm conditions over Greenland with an approximate characteristic time of a thousand years. The uncertainties among the available sea level reconstructions hinder our understanding of the interactions between climate and global ice volume. In additio...
The ambitious vision of off-grid renewable energy autonomy of remote regions has yet to come to fruition. The development of comprehensive energy production systems would be needed to achieve such a goal. This study consists of the simulation and exergetic evaluation of a novel hybrid power plant for stand-alone operation aiming to provide electric...
Possible changes in Atlantic meridional overturning circulation (AMOC) provide a key source of uncertainty regarding future climate change. Maps of temperature trends over the twentieth century show a conspicuous region of cooling in the northern Atlantic. Here we present multiple lines of evidence suggesting that this cooling may be due to a reduc...
Abstract The Pliocene–Pleistocene Transition (PPT), from around 3.2 to 2.5 million years ago (Ma), represented a major shift in the climate system and was characterized by a gradual cooling trend and the appearance of large continental ice sheets over northern Eurasia and North America. Paleo evidence indicates that the PPT was accompanied and poss...
The NetCDF (Network Common Data Form) library has become an indispensable tool for data and model output management in geoscience. However for simple tasks, particularly in Fortran, the complexity of native NetCDF functionality can be cumbersome. The NCIO (NetCDF Input/Output) module has been designed as an interface to the NetCDF library with simp...
The NetCDF (Network Common Data Form) library has become an indispensable tool for data and model output
management in geoscience. However for simple tasks, particularly in Fortran,
the complexity of native NetCDF functionality can be cumbersome. The NCIO
(NetCDF Input/Output) module has been designed as an interface to the NetCDF
library with simp...
Possible changes in Atlantic meridional overturning circulation (AMOC) provide a key source of uncertainty regarding future climate change. Maps of temperature trends over the twentieth century show a conspicuous region of cooling in the northern Atlantic. Here we present multiple lines of evidence suggesting that this cooling may be due to a reduc...
In this paper, we propose a new sub-grid scale parameterization for the ice
discharge into the ocean through outlet glaciers and inspect the role of
different observational and palaeo constraints for the choice of an optimal
set of model parameters. This parameterization was introduced into the
polythermal ice-sheet model SICOPOLIS, which is couple...
The growth and retreat of continental ice sheets in the past has largely been
a response to changing climatic forcing. Since ablation is the principal
component of mass loss for land-based ice sheets, the calculation of surface
melt is an important aspect of paleo ice sheet modeling. Changes in
insolation are often not accounted for in calculations...