Alexander Naka

Alexander Naka
University of California, Berkeley | UCB · Helen Wills Neuroscience Institute

About

12
Publications
1,412
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
297
Citations

Publications

Publications (12)
Article
Full-text available
Anatomical and physiological experiments have outlined a blueprint for the feedforward flow of activity in cortical circuits: signals are thought to propagate primarily from the middle cortical layer (layer 4, L4) up to L2/3 and down to the major cortical output layer (L5). Pharmacological manipulations, however, have contested this model and have...
Article
Background: Investigation of neural circuit functioning often requires statistical interpretation of events in subthreshold electrophysiological recordings. This problem is non-trivial because recordings may have moderate levels of structured noise and events may have distinct kinetics. In addition, novel experimental designs that combine optical...
Article
Full-text available
Inhibitory neurons play a fundamental role in cortical computation and behavior. Recent technological advances, such as two photon imaging, targeted in vivo recording, and molecular profiling, have improved our understanding of the function and diversity of cortical interneurons, but for technical reasons most work has been directed towards inhibit...
Article
Full-text available
The complex connectivity between neurons of the neocortex is governed by rules that give structure to cortical circuits. Most prominently, neurons in different cortical layers form specific axonal projections to various other layers. Patterns of interlaminar connectivity are largely conserved across different neocortical areas, an observation that...
Article
Full-text available
The neocortex is functionally organized into layers. Layer four receives the densest bottom up sensory inputs, while layers 2/3 and 5 receive top down inputs that may convey predictive information. A subset of cortical somatostatin (SST) neurons, the Martinotti cells, gate top down input by inhibiting the apical dendrites of pyramidal cells in laye...
Article
Full-text available
The descending microcircuit from layer 2/3 (L2/3) to layer 5 (L5) is one of the strongest excitatory pathways in the cortex, presumably forming a core component of its feedforward hierarchy. To date, however, no experiments have selectively tested the impact of L2/3 activity on L5 during active sensation. We used optogenetic, cell-type-specific man...
Article
Understanding how cortical activity generates sensory perceptions requires a detailed dissection of the function of cortical layers. Despite our relatively extensive knowledge of their anatomy and wiring, we have a limited grasp of what each layer contributes to cortical computation. We need to develop a theory of cortical function that is rooted s...
Preprint
Full-text available
The connectivity patterns of excitatory and inhibitory microcircuits are fundamental to computation in the neocortex. Highly specific excitatory projections form a stereotyped microcircuit linking the six cortical layers, but it is unclear whether inhibitory circuits are structured according to a similar layer-based logic or instead wire up non-sel...
Article
Full-text available
The 28th annual Barrels meeting was held prior to the Society for Neuroscience meeting in October 2015 at the Northwestern University School of Law in Chicago, Illinois. The meeting brought together researchers focused on the rodent sensorimotor system. The meeting focused on modern techniques to decipher cortical circuits, social interactions amon...

Network

Cited By