
Alexander Mendiburu- PhD
- Professor (Associate) at University of the Basque Country
Alexander Mendiburu
- PhD
- Professor (Associate) at University of the Basque Country
About
150
Publications
15,997
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,463
Citations
Introduction
Current institution
Publications
Publications (150)
Neural Combinatorial Optimization (NCO) is an emerging domain where deep learning techniques are employed to address combinatorial optimization problems as a standalone solver. Despite their potential, existing NCO methods often suffer from inefficient search space exploration, frequently leading to local optima entrapment or redundant exploration...
Neural Combinatorial Optimization (NCO) is an emerging domain where deep learning techniques are employed to address combinatorial optimization problems as a standalone solver. Despite their potential, existing NCO methods often suffer from inefficient search space exploration, frequently leading to local optima entrapment or redundant exploration...
Neural Combinatorial Optimization has emerged as a new paradigm in the optimization area. It attempts to solve optimization problems by means of neural networks and reinforcement learning. In the last few years, due to their novelty and presumably good performance, many research papers have been published introducing new neural architectures for a...
Recent advances in graph neural network (GNN) architectures and increased computation power have revolutionized the field of combinatorial optimization (CO). Among the proposed models for CO problems, neural improvement (NI) models have been particularly successful. However, the existing NI approaches are limited in their applicability to problems...
In some machine learning applications the availability of labeled instances for supervised classification is limited while unlabeled instances are abundant. Semi-supervised learning algorithms deal with these scenarios and attempt to exploit the information contained in the unlabeled examples. In this paper, we address the question of how to evolve...
With neural architecture search (NAS) methods gaining ground on manually designed deep neural networks—even more rapidly as model sophistication escalates—the research trend is shifting toward arranging different and often increasingly complex NAS spaces. In this conjuncture, delineating algorithms which can efficiently explore these search spaces...
In recent decades, Estimation of Distribution Algorithms (EDAs) have gained much popularity in the evolutionary computation community for solving optimization problems. Characterized by the use of probabilistic models to represent the solutions and the interactions between the variables of the problem, EDAs can be applied to either discrete, contin...
Deep Learning has been very successful in automating the feature engineering process, widely applied for various tasks, such as speech recognition, classification, segmentation of images, time-series forecasting, among others. Deep neural networks (DNNs) incorporate the power to learn patterns through data, following an end-to-end fashion and expan...
In recent years, Deep Learning based methods have been a revolution in the field of combinatorial optimization. They learn to approximate solutions and constitute an interesting choice when dealing with repetitive problems drawn from similar distributions. Most effort has been devoted to investigating neural constructive methods, while the works th...
As in other cybersecurity areas, machine learning (ML) techniques have emerged as a promising solution to detect Android malware. In this sense, many proposals employing a variety of algorithms and feature sets have been presented to date, often reporting impresive detection performances. However, the lack of reproducibility and the absence of a st...
Neural Combinatorial Optimization attempts to learn good heuristics for solving a set of problems using Neural Network models and Reinforcement Learning. Recently, its good performance has encouraged many practitioners to develop neural architectures for a wide variety of combinatorial problems. However, the incorporation of such algorithms in the...
Sampling methods are a critical step for model-based evolutionary algorithms, their goal being the generation of new and promising individuals based on the information provided by the model. Adversarial perturbations have been proposed as a way to create samples that deceive neural networks. In this paper we introduce the idea of creating adversari...
In many Natural Language Processing problems the combination of machine learning and optimization techniques is essential. One of these problems is the estimation of the human effort needed to improve a text that has been translated using a machine translation method. Recent advances in this area have shown that Gaussian Processes can be effective...
Choosing the best kernel is crucial in many Machine Learning applications. Gaussian Processes are a state-of-the-art technique for regression and classification that heavily relies on a kernel function. However, in the Gaussian Processes literature, kernels have usually been either ad hoc designed, selected from a predefined set, or searched for in...
With neural architecture search methods gaining ground on manually designed deep neural networks -even more rapidly as model sophistication escalates-, the research trend shifts towards arranging different and often increasingly complex neural architecture search spaces. In this conjuncture, delineating algorithms which can efficiently explore thes...
The performance of support vector machines in nonlinearly separable classification problems strongly relies on the kernel function. Toward an automatic machine learning approach for this technique, many research outputs have been produced dealing with the challenge of automatic learning of good-performing kernels for support vector machines. Howeve...
Neuroevolutionary algorithms, automatic searches of neural network structures by means of evolutionary techniques, are computationally costly procedures. In spite of this, due to the great performance provided by the architectures which are found, these methods are widely applied. The final outcome of neuroevolutionary processes is the best structu...
A U-Net is a convolutional neural network mainly used for image segmentation domains such as medical image analysis. As other deep neural networks, the U-Net architecture influences the efficiency and accuracy of the network. We propose the use of a grammar-based evolutionary algorithm for the automatic design of deep neural networks for image segm...
Multi-task learning, as it is understood nowadays, consists of using one single model to carry out several similar tasks. From classifying hand-written characters of different alphabets to figuring out how to play several Atari games using reinforcement learning, multi-task models have been able to widen their performance range across different tas...
The generative adversarial network (GAN) is a good example of a strong-performing, neural network-based generative model, even though it does have some drawbacks of its own. Mode collapsing and the difficulty in finding the optimal network structure are two of the most concerning issues. In this paper, we address these two issues at the same time b...
The identification of network attacks which target information and communication systems has been a focus of the research community for years. Network intrusion detection is a complex problem which presents a diverse number of challenges. Many attacks currently remain undetected, while newer ones emerge due to the proliferation of connected devices...
The neural network research field is still producing novel and improved models which continuously outperform their predecessors. However, a large portion of the best-performing architectures are still fully hand-engineered by experts. Recently, methods that automatize the search for optimal structures have started to reach the level of state-of-the...
The identification of cyberattacks which target information and communication systems has been a focus of the research community for years. Network intrusion detection is a complex problem which presents a diverse number of challenges. Many attacks currently remain undetected, while newer ones emerge due to the proliferation of connected devices an...
In many Natural Language Processing problems the combination of machine learning and optimization techniques is essential. One of these problems is estimating the effort required to improve, under direct human supervision, a text that has been translated using a machine translation method. Recent developments in this area have shown that Gaussian P...
The optimization of massively multi-modal functions is a challenging task, particularly for problems where the search space can lead the optimization process to local optima. While evolutionary algorithms have been extensively investigated for these optimization problems, Bayesian Optimization algorithms have not been explored to the same extent. I...
Bayesian Optimization has been widely used along with Gaussian Processes for solving expensive-to-evaluate black-box optimization problems. Overall, this approach has shown good results, and particularly for parameter tuning of machine learning algorithms. Nonetheless, Bayesian Optimization has to be also configured to achieve the best possible per...
The aim of this paper is to introduce the concept of intersection between combinatorial optimisation problems. We take into account that most algorithms, in their machinery, do not consider the exact objective function values of the solutions, but only a comparison between them. In this sense, if the solutions of an instance of a combinatorial opti...
Denborazko serieen datu meatzaritza arloko problema ohikoenetako bat, denborazko serieen gainbegiratutako sailkapena da. Problema honen helburua, klaseetan banatuta dauden serie multzo batetik abiatuz, sailkatu gabeko beste serie batzuen klasea aurresango duen eredu ahalik eta zehatzena eraikitzea da. Problema klasiko honen hedapen gisa, kasu batzu...
Multi-task learning, as it is understood nowadays, consists of using one single model to carry out several similar tasks. From classifying hand-written characters of different alphabets to figuring out how to play several Atari games using reinforcement learning, multi-task models have been able to widen their performance range across different tas...
Multi-start procedures were originally conceived as a way to exploit a local or neighborhood search procedure, by simply applying it from multiple random initial solutions. Modern multi-start methods usually incorporate a powerful form of diversification in the generation of solutions to help overcome local optimality. Different metaheuristics, suc...
Permutation problems are combinatorial optimization problems whose solutions are naturally codified as permutations. Due to their complexity, motivated principally by the factorial cardinality of the search space of solutions, they have been a recurrent topic for the artificial intelligence and operations research community. Recently, among the vas...
Given a particular instance of a combinatorial optimization problem, the knowledge about the attraction basin sizes can help to analyze the difficulty encountered by local search algorithms while solving it. As calculating these sizes exhaustively is computationally intractable, we focus on methods for their estimation. The accuracy of some of thes...
Estimation of distribution algorithms have already demonstrated their utility when solving a broad range of combinatorial problems. However, there is still room for methodological improvements when approaching constrained type problems. The great majority of works in the literature implement external repairing or penalty schemes, or use ad-hoc samp...
In machine learning, generative models are used to create data samples that mimic the characteristics of the training data. Generative adversarial networks (GANs) are neural-network based generator models that have shown their capacity to produce realistic samples in different domains. In this paper we propose a neuro-evolutionary approach for evol...
In the past, evolutionary algorithms (EAs) that use probabilistic modeling of the best solutions incorporated latent or hidden variables to the models as a more accurate way to represent the search distributions. Recently, a number of neural-network models that compute approximations of posterior (latent variable) distributions have been introduced...
Solving combinatorial optimization problems efficiently requires the development of algorithms that consider the specific properties of the problems. In this sense, local search algorithms are designed over a neighborhood structure that partially accounts for these properties. Considering a neighborhood, the space is usually interpreted as a natura...
Konputazio ebolutiboan, algoritmoek optimizazio-problemen gainean duten errendimendua ebaluatzeko ohikoa izaten da problema horien hainbat instantzia erabiltzea. Batzuetan, problema errealen instantziak eskuragarri daude, eta beraz, esperimentaziorako instantzien multzoa hortik osatzen da. Tamalez, orokorrean, ez da hori gertatzen. Instantziak esku...
In the last decade, many works in combinatorial optimisation have shown that, due to the advances in multi-objective optimisation, the algorithms from this field could be used for solving single-objective problems as well. In this sense, a number of papers have proposed multi-objectivising single-objective problems in order to use multiobjective al...
Automated Machine Learning encompasses a set of meta-algorithms intended to design and apply machine learning techniques (e.g., model selection, hyperparameter tuning, model assessment, etc.). TPOT, a software for optimizing machine learning pipelines based on genetic programming (GP), is a novel example of this kind of applications. Recently we ha...
The problem of early classification of time series appears naturally in contexts where the data, of temporal nature, are collected over time, and early class predictions are interesting or even required. The objective is to classify the incoming sequence as soon as possible, while maintaining suitable levels of accuracy in the predictions. Thus, we...
Missing data has a ubiquitous presence in real-life applications of machine learning techniques. Imputation methods are algorithms conceived for restoring missing values in the data, based on other entries in the database. The choice of the imputation method has an influence on the performance of the machine learning technique, e.g., it influences...
Estimation of distribution algorithms (EDAs) have become a reliable alternative to solve a broad range of single and multi-objective optimization problems. Recently, distance-based exponential models, such as Mallows Model (MM) and Generalized Mallows Model (GMM), have demonstrated their validity in the context of EDAs to deal with permutation-base...
The multiobjective unconstrained binary quadratic programming (mUBQP) is a combinatorial optimization problem which is able to represent several multiobjective optimization problems (MOPs). The problem can be characterized by the number of variables, the number of objectives and the objective correlation strength. Multiobjective evolutionary algori...
Model-based optimization using probabilistic modeling of the search space is one of the areas where research on evolutionary algorithms (EAs) has considerably advanced in recent years. The population-based incremental algorithm (PBIL) is one of the first algorithms of its kind and it has been extensively applied to many optimization problems. In th...
The goal of early classification of time series is to predict the class value of a sequence early in time, when its full length is not yet available. This problem arises naturally in many contexts where the data is collected over time and the label predictions have to be made as soon as possible. In this work, a method based on probabilistic classi...
The Boltzmann distribution plays a key role in the field of optimization as it directly connects this field with that of probability. Basically, given a function to optimize, the Boltzmann distribution associated to this function assigns higher probability to the candidate solutions with better quality. Therefore, an efficient sampling of the Boltz...
The performance of local search algorithms is influenced by the properties that the neighborhood imposes on the search space. Among these properties, the number of local optima has been traditionally considered as a complexity measure of the instance, and different methods for its estimation have been developed. The accuracy of these estimators dep...
The definition of a distance measure between time series is crucial for many time series data
mining tasks, such as clustering and classification. For this reason, a vast portfolio of time series
distance measures has been published in the past few years. In this paper, the
TSdist package is presented, a complete tool which provides a unified frame...
This paper proposes a new method for the design and analysis of multi-objective unconstrained binary quadratic programming (mUBQP) instances, commonly used for testing discrete multi-objective evolutionary algorithms (MOEAs). These instances are usually generated considering the sparsity of the matrices and the correlation between objectives but ra...
Kernel density estimation (KDE) is a popular technique used to estimate the probability density function of a random variable. KDE is considered a fundamental data smoothing algorithm, and it is a common building block in many scientific applications. In a previous work we presented S-KDE, an efficient algorithmic approach to compute KDE that outpe...
NM-landscapes have been recently introduced as a class of tunable rugged
models. They are a subset of the general interaction models where all the
interactions are of order less or equal $M$. The Boltzmann distribution has
been extensively applied in single-objective evolutionary algorithms to
implement selection and study the theoretical propertie...
Peer-to-Peer systems have been introduced as an alternative to the traditional client-server scheme. Distributed Hash Tables, a type of structured Peer-to-Peer system, have been designed for massive storage purposes. In this work we model the behavior of a DHT based system, Cassandra, with focus on its fault tolerance capabilities, and more specifi...
Evolutionary algorithms based on modeling the statistical dependencies
(interactions) between the variables have been proposed to solve a wide range
of complex problems. These algorithms learn and sample probabilistic graphical
models able to encode and exploit the regularities of the problem. This paper
investigates the effect of using probabilist...
In the last decade, many works in combinatorial optimisation have shown that, due to the advances in multi-objective optimisation, the algorithms in this field could be used for solving single-objective problems. In this sense, a number of papers have proposed multi-objectivising single-objective problems in order to apply multi-objectivisation sch...
In a High-Throughput Computing (HTC) system, system failures and churning pose an important performance limitation. The time used by tasks running in a node that suddenly fails (or abandons the system) constitutes a waste of resources. These aborted tasks are usually reinserted into the system for automatic re-execution, causing additional overhead...
In this paper we propose an extension of the NM-landscape to model multi-objective problems (MOPs). We illustrate the link between the introduced model and previous landscapes used to study MOPs. Empirical results are presented for a variety of configurations of the multi-objective NM-landscapes.
Recently, distance-based exponential probability models, such as Mallows and Generalized Mallows, have demonstrated their validity in the context of estimation of distribution algorithms (EDAs) for solving permutation problems. However, despite their successful performance, these models are unimodal, and therefore, they are not flexible enough to a...
Early diagnosis of psychiatric conditions can be enhanced by taking into account eye movement behavior. However, the implementation of prediction algorithms which are able to assist physicians in the diagnostic is a difficult task. In this paper we propose, for the first time, an automatic approach for classification of multiple psychiatric conditi...
Estimation of distribution algorithms (EDAs) are a successful example of how to use machine learning techniques for designing robust and efficient heuristic search algorithms. Understanding the relationship between EDAs and the space of optimization problems is a fundamental issue for the successful application of this type of algorithms. A step fo...
Kernel density estimation (KDE) is a statistical technique used to estimate the probability density function of a sample set with unknown density function. It is considered a fundamental data-smoothing problem for use with large datasets, and is widely applied in areas such as climatology and biometry. Due to the large volumes of data that these pr...
The Mallows (MM) and the Generalized Mallows (GMM) probability models have demonstrated their validity in the framework of Estimation of distribution algorithms (EDAs) for solving permutation-based combinatorial optimisation problems. Recent works, however, have suggested that the performance of these algorithms strongly relies on the distance used...
The Linear Ordering Problem is a popular combinatorial optimisation problem which has been extensively addressed in the literature. However, in spite of its popularity, little is known about the characteristics of this problem. This paper studies a procedure to extract static information from an instance of the problem, and proposes a method to inc...
We propose an extension to multiple dimensions of the univariate index of agreement between Probability Density Functions (PDFs) used in climate studies. We also provide a set of high-performance programs targeted both to single and multi-core processors. They compute multivariate PDFs by means of kernels, the optimal bandwidth using smoothed boots...
In this paper, we propose a tunable generator of instances of permutation-based combinatorial optimization problems. Our approach is based on a probabilistic model for permutations, called the generalized Mallows model. The generator depends on a set of parameters that permits the control of the properties of the output instances. Specifically, in...
In the past few years, clustering has become a popular task associated with time series. The choice of a suitable distance measure is crucial to the clustering process and, given the vast number of distance measures for time series available in the literature and their diverse characteristics, this selection is not straightforward. With the objecti...
Multi-start procedures were originally conceived as a way to exploit a local or neighborhood search procedure, by simply applying it from multiple random initial solutions. Modern multi-start methods usually incorporate a powerful form of diversification in the generation of solutions to help overcome local optimality. Different metaheuristics, suc...
Message passing algorithms (MPAs) have been traditionally used as an inference method in probabilistic graphical models. Some MPA variants have recently been introduced in the field of estimation of distribution algorithms (EDAs) as a way to improve the efficiency of these algorithms. Multiple developments on MPAs point to an increasing potential o...
Selection plays an important role in estimation of distribution algorithms. It determines the solutions that will be modeled to represent the promising areas of the search space. There is a strong relationship between the strength of selection and the type and number of dependencies that are captured by the models. In this paper we propose to use d...
Due to the increase in vehicle transit and congestion in road networks, providing information about the state of the traffic to commuters has become a critical issue for Advanced Traveller Information Systems. These systems should assist users in making pre-trip and en-route decisions and, for this purpose, delivering travel time information is ver...
Recently, probability models on rankings have been proposed in the field of estimation of distribution algorithms in order to solve permutation-based combinatorial optimisation problems. Particularly, distance-based ranking models, such as Mallows and Generalized Mallows under the Kendall's-τ distance, have demonstrated their validity when solving...
A fundamental question in the field of approximation algorithms, for a given problem instance, is the selection of the best (or a suitable) algorithm with regard to some performance criteria. A practical strategy for facing this problem is the application of machine learning techniques. However, limited support has been given in the literature to t...
The high performance computing landscape is shifting from collections of homogeneous nodes towards heterogeneous systems, in which nodes consist of a combination of traditional out-of-order execution cores and accelerator devices. Accelerators, built around GPUs, many-core chips, FPGAs or DSPs, are used to offload compute-intensive tasks. The adven...
Sampling methods are a fundamental component of estimation of distribution algorithms (EDAs). In this paper we propose new methods for generating solutions in EDAs based on Markov networks. These methods are based on the combination of message passing algorithms with decimation techniques for computing the maximum a posteriori solution of a probabi...
In many optimization domains the solution of the problem can be made more efficient by the construction of a surrogate fitness model. Estimation of distribution algorithms (EDAs) are a class of evolutionary algorithms particularly suitable for the conception of model-based surrogate techniques. Since EDAs generate probabilistic models, it is natura...
Estimation of distribution algorithms (EDAs) are optimization methods that construct at each step a probabilistic graphical model (PGM) of the best evaluated solutions. The model serves as a concise representation of the regularities shared by the good solutions and can serve to unveil structural characteristics of the problem domain. In this paper...
While estimation of distribution algorithms (EDAs) based on Markov networks usually incorporate efficient methods to learn undirected probabilistic graphical models (PGMs) from data, the methods they use for sampling the PGMs are computationally costly. In addition, methods for generating solutions in Markov network based EDAs frequently discard in...
We investigate the behavior of message passing algorithms (MPAs) on approximate probabilistic graphical models (PGMs) learned in the context of optimization. We use the framework of estimation of distribution algorithms (EDAs), a class of optimization algorithms that learn in each iteration a PGM and sample new solutions from it. The impact that in...