
EPJ manuscript No.
(will be inserted by the editor)

A survey on LSTM memristive neural network
architectures and applications

Kamilya Smagulova1 and Alex Pappachen James2,a

Nazarbayev University

Abstract The recurrent neural networks (RNN) found to be an effec-
tive tool for approximating dynamic systems dealing with time and
order dependent data such as video, audio and others. Long short-term
memory (LSTM) is a recurrent neural network with a state memory
and multilayer cell structure. Hardware acceleration of LSTM using
memristor circuit is an emerging topic of study. In this work, we look
at history and reasons why LSTM neural network has been developed.
We provide a tutorial survey on the existing LSTM methods and high-
light the recent developments in memristive LSTM architectures.

1 Introduction

The volume, veracity and velocity of data from edge devices in Internet of things
framework puts the need for near-edge smarter memories and information processing.
One of the efficient tools for real-time contextual information is a recurrent neural
network (RNN). The idea of using neural networks for data processing is not new but
is increasingly becoming a reality with rapid device scaling and emerging technologies
such as in-memory computing and neuromorphic chips.

Unlike feedforward neural networks, RNN has feedback connections between nodes
and layers that can process input sequences of arbitrary length. However, training the
simplistic RNN can be challenging task. The algorithms used for weight update in
RNN are mainly gradient based and this lead to either vanishing or exploding gradient
problems which is proved to overcome with the development of ’Long short-term
memory’ (LSTM). LSTM is a special type of RNN that possesses an internal memory
and multiplicative gates. Variety of LSTM cell configurations have been described
since the first LSTM introduction in 1997 [7].

To the date, more than 1000 works dedicated to Long Short-term Memory Re-
current Neural Networks and their variants are published. Around 900 of them were
published after 2015. The increase of interest to LSTM might have been caused by a
new approach in explaining of LSTM functionality [11] and its effectiveness [8]. The
LSTM contributed to the development of well-known tools as Google Translate, Siri,
Cortana, Google voice assistant, Alexa. The motivation of this work is to give an
overview of LSTM architectures and its applications.

a e-mail: apj@ieee.org



2 Will be inserted by the editor

2 LSTM cell architecture

2.1 An original LSTM: No Forget Gate (NFG)

The original paper presenting standard LSTM cell concept was published in 1997
[7]. A simple RNN cell (Figure 1a) was extended by adding a memory block which
is controlled by input and output multiplicative gates. Fig.1b demonstrates LSTM
architecture of the j-th cell cj .The heart of a memory block is a self-connected linear
unit sc also called ’constant error carousel’ (CEC). CEC protects LSTM from vanish-
ing and exploding gradient problems of traditional RNNs. An input gate and output
gates consist of corresponding weight matrices and activation functions. The input
gate with weighted input netin and output yin is capable of blocking irrelevant data
from entering the cell. Similarly, the ouput gate with weighted input netout and yout

shapes the output of the cell yc.

a) b) c)

Figure 1. a) An original LSTM unit acrhitecture: a memory cell and two gates; b) LSTM
cell with forget gate; c) modern representation of LSTM with forget gate

Overall, it can be concluded that LSTM cell consist of one input layer, one output
layer and one self-connected hidden layer. The hidden unit may contain ’conventional’
units that can be fed into subsequent LSTM cells. The mathematical description of
LSTM output of the j-th cell at time t is:

ycj (t) = youtj (t)h(scj (t)) (1)

where scj(t) is an internal state:

scj(t) = scj(t−1) + yinj (t)g(netcj (t)) (2)

In equation (1) a differentiable function h scales sc and in equation (2) function g
squashes weighted input of the cell netcj (t). The output values of input and output
gates are:

youtj (t) = foutj (netoutj ) (3)

yinj (t) = finj (netinj ) (4)

and net inputs of a cell:

netoutj (t) =
∑
u

woutjuy
u(t− 1) (5)



Will be inserted by the editor 3

netinj
(t) =

∑
u

winjuy
u(t− 1) (6)

netcj (t) =
∑
u

wcjuyu(t− 1) (7)

In equations (5 - 7), indices u represent any units, including conventional ones.

2.2 LSTM with forget gate

Nevertheless, a standard LSTM cell also met some constraints due to a linear nature
of sc. It was identified that its constant growth may cause saturation of the function h
and convert into ordinary unit. Therefore an additional forget gate layer was included
[4]. A new gate allows unneeded information to be erased and forgotten. The figure
1b shows a new cell architecture. The behaviour of LSTM cell with forget gate is
similar to standard LSTM with the exception of sc as it includes an impact of yϕ :

scj(t) = yϕj (t)scj(t−1) + yinj (t)g(netcj (t)) (8)

where yϕ is an output of forget gate:

yϕj (t) = fϕj (netϕj ) (9)

Over the last twenty years, a variety of different LSTM configurations were pro-
posed. Moreover, other notations for cell description were adopted as well [15], [10].
Majority of recent papers use enumeration listed in the Table 1. In addition, in late
works gates are included to the cell. LSTM architecture of frequent occurrence is
demonstrated in the Figure 1c. For the sake of consistency, we will stick to in the
subsequent sections.

Based on the Table 1, the feedforward behaviour of the most commonly used
configuration can be described by equations (10)-(15). The cell input xt at time t
concatenates with output of a cell ht−1 at previous time step t − 1. The resulting
vector goes through input node and forget, input and output gates:

gt = C̃t = tanh(W (g)xt + U (g)ht−1 + b(g)) (10)

ft = σ(W (f)xt + U (f)ht−1 + b(f)) (11)

it = σ(W (i)xt + U (i)ht−1 + b(i)) (12)

ot = σ(W (o)xt + U (o)ht−1 + b(o)) (13)

Then, forget gate decides whether to keep cell data Ct−1 from a previous time
step or block it. The current cell memory state and output of the cell are defined by:

Ct = gt
⊙

it + ft
⊙

Ct−1 (14)

ht = ot
⊙

tanh(Ct). (15)

where a symbol
⊙

denotes a pointwise or Hadamard multiplication.
Weight increment during backpropagation can be found from the equation below:

Wnew = W old − λ · δW old, (16)



4 Will be inserted by the editor

Table 1. LSTM cell notations: original and modern

Parameter
(at time t)

Initial notation Common notation

Net input of a cell netcj -
Net input of an input gate netinj -

Net input of an output gate netoutj -
Net input of a forget gate netϕj -

Input of a cell x
Output of a cell ycj h

Input gate yin it
Input node gin gt / C̃t

Output gate yout ot
Forget gate yϕ ft
Cell state/

internal memory
sc(t) Ct

Activation function -
sigmoid (0,1)

fin,fout,fϕ σ

Centered logistic
sigmoid function

(-2,2)
g -

Centered sigmoid
(-1,1)

h -

Hyperbolic tangent - tanh

Hidden layer weight matrix
w∗

U (∗)

Input weight matrix W (∗)

where λ is a Stochastic Gradient Descent (SGD) coefficient and deltas δW =∑T
t=1, δgateSt · xt, δU =

∑T
t=1 δgateSt+1 · ht , and δb =

∑T
t=1 δgateSt+1.

For the sake of simplicity following notations were used:

gateSt =

gtitft
ot

 , W =


W (g)

W (i)

W (f)

W (o)

 , U =


U (g)

U (i)

U (f)

U (o)

 , b =


b(g)

b(i)

b(f)

b(o)


Deltas of gateSt are to be found using following equations [?]:

δht = ∆t +∆ht (17)

δCt = δht
⊙

ot
⊙

(1 − tanh2(Ct)) + δCt+1

⊙
ft+1 (18)

δgt = δCt

⊙
it
⊙

(1 − gt
2) (19)

δit = δCt

⊙
gt
⊙

(1 − it) (20)

δft = δCt

⊙
Ct−1

⊙
ft

⊙
(1 − ft) (21)

δot = δht
⊙

tanh(Ct)
⊙

ot
⊙

(1 − ot) (22)

δxt = WT · δgateSt (23)



Will be inserted by the editor 5

∆h−1 = UT · δgateSt (24)

2.3 Other LSTM variants

Table 2. LSTM cell configurations: ConvLSTM, GRU, Phased LSTM.

LSTM variant Description
Peephole LSTM
LSTM with peephole connections proved to be ef-
ficient for the tasks that require precise timing. It
is also called a ’Vanilla’ LSTM [5], [6].
it = σ(W (i) · xt + U (i) · ht−1 + V (i) · Ct−1 + b(i))
ft = σ(W (f) · xt +U (f) · ht−1 +V (f) · Ct−1 + b(f))
gt = σ(W (g) · xg + U (g) · ht−1 + b(g))
Ct = gt

⊙
it + ft

⊙
Ct−1

ot = σ(W (o) · xt + U (o) · ht−1 + V (o) · Ct + b(o))
ht = ot

⊙
tanh(Ct)

ConvLSTM
The input of ConvLSTM is 3D data.
ft = σ(W (f) ∗ χt+U

(f) ∗ Ht−1+V (f) · Ct−1+b(f))
gt = tanh(W (g) ∗ χt + U (g) ∗ Ht−1 + b(g))
it = σ(W (i) ∗ χt +U (i) ∗ Ht−1 + V (i) · Ct−1 + b(i))
ot = σ(W (o) ∗ χt+U (o) ∗ Ht−1+V (o) · Ct−1+b(o))

GRU
GRU is a simplified LSTM cell.
zt = σ(W (z)xt + U (z)ht−1 + b(z))
rt = σ(W (r)xt + U (r)ht−1 + b(r))

h̃t = tanh(W (h̃)xt + U (h̃)(ht−1

⊙
rt + bh̃))

ht = (1− zt)
⊙
ht−1 + zt

⊙
h̃t

Phased LSTM
at time tj :
C̃j = fj

⊙
Cj−1+ij

⊙
σ(W (c)xj+U (c)hj−1+b(c))

Cj = kj
⊙
C̃j−1 + (1− kj

⊙
Cj−1

h̃j = oj
⊙
σ(C̃j)

hj = kj
⊙
h̃j + (1− kj)

⊙
hj−1



6 Will be inserted by the editor

Apart from variants in Table 2, other types of LSTM also include following config-
urations: No Input Gate (NIG),No Output Gate (NOG),No Input Activation Func-
tion (NIAF),No Output Activation Function (NOAF),Coupled Input and Forget Gate
(CIFG)

2.4 LSTM models and applications

2.4.1 LSTM applications

LSTM neural networks can be used to implement various tasks such as prediction,
pattern classification, different types of recognition, analysis and even sequence gener-
ation. Due to capability to process sequential data, LSTM is an efficient tool in many
different fields including statistics, linguistics,medicine, transportation,computer sci-
ence and others.

Figure 2. Number of publications on LSTM during 1997-2019 (accessed on February,2019).

.

Figure 3. LSTM Applications dur-
ing 1997-2019 (accessed on Febru-
ary,2019).

Since 1997 more than 1000 works were pre-
sented at conferences and journals (Fig.2). Sur-
face analysis of the Mendeley Web Catalog has
shown that more than one third of LSTM works
are on recognition. Almost half of publications
are on classification and prediction problems.
One fifth of works aimed sequence generation
and other problems (Fig.3).

2.4.2 LSTM models

In a neural network, LSTM cells can have mul-
tiple directions and dimensions. Most commonly
used networks are unidirectional LSTM. In BiL-
STM two LSTM cells share common input and



Will be inserted by the editor 7

output. Having two direction allows to learn different features from input data. Stack-
ing multiple LSTM cells results in a hierarchical LSTM. A stacked LSTM , as a par-
ticular type of hierarchical LSTM, allows storing more information. Another type is
a Tree-LSTM. In a tree-structured LSTM, a single cell can reflect information from
parents and child cells. This feature resembles human speech. Unidirectional, bidirec-
tional and tree-LSTM are shown in the Figure 4. Table 3 demonstrates other models
of LSTM connection and corresponding possible tasks.

a) b) c)

Figure 4. a) Unidirectional LSTM; b) BiLSTM; and c) Tree-structured LSTM

Table 3. LSTM models

Model Schematic Description
One-to-One One input and one output model is

suitable for classification tasks. The
networks can be unrolled for several
timesteps

One-to-Many This model allows to convert a single
input to sequences.

Many-to-One Prediction; Classification.

Many-to-
Many

Sequence-to-Sequence generation
(video, text, music); Speech Recogni-
tion; Machine translation; Video-to-
Text; Image-to-Text;

3 LSTM hardware accelerators

The high cost in computation leads to research on hardware accelerators for LSTM
implementation.



8 Will be inserted by the editor

3.1 Memristor-based LSTM

With advances in technology and development of memristive devices new architec-
tures for LSTM implementation are being proposed. The core of idea of such config-
urations is utilization of memristor crossbar arrays to perform vector-matrix multi-
plication. Each memristor’s conductance Gij in a crossbar is programmed to retain
LSTM weight values wij . When, input voltages Vi are applied to the rows of a cross-
bar, according to Kirchoff’s Law, the resulting current values Ij of a crossbar columns
give a dot product of wij and Vi : Ij =

∑∞
i=1Gij · Vi .

3.1.1 Design of analog LSTM circuit

Figure 5. Design of LSTM circuit by [13]: a memristor crossbar array circuit, activation
function circuit and pointwise multiplier circuit

Based on above, in [13] authors proposed a conceptual idea of analog CMOS-memristor
circuit for LSTM architectures which is represented in the Fig. 5. Particularly, the
whole LSTM circuit is comprised of several circuits to perform matrix-vector mul-
tiplication (MVM), Hadamard (pointwise) multiplication and replicate hyperbolic
tangent and sigmoid functions behaviour. In this circuit, a single weight value is set
by a conductance difference of two memristors, e.g. wi−1,1 = Gi−1,1−Gi−1,2. This is
done to achieve wider range of resulting conductance of different polarity. Activation
layers were composed of CMOS-memristor circuits of the same architecture for both
sigmoid and hyperbolic tangent functions. The output characteristics of activation
functions were tuned by bulk voltages Vp1, Vp2, Vn1 and Vn2 of MOSFET transistors
P1, P2, N1 and N2. A pointwise multiplication was performed by a single transistor T1.
Since this transistor could perform only in Ohmic region, several aspects were taken
into account. For instance, voltages applied to the drain and gate of T1 could take
any values within the ranges of (-0.45;0) V and (0; 0.45) V respectively. Therefore,
differential amplifiers and inverters with switches S1 and S2 were used to control the
amplitude and polarity of input and output signals. All simulations were done for
180 nm CMOS technology and HP memristor.



Will be inserted by the editor 9

Table 4. A comparison table of current-based and voltage-based circuit designs for airplane
passengers prediction task.

LSTM
architecture

Power
consumption

Area
RMSE

(software)
RMSE
(circuit)

Current-based
LSTM [12]

105.9 mW 77.33 µm2 55.26% 47.33%

Voltage-based
LSTM [2]

225.67mW 108.60 µm2 10.05% 10.99%

a)

b) c) d)

Figure 6. Implementation of prediction and classification problems by [1] and [2] : a)
Schematic of LSTM unit; b) Model used for prediction of airplane passenger number (based
144 observations during 1949-1960): LSTM is untolled for 3 timesteps, the length of xt N=1,
the length of ht M=4. ; c) Model used for wafer quality classification to normal and abnormal
classes: 1 timestep; N=152; M=4 d) Model used for wafer quality classification to normal
and abnormal classes: N=1, M=1, 152 timesteps.

Later, in order to avoid current-to-voltage and voltage-to-current conversions be-
tween circuits, CMOS-memristor circuit of activation layer was replaced by CMOS
circuit that works in current domain. The proposed current-based architecture was
validated in [12] for airplane passengers number prediction problem. Due to limita-
tions of the transistor used for elementwise multiplication, in [1] T1 was substituted by
a voltage-based CMOS circuit. The new circuit was tested for the same prediction task
and the Table 4 compares performance of the proposed designs. As it can be seen
a voltage-based LSTM demonstrates higher accuracy than a current-based LSTM.
Moreover, in [2] a voltage-based LSTM circuit outperformed a memristor-based sin-



10 Will be inserted by the editor

gle perceptron, DNN , ANN and modified HTM architectures in classification of
normal and abnormal wafers with accuracy more than 95%.

LSTM weight matrix values to implement prediction and classification tasks were
extracted via simulation using Python Keras. Circuit simulations for prediction and
classification problems were performed in LTSpice.

3.1.2 LSTM using Ta/HfO2 memristor crossbar array

Fig. 7 shows the data flow in the system proposed by [9]. In this work, LSTM and fully-
connected layers were implemented in situ in a 1T1R crossbar array with Ta/HfO2

memristors on top of it. Multilevel memristors in a crossbar array were programmed
with predefined conductance values using write-and-verify method. At time t input
xt was applied to the rows of a LSTM layer crossbar and output voltages ht were
read from crossbar columns using virtual ground. Afterwards, ht is fed into fully-
connected layer and back to LSTM as recurrent input ht−1. If size of xt is N and
size of ht−1 is M, then including biases the size of a a single LSTM unit crossbar is
[(M+N+1), (4M)]. Each matrix weight was encoded with conductance difference of
two memristors. Therefore, the size of a crossbar doubles: [2(M+N+1), 2(4M)]. Gated
and nonlinear units in the architecture were implemented in software. So off-chip op-
erations include 3M sigmoid, 2M hyperbolic tangent, 3M elementwise multiplications
and 2M additions. The proposed architecture was tested for regression and classifica-
tion problems. More detailed description of on-chip and off-chip operations is given
below.

Figure 7. Data flow in the architecture proposed by [9] : Ta/HfO2 memristor corssbar
array and software-based gated and nonlinear units.

The size of a memristor crossbar used to implement LSTM layer on the chip is
128x64. For each problem, crossbar conductance values were extracted individually
using Backpropagation through time (BPTT) algorithm in software because hardware
training is still challenging and computationally expensive task. 2 µm transistors in a
crossbar serve as selector devices when Vgate = 5V . The weights were updated using
two-pulse scheme as follow:

1. Decreasing memristor conductance required two consecutive cycles, e.g. ’Reset’
and ’Set’.
RESET cycle: Vreset = 1.7V (about 1s) is applied to a bottom electrode of a
memristor.
SET cycle: Vreset = 2.5V (about 2s) is applied to a top electrode of a memristor.

2. Increasing memristor conductance involves only SET cycle.



Will be inserted by the editor 11

An individual memristor conductance switches in around 5 ns. In this work, the
process of switching memristors conductance in array was a serial communication
between microcontroller and off-chip part described below. Authors assume possibility
of faster switching via more sensitive measurement equipment and on-chip parallel
weight update.

Figure 8. Measurement system of Ta/HfO2 memristor corssbar array proposed by [9].

Fig. 8 shows the off-chip measurement system which is controlled by microcon-
toller. Eight 16-bit digital-to-analog converters (DACs) allow to supply voltage to all
128 rows of a crossbar at the same time. The dot-product values are equal to current
readings from each column. Before being fed into analog-to-digital converter, current
values are converted into voltages. This system requires further optimization to speed
up the process and decrease power consumption.

Regression task for predicting airplane passengers number was deployed using a
two-layer recurrent neural network (RNN). The first layer unrolls LSTM unit 15 times
and form of Many-to-Many model. Each LSTM unit requires a (34x60) memristor
crossbar. The second layer is a fully-connected neural network (32x1). Human gait
classification problem uses Many-to-One model. Its first layer is comprised of 14
LSTM units. The size of a crossbar used by one LSTM cell is (128x56). The second
layer is also fully-connected layer (28x8).

Talking about scalability of the system, authors suggest two ways to deal with the
large memristor crossbar arrays which sizes constrained by their output current. One
of the approaches is to decrease input signal amplitudes at condition of acceptable
signal-to-noise ratio rates. Another method is to maintain conductance at low level
which is controlled via memristor materials.



12 Will be inserted by the editor

a) b)

Figure 9. Implementation of regression and classification problems by [9] a) Prediction
of airplane passenger number (based 144 observations during 1949-1960); b) Human gait
classification on USF-NIST dataset.

All works above have shown the consistency in the implementation of LSTM on
memristor crossbar array. The main limitation of such architectures is utilization of
pre-trained networks’ weight values. Control circuit for real-time weight learning and
updating is required.

3.2 Other accelerators

Between 2015-2018 several research on FPGA-based LSTM was conducted. One of
the most efficient peak performances of FPGA LSTM is 13.45 GOP/s which is 28.76x
acceleration compared to CPU [14][16]. In [3] authors built LSTM hardware acceler-
ator with systolic array for matrix-vector multiplication. It was named ’Chipmunk’
and the peak performance has been shown 3.08 GOP/s .

4 Conclusion

Information storage and processing in the human brain memory is a distributive sys-
tem. LSTM is a state-of-the-art tool for processing various sequential and temporal
data such as speech, video, stock data and others. Presence of internal memory in
LSTM allows to maintain long-term dependencies. In this work we discussed the most
popular configurations of LSTM and its capacity and potential. Despite advantages,
LSTM neural networks are slow due to large parallelism and sequential nature. Hope-
fully this will be solved by presenting a reliable hardware accelerator in near future.
An utilization of memristors may help to overcome a ”bottleneck” of modern com-
puters to implement vector-matrix multiplication and achieve better non-linearity for
computation various tasks.

References

1. Kazybek Adam, Kamilya Smagulova, and Alex Pappachen James. Memristive lstm
network hardware architecture for time-series predictive modeling problems. In 2018
IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pages 459–462.
IEEE, 2018.

2. Kazybek Adam, Kamilya Smagulova, Olga Krestinskaya, and Alex Pappachen James.
Wafer quality inspection using memristive lstm, ann, dnn and htm. arXiv preprint
arXiv:1809.10438, 2018.



Will be inserted by the editor 13

3. Francesco Conti, Lukas Cavigelli, Gianna Paulin, Igor Susmelj, and Luca Benini. Chip-
munk: A systolically scalable 0.9 mm 2, 3.08 gop/s/mw@ 1.2 mw accelerator for near-
sensor recurrent neural network inference. In Custom Integrated Circuits Conference
(CICC), 2018 IEEE, pages 1–4. IEEE, 2018.

4. Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual
prediction with lstm. 1999.

5. Felix A Gers, Nicol N Schraudolph, and Jürgen Schmidhuber. Learning precise timing
with lstm recurrent networks. Journal of machine learning research, 3(Aug):115–143,
2002.

6. Klaus Greff, Rupesh K Srivastava, Jan Koutńık, Bas R Steunebrink, and Jürgen Schmid-
huber. Lstm: A search space odyssey. IEEE transactions on neural networks and learning
systems, 28(10):2222–2232, 2017.

7. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

8. Andrej Karpathy. The unreasonable effectiveness of recurrent neural networks, 2015.
URL http://karpathy. github. io/2015/05/21/rnn-effectiveness, 2016.

9. Can Li, Zhongrui Wang, Mingyi Rao, Daniel Belkin, Wenhao Song, Hao Jiang, Peng
Yan, Yunning Li, Peng Lin, Miao Hu, et al. Long short-term memory networks in
memristor crossbar arrays. Nature Machine Intelligence, 1(1):49, 2019.

10. Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent
neural networks for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

11. Christopher Olah. Understanding lstm networks. 2015.
12. Kamilya Smagulova, Kazybek Adam, Olga Krestinskaya, and Alex Pappachen

James. Design of cmos-memristor circuits for lstm architecture. arXiv preprint
arXiv:1806.02366, 2018.

13. Kamilya Smagulova, Olga Krestinskaya, and Alex Pappachen James. A memristor-
based long short term memory circuit. Analog Integrated Circuits and Signal Processing,
95(3):467–472, 2018.

14. Zhanrui Sun, Yongxin Zhu, Yu Zheng, Hao Wu, Zihao Cao, Peng Xiong, Junjie Hou,
Tian Huang, and Zhiqiang Que. Fpga acceleration of lstm based on data for test flight.
In 2018 IEEE International Conference on Smart Cloud (SmartCloud), pages 1–6. IEEE,
2018.

15. Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

16. Zhou Zhao, Ashok Srivastava, Lu Peng, and Qing Chen. Long short-term memory
network design for analog computing. ACM Journal on Emerging Technologies in Com-
puting Systems (JETC), 15(1):13, 2019.


