
Smart Sensor Architecture Customized for Image Processing Applications

Yulei Weng and Alex Doboli
Department of Electrical and Computer Engineering

State University of New York at Stony Brook, Stony Brook, NY 11794
Email: {wengy, adoboli}@ece.sunysb.edu

Abstract

A system level design methodology is applied to the embedded sys-
tem design for a typical sensor network application: face detection
for security purpose. The tradeoff analysis is performed for hardware
and software implementations of the tasks in this application. The
best system design is achieved with limited hardware resources.

1 Introduction

Embedded sensor networks are emerging as a key technol-
ogy for applications like environmental monitoring, infrastruc-
ture security, smart buildings, manufacturing automation, and
many more. These applications introduce new research chal-
lenges due to their functionality, which involves sensing the
physical properties in a multitude of places (like temperature,
light, sound etc), local processing of data, and global control.
The main characteristics of sensor networks - that differentiate
them from regular wireless networks - are: (a) large number
of identical sensors densely distributed in a changing environ-
ment, (b) dynamic positioning of the sensors, (c) scarce energy
resources, (d) decentralized control with a global information
processing goal, and (e) simple processing and communication
capabilities. Given the stringent cost and power consumption
constraints, sensor nodes have limited processing power, oper-
ate at low clock frequencies, and have limited memory. How-
ever, they must operate under real-time constraints. This poses
serious difficulties for the design of the node architecture, as
well as the related digital, RF, and analog blocks.

This paper proposes a sensor node architecture for image pro-
cessing applications, like infrastructure monitoring and se-
curity. The sensor network monitors the infrastructure with
cameras, and detects human faces (or other objects of inter-
est) from the sampled images. The detected images are pre-
processed, and their characteristics are transmitted through a
wireless network to a central server. Once received, the pre-

processed images are searched in a global database located at
the central server, such as to identify if a certain person be-
longs to a group of interest or not. The functionality of the
sensor node includes (1) image data collection from the cam-
era, (2) data pre-processing by the embedded system process-
ing unit, and (3) communication and coordination with other
sensor node for data transmission to the network base station.

We argue that the architecture and software of the sensor node
need to be aggressively co-optimized, so that real-time con-
straints are met using processors operating at low frequencies,
thus having low power consumption. The necessary speed in-
crease is obtained by having special-purpose hardware accel-
erators in the architecture. These hardware accelerators are
characteristic to image processing algorithms. As shown in
Section 2, these algorithms have significant operation-level
parallelism, and high uniformity of computations. This can
be exploited by using vector processing, as well as customized
ASIC. To identify the best sensor node architecture, we used a
hardware-software co-design methodology [10]. The method-
ology consists of system specification, performance profiling,
and hardware-software partitioning. We explored different
data path resources for the accelerators, as well as different
vector lengths for the vector processor. The resulting execu-
tion speedup was observed.

The proposed sensor architecture differs from other sensor
nodes, which employ general purpose microprocessors or mi-
crocontrollers, like SmartDust [17], motes [15], PicoNet [13],
WINS [12, 16]. We propose a customized architecture with
higher execution speed than a general purpose architecture.
The silicon cost (area) does not increase. Our experiments also
showed that systematic exploration is needed, because the best
architecture is far from being intuitive.

Section 2 details the face detection application, and the image
processing algorithm. Section 3 presents the behavioral model
for the vector processor. Section 4 introduces the co-design
methodology that was used for the sensor unit. Section 5 pro-
vide experiments, and finally, our conclusions are offered.

1

Figure 1. SystemC module for face detection

2 The Application: Face Detection

Identifying human faces in an arbitrary image is a fundamental
step in video monitoring, which is an important security appli-
cation. Face detection algorithms have been widely studied in
several disciplines, such as image processing, computer vision,
and neural network. The existing face detection techniques in-
clude knowledge-based methods, feature invariant approaches,
template matching methods, and appearance-based methods
[5]. Knowledge-based methods use general rules to capture
the relationship between facial features, for example that the
nose is between the two eyes. One disadvantage of the ap-
proach is the difficulty in generating general rules from human
knowledge. Feature invariant approaches define constant fea-
tures of a face, and use them as a measure for face detection.
For color images, the skin color is also an effective feature,
since the human skin chrominance doesn’t vary a lot. To detect
a skin region, we can use a YCrCb color space, and define a
region for the skin tone pixels using the Cr, Cb values [6]. The
template matching approach uses either a predefined template
or a deformable template. The predefined template is a face
or a face feature (like eyes, nose, etc). The deformable tem-
plates is an a priori elastic model that describes facial features
in parameters. Face detection algorithms for deformable tem-
plates are more complex than predefined face template match-
ing algorithms. The last category of face detection methods is
appearance-based. Well known approaches include eigenfaces
[7], and neural networks [8].

Since our research was focused on sensor node architecture de-
sign, selecting the best face detection algorithm became a sec-
ondary issue. Considering its popularity, we used the template
matching method. The template is a full human face, and it
was obtained from Michigan State University [9]. To improve
the face detection result, we also incorporated a skin feature
extraction method, which converts the RGB color space into
the YCbCr space, and defines the skin tone pixel by selecting

for(i=0; i<image height; i++)
{
 for(j=0; j<image width; j++)
 {

R[i][j]=ImageR[i][j];
G[i][j]=ImageG[i][j];
B[i][j]=ImageB[i][j];

Cr[i][j]=0.5*R[i][j]-0.41869*G[i][j]+0.5*B[i][j];
Cb[i][j]=-0.16874*R[i][j]-0.33126*G[i][j]+0.5*B[i][j]

If ((-35<Cr[i][j]<40)&(Cb[i][j]<-68))
skin[i][j]=1; #skin region is true

 else
 skin[i][j=0; #not skin
 }
}

for (i=0; i<template height; i++)
{
 for (j=0; j<template width; j++)
 {

B_T[i][j]=TemplateB[i][j];
 }
}

for(i=0; i<height; i++)
{
 for (j=0; j<width; j++)

{
 for (ii=-template_length/2; ii<-template_length/2; ii++)
 {
 for (jj=-template_length/2; jj<-template_length/2; jj++)
 {
 correlation_coefficient=correlation_coefficient
 +(B_T[ii+template_length/2][jj+template_length/2]-B_T_mean)
 * (B[ii+template_length/2][jj+template_length/2]-B_mean)
 }
 }
 }
 }

skin extraction template matching

Figure 2. Skin extraction and template matching

Cb, Cr values within a certain region.

The face detection algorithm was modeled in SystemC. Sys-
temC is a recent C++ based system specification language,
which contains constructs for expressing both hardware and
software modules. The application as well as the sensor node
architecture were described in SystemC. Besides, as compared
to languages like UML, StateCharts, or SpecCharts, there is
an abundance of hardware simulation and synthesis tools from
SystemC programs, which made the architecture development
process much easier for us. Figure 1 presents the structure of
the SystemC module for face detection. The SystemC specifi-
cation contains two major module, one for skin extraction and
the other for template matching. In order to observe the algo-
rithm effectiveness, an image I/O module was also specified in
SystemC to load and store testing images.

Figure 2 shows the pseudocode for the skin extraction and face
template matching algorithms. The color space YCbCr was
used for skin feature extraction. The RGB to YCbCr color
space conversions were defined as

Y = 0.29891×R + 0.58661×G + 0.11448×B (1)

Cb(U) = −0.16874×R− 0.33126×G + 0.50000×B (2)

Cr(V) = 0.50000×R− 0.41869×G− 0.08131×B (3)

The face template matching algorithm was implemented by
correlating the face template with the image pixels. The abso-
lute correlation coefficient is:

rij =

jj<Nj/2∑

jj=−Nj /2

ii<Ni/2∑

ii=−Ni/2

(T−Tmean)(I [i+ii][j+jj]−Imean)

(4)

A face template and two experimental images were retrieved
from [9] for validating the template matching specification.
Figure 3 shows the face template, and the two original images.
The skin extraction result, and the face template matching re-
sult are depicted in Figure 4. This motivates the correctness of
our SystemC specification.

Figure 3. Face template

Figure 4. Original images and after face detection

3 Sensor Node Architecture

The smart sensor node is composed of a sensing element, a
communication block, and a processing unit. The architecture
is shown in Figure 5. The sensing element collects data (im-
age, sound, temperature, etc) from the physical environment,
and then sends data to the preprocessing unit. In our appli-
cation the sensing element is the digital camera. The cam-
era controller in the system controls data access to the dig-
ital camera. The communication block includes the copro-
cessor for the wireless communication protocol, and the RF
transceiver, which incorporates analog and RF circuits, like
low noise amplifiers, high-frequency filters, sample and hold,
multiplexer, oscillators, PLL, and data converters. Communi-
cation in a sensor network is different from traditional wireless
networks in that it requires cooperation of the sensor nodes
to aggregate information and reduce redundancy. The IEEE
802.11 standard, defined for LANs, is not very effective for
sensor networks. Existing communication approaches for sen-

Sensing element
(camera)

Camera controller
(DMA)

Vector
 processor

Image
processing
coporcessor

Network
coprocessor

 R F
t r a n s e i v e r

Embedded processing unit

Sensor node system on chip

R O MR A M

Communication block

Shared
memory

Sensing unit

Figure 5. Sensor node architecture

sor networks are (a) localized algorithms, such as directed dif-
fusion [2], in which packets are forwarded between neighbor-
ing nodes with direction control, (b) distributed tracking algo-
rithm IDSQ enabling sensor node collaboration based on the
transmitting cost and resource constraints [3], and (c) mobile-
agent-based sensor network that uses mobile agent with inte-
grated data to reduce the communication bandwidth required
for the network [4].

The processing unit is composed of a vector processor, ASIC
coprocessor, and shared memory. The processing unit per-
forms the face detection algorithm. The template of the
architecture follows a typical embedded system processor-
coprocessor architecture [10], as shown in the left part of Fig-
ure 6. However, the template does not instantiate the attributes
of the architectural blocks, like the length of the vector regis-
ters, the number of operations executed in parallel by the vec-
tor processor, the size of the RAM memory, and the resource
set of the ASIC.

As explained in Section 4, we suggest using a hardware-
software co-design methodology for systematic exploration of
the architectural attributes, so that the speed-up of the archi-
tecture is maximized, and the silicon area constraint for the
architecture is met. The co-design method was applied to
partition the face detection algorithm onto the vector proces-
sor and ASIC, hence to identify the architectural resources of
the vector processor and ASIC. The experiments in Section 5
prove that this process is not trivial or intuitive. Since many
other sensor network application, such as environmental and
sound monitoring, have similar functional attributes and per-

Vector Processor Image Processing
Coprocessor

Shared Memory

Scalar
ALUScalar register(32bits)

Vector registers
(64*32bits)

Vector
ALUs

ROM(Instruction Memory)

RAM(Data Memory)

Shifter

ROM controller (access unit)

RAM controller (access unit)

B
u

s
 (

6
4

*3
2

 b
it
s
)

Arithmetic units
 (Adders,
 Multipliers, etc.)

Shared memory access unit

Logic
units

Shared memory

Bus (64*32 bit)

Vector Processor Image Processing
Coprocessor

Figure 6. Processing unit architecture template

formance requirements (like timing constraints, massive data
preprocessing before transmission to the base station etc), the
above embedded system design methodology can be general-
ized to other applications, too.

The sensor node must have sufficient processing capability, so
that the input image data (set as 128 × 128 pixels per frame)
can be processed within the time limit set for this real-time
system. To fulfill the performance requirement, we used a
vector processor as the core processor for the system. The
vector processor’s major difference from a general processor
is its vector registers. For example, a typical vector register
contains 64 elements, and each vector operation performs 64
computations. Since the application for our system does not
require very complex control operations, the vector processor
was implemented as a simplified RISC processor. The vector
processor has its own data memory. The co-processor is an
ASIC, and its size is limited by the available area on the sili-
con chip. The shared memory was included for the processor
and coprocessor to exchange and store processing data.

For system level design, the register transfer level (RTL) de-
scription is too detailed. Instead, we specified the vector pro-
cessor at the behavioral level in SystemC. The Synopsis Co-
centric development tool was used for the SystemC module
design. Figure 7 shows the resulting SystemC modules.

Following general architecture concepts, the behavioral Sys-
temC specification divides the vector processor unit into sev-
eral modules, including instruction fetch, instruction decode,
execution, and memory access/write back. The specification
does not include pipelining, therefore the vector operation is
assumed to be finished in one instruction cycle. Pipelining
results in high power consumption, thus was discarded. An in-
struction memory module was included in the SystemC spec-
ification to test the correctness of the vector processor spec-
ification. The SystemC model of the vector processor has a
complete list of operations shown in Table 1.

Figure 7. SystemC module of the vector processor

Logical AND OR NAND NOR
ANDI ORI NANDI NORI

Arithmetic ADD SUB MULT DIV
ADDI SUBI MULTI DIVI
ADDV SUBV MULTV DIVV

ADDSV SUBSV MULTSV DIVSV
SUBVS DIVVS

Load/store LB SB LH SH
LW SW LV SV

LVWS SVWS LVI SVI
CVI

Control JSR RET BEQZ BNEZ

Table 1. Instruction set of the vector processor

4 Hardware-software Co-Design Methodology
for Processing Unit Design

The sensor processing unit for the face detection application
was designed using a top-down hardware software co-design
methodology. The major advantage of such an approach is
the ability of getting intricate knowledge of the application-
specific system, and the capability of designing a cost effective
co-processor, such that the implementation is able to reach the
needed speed performance with minimum area cost.

The hardware-software co-design methodology was adapted
after the COSYMA methodology [10]. Figure 8 depicts the
co-design flow. The top-down system design methodology
can be divided into the following steps. The first one is co-
specification, which is the specification of both hardware and
software components of the sensor node. In Section 2 and Sec-
tion 3 we have introduced the SystemC specification for our
vector processor and the face detection application. Following
this, the data profiling step extracts the hardware and software
timing and area estimation data for the specification. The next
design step is co-synthesis, in which the interdependencies be-
tween hardware and software components are explored, and
the application is partitioned into hardware and software to
meet performance requirement (timing and area). In the co-
synthesis process, the system architecture is developed based
on hardware-software partitioning, resource allocation, func-

Specification

Profiling

Hardware/Software
 Partitioning

 System
Requirement
 Definision

SW
design

Interface
design

HW
design

Integration
 & test

Figure 8. Hardware-software co-design flow

tionality mapping, and scheduling. Hardware-software parti-
tioning is the central concept. It is composed of several steps:
(1) functional partitioning, in which functional specifications
are partitioned in to execution processes, (2) estimation of the
performance for each function, and (3) allocation of processes
onto different processing elements. The primary goal for par-
titioning is to meet a performance requirement. The secondary
goal is to minimize hardware cost.

Next, we introduced the profiling step for the face detection
application. Hardware software partitioning using the profiling
is also illustrated.

4.1 Application data profiling

The general data profiling procedure starts from the specifica-
tion of the application. By observing the specification code the
whole application can be splitted to smaller task blocks. Each
block may contain several lines of instructions or an instruc-
tion loop. The general rules in guiding the software timing
estimation are: (1) Execution time for a task block equals the
number of basic operations this task block contains. (2) Exe-
cution time for a loop in the specification equals the number
of basic operations inside the loop times the iteration number.
The basic operations refer to the instruction set of the core pro-
cessor shown in Table 1.

The hardware timing estimation steps are: (1) Given a set of
hardware resource, a hardware resource block graph was gen-
erated. (2) Based on the hardware block graph and proper op-
eration scheduling, the time steps needed for the task blocks
can be estimated.

The communication timing estimation steps are: (1) Deter-
mine the protocol setup time by selecting the proper commu-
nication protocol between processing elements. (2) Determine
the bus width, then estimate the data transmission time needed
for each execution block, and the time needed for data multi-
plexing.

Figure 9. Task graphs for face detection

In this section, the data profiling procedure was detailed for
the face detection application as an example.

4.1.1 Task graph

In order to precisely estimate the hardware area and software
timing of the system implementation, the face detection algo-
rithm was broken into small execution tasks, and a task graph
was extracted to capture the data dependencies between the
tasks. Figure 9 shows the task graph of face detection. Each
task has its software execution representation and its ASIC ex-
ecution representation.

The fifteen tasks involved in the face detection algorithm can
be illustrated as:

R,G,B: Get the red, green and blue pixel color information
from the image data.

Cr,Cb: Convert the RGB color space into YCbCr color space,
and gets the corresponding value of Cr,Cb for each image
pixel.

Crth, Cbth: Compare each pixel’s Cr, Cb with their thresholds
to determine the face and skin region in the figure.

Gnew : Leaves the face and skin region green color value un-
changed, and sets other regions in the image to black.

Gmean: Calculates the means of the green color index among
all the pixels in the image.

Gf : Gets the green color index in the face template.

Gfmean: Calculates the means of the green color index among
all the pixels in the face template.

Cov: Calculates the covariance between each pixel in the face
template and each pixel in the image.

Sum: Sums up the covariance in one region as large as the face
template.

Th: Compares the correlation coefficient with a threshold to
filter out the non face region in the image.

Pick: Selects the face region, and marks it with square.

4.1.2 Software and hardware timing and area estimation

During co-design, each of the tasks in Figure 9 can be assigned
either to the vector processor, or the ASIC for the co-processor.
To explore the quality of different hardware-software partition-
ings, the software and hardware timing and hardware area es-
timations were performed for each task. Table 2 shows the
vector processor timing estimation in terms of instructions cy-
cles. Table 3 shows the estimated hardware area of the vector
processor. Table 4 shows the ASIC performance estimation.
All the hardware area estimation in this paper were based on
a standard macro cell library by SAMSUNG [11]. The library
uses 0.25 micron technology.

4.1.3 Communication overhead estimation

The handshaking protocol was used for communication among
the processor, co-processor, and shared memory. When an
application task is assigned to the coprocessor, a correspond-
ing communication overhead is added to the system timing.

No. 0 1 2 3
Name R G B Cr
cycle 256 256 256 1280
No. 4 5 6 7

Name Crth Cb Cbth Gnew

cycle 768 1280 768 256
No. 8 9 10 11

Name Gmean Gf Gfmean Cov
cycle 256 16 16 16 ∗ 1282

No. 12 13 14
Name Sum Th Pick
cycle 15 ∗ 1282 2 ∗ 1282 19 ∗ 1282

Table 2. Timing estimation for vector processor

Component Register Vregister ALU Shifter
Num 32 8 64 64

Area(mm2) 1.3 21 0.03 0.06
Component Instruction mem Data mem controller

Num 1(0.97Mb) 1(1.6Mb) 1
Area(mm2) 11 18 1

Table 3. Area estimation for vector processor

Adder Multiplier Divider Nand Time(cycle)
get Cr 512 1024 - - 96
Crth 1024 - - - 16

Cb 512 1024 - - 96
Cbth 1024 - - 512 96

Gmean 1024 - 1 − 26
Gfmean 1024 1 - - 11

Cov 1024 1024 - - 32768
Sum 1024 - - - 163840
Th 1024 - - - 16

Pick 1024 - 1 - 196608

Table 4. Performance estimation for ASIC

The communication overhead was defined as the time for data
transfer through the shared memory. Since the vector pro-
cessor has it’s internal memory, if two execution blocks are
mapped to software, no communication overhead needs to be
added.

The data bus capacity was set to 64×32 bit, which is the same
as the vector register size. It was assumed that the data transfer
speed from the processor to the shared memory is same as the
internal data transfer speed. The time unit for data transmis-
sion equals an instruction cycle. The handshaking time is also
added to the communication overhead.

The estimation of the total communication overhead is:

tcom(in/out) = N ∗ (tunit + tmultiplex + tprot) (5)

N =
Nresult

Nbus
(6)

tmultiplex =
Nbus

Ndata
(7)

where N is the number of transmission required, tprot is
the handshaking protocol time to setup the transmission,
tmultiplex is the time required to multiplex data bits onto the
data bus, and tunit is the time required to transmit one mul-
tiplexed unit (64 × 32 bit). Nresult denotes the total num-
ber of bits resulted from the execution, and Nbus denotes the
bus capacity in bits. Ndata is the number of bits in a single
execution result. For each execution blocks, two communi-
cation direction are defined, tcom(in) refers to the communi-
cation overhead from the previous block to the current block,
and tcom(out) refers to the communication overhead from the
current block to the next block.

For fine grain partitioning the communication overhead be-
comes significant, which affects the partitioning result dras-
tically. Table 5 shows the estimated tcom(in/out).

Task No. 0 1 2 3
Task R G B Cr

N(in) 256 256 256 256*3
tcom(in) 17152 17152 17152 17152*3
Nresult 1282

∗ 32 1282
∗ 32 1282

∗ 32 1282
∗ 32

N(out) 256 256 256 256
tcom(out) 17152 17152 17152 17152

Task No. 4 5 6 7
Task Crth Cb Cbth Gnew

N(in) 256 256*3 256 256
tcom(in) 17152 17152*3 17152 17152
Nresult 524288 524288 524288 524288
N(out) 256 256 256 256

tcom(out) 17152 17152 17152 17152
Task No. 8 9 10 11

Task Gmean Gf Gfmean Cov
N(in) 256 16 16

tcom(in) 17152 1072 1072 18228
Nresult 524320 32768 32800 524288
N(out) 257 16 17 256

tcom(out) 17155 1072 1075 17152
Task No. 12 13 14 -

Task Sum Th Pick -
N(in) 256 256 256 -

tcom(in) 17152 17152 17152 -
Nresult 524288 524288 32 -
N(out) 256 256 1 -

tcom(out) 17152 17152 3 -

Table 5. Communication overhead estimation

4.2 Hardware-software partitioning

The hardware-software partitioning algorithm uses the simu-
lated annealing heuristics under the guidance of following cost
function [10]:

dc(B) = [tHW (B) + tcom(B)− tov(B)− tSW (B)]It(B)(8)

tcom(B) = Σtcom(in)(B)
⋃

tcom(out)(B) (9)

Figure 10. Hardware extraction statistics

where B is the execution block listed above. dc(B) is the
decrement of the cost. tHW (B), tSW (B), tcom(B) are the
hardware timing, software timing, and the communication
overhead. tov is the hardware and software overlap time. Each
execution block B is used only once in our application, there-
fore the iteration factor It(B)=0. The partitioning cost func-
tion is similar to the COSYMA cost function [10]. However,
we implemented the partitioning control parameters external
to the cost function to avoid over-design.

4.3 Partitioning results

Applying the partitioning algorithm, we mapped the tasks
in the face detection application into software and hardware,
and achieved a speed-up of about 2.0 using an additional
ASIC co-processor that contains 1024 adders, 1024 multipli-
ers, 1 divider and 512 NAND gates. The software timing is
839,952 cycles, while the hardware and software timing result
is tSWHW =407,734 cycles. The best partitioning solution the
annealing process found was to move tasks 11, 12, 13, and 14
to hardware. The hardware extraction statistics in Figure 10
shows that the above task combination is the most often ex-
tracted partitioning solution.

4.4 Silicon area estimation

The silicon area of the vector processor was estimated to be
54mm2. The co-processor area was estimated by summing
up all the required hardware area for the extracted execution
blocks, which was shown in Table 6. The final hardware ex-
traction solution to the face detection application was to move
tasks 11, 12, 13, and 14 to hardware. Therefore, the co-
processor area plus the shared memory is about 268mm2 (Ig-
noring NAND and the divider area). The total silicon area
is 323mm2. Hence, the silicon implementation of the sensor
node requires the largest MOSIS package (PGA391L), which
has a die area of 182 = 324mm2.

Task combination adder muliplier shared memory
11,12,13,14 1024 1024 1Mb
area(mm2) 25 240 3

Table 6. Silicon area for the partitioned blocks

5 Discussion of Co-design Tradeoffs

5.1 Reducing ASIC area

The previous implementation (Subsections 4.3 and 4.4) has
a much larger ASIC area than the vector processor. To fur-
ther explore possibilities for hardware area reduction, we con-
ducted more experiments for different ASIC area:

Case 1: 1024 Adders, 1024 Multipliers, 512 NAND.

Case 2: 512 Adders, 512 Multipliers, 512 NAND.

Case 3: 512 Adders, 128 Multipliers, 512 NAND.

Case 4: 128 Adders, 512 Multipliers, 512 NAND.

Case 5: 128 Adders, 128 Multipliers, 512 NAND.

A data profiling process was performed for each of the cases.
The software timing and area estimation remain the same. The
ASIC time profiling for each task in the application was shown
in Table 7.

Case1 Case2 Case3 Case4 Case5
Cr 96 192 416 320 512

Crth 16 32 97 386 386
Cb 96 192 416 320 512

Cbth 16 32 97 386 386
Gmean 26 41 41 135 135
Gfmean 11 11 11 15 15

Cov 32768 65536 163840 163840 262144
Sum 163840 163840 163840 212992 212992
Th 16 32 32 128 128

Pick 196608 196608 196608 245760 245760

Table 7. Timing for different ASIC areas

As the ASIC silicon area decreases, the execution time doesn’t
necessarily increase in the same scale. Therefore, it is possi-
ble to obtain a design with smaller hardware area, but similar
execution time. The hardware-software partitioning algorithm
is applied to these cases, and Table 8 shows the tasks extracted
to hardware, the speed-up, and ASIC area for each case.

From the experimental result it is shown that Case 2 only takes
around half of the hardware area of Case 1, whereas the tim-
ing remains almost the same. Hence, it can be concluded that
an upper limit exist for the speed-up as the hardware area in-
creases. Above the limit, the hardware area increment stops

HW tasks Speed up Adder Multiplier Memory Area
(mm2)

1 11-14 2 1024 1024 1Mb 268
2 11-14 1.9 512 512 1Mb 136
3 11-14 1.56 512 128 1Mb 76
4 11-14 1.33 128 512 1Mb 129
5 12-14 1.15 128 128 1Mb 70

Table 8. Partitioning results for different ASIC
compositions

to offer performance enhancement. Comparing Case 3 and
Case 4, it can been seen that the number of adders contributes
more to speed up than the number of multipliers. This is due
to the fact that the tasks in the face detection application have
more addition steps than multiplication steps. Thus, allocating
more adders results in higher speed-up. The other advantages
of adders is the much smaller area it has over the multipli-
ers. From the area comparison of Case 3 and Case 4, it can
been seen that Case 3 takes much lesser silicon area. When
the ASIC area is strictly limited, assigning tasks to the ASIC
co-processor may not be able to achieve significant speed-up.
This situation is illustrated by Case 5.

This experiment shows that the allocation of hardware re-
sources is an important decision that needs to be made in sys-
tem level design. The partitioning results for different allo-
cation possibilities is very helpful in making the appropriate
architectural choices. For instance, for the face detection ap-
plication, if the designer is limited with the ASIC area but
needs a high speed-up, then the best sensor architecture will
correspond to Case 3, which gives a speed-up of 1.56 at the
expense of a small ASIC area (76mm2), which is compatible
to the vector processor area (54mm2).

5.2 Vector processor design

The vector processor’s computational capability depends on
the number of elements inside the vector register. The more
elements are contained, the more concurrent computations the
vector processor is able to support. Since the vector register
takes up a large area on the chip, it is important to explore the
relationship between the vector processor speed and the silicon
area it takes.

The face detection application is a real time application that
requires a high processing speed. Thus, the vector processor
design is limited by the execution time. Table 9 shows the exe-
cution time that the vector processor can achieve under differ-
ent vector register sizes and ALU numbers, and the speed-up
of the four ASIC design options. In these experiments, the
communication overhead is assumed to remain the same, be-
cause the bus width is set to 64×32 bits. It can be seen that the

execution time doesn’t very largely as the number of ALU and
the number of elements in the vector register is reduced. This
counterintuitive result is due to the partitioning of the applica-
tion tasks, which moves most of the data intensive tasks to the
ASIC coporcessor. As we mentioned before, further increas-
ing the ASIC co-processor area could not gain more speed-up
because of the data dependencies between operations. There-
fore, a upper limit for the system performance exists. Depend-
ing on the hardware area and system timing requirements set
by the application, an optimal design solution can be chosen
from the candidates in Table 9

ASIC Vector ALU SW SW+HW speed up
(Add,Mult) Register num timing timing
(1024,1024) 64 64 839952 407734 2
(512,512) 64 64 839952 432076 1.9
(512,128) 64 64 839952 538432 1.56
(128,512) 64 64 839952 631542 1.33
(128,128) 64 64 839952 730394 1.15

(1024,1024) 32 32 1679904 409732 4.1
(512,512) 32 32 1679904 430734 3.9
(512,128) 32 32 1679904 480124 3.5
(128,512) 32 32 1679904 671962 2.5
(128,128) 32 32 1679904 763584 2.2

(1024,1024) 8 8 6719656 447970 15
(512,512) 8 8 6719656 448012 15
(512,128) 8 8 6719656 516893 13
(128,512) 8 8 6719656 678752 9.9
(128,128) 8 8 6719656 781354 8.6

Table 9. Vector register size and performance

5.3 Vector processor vs. ASIC

The vector processor is a good candidate for data intensive ap-
plication compared to general RISC processor, because it is
capable of parallel computation. The experiment shows that
when the co-processor ASIC area is strictly limited (for exam-
ple, in the case of 128 adders and 128 multipliers), the exe-
cution speed-up is also reduced, and moving tasks to the co-
processor does not offer much execution speed. When hard-
ware area is not the limiting factor, applying the tasks to the
ASIC co-processor can achieve significant speed-up, as shown
in our experimental results.

5.4 Reducing shared memory size

The shared memory in the embedded processing unit stores
the intermediate results for the image processing tasks that are
mapped to the co-processor. In many image processing cases
the information stored in the memory cells are highly repet-
itive. By eliminating the redundant information, the shared
memory size can be reduced. However, this approach some-
times requires a repetitive computation for the intermediate

result, and may increase the processing period. Careful ex-
ploration into the memory size and processing speed tradeoffs
needs to be performed to get the optimal implementation.

6 Conclusion

This paper proposes a sensor node architecture for image pro-
cessing applications, like infrastructure monitoring and secu-
rity. The processing unit is customized for face detection ap-
plications. A top-down hardware-software co-design method-
ology was used to design the embedded sensor processing unit.
The application data profiling and the hardware/software parti-
tioning are two most important steps in the co-design process.
Experiments with the face detection application show that
an appropriate choice of the resource set of the co-processor
ASIC results in optimal silicon area and speed-up combina-
tions. The best architecture found by co-design extracted four
tasks to the ASIC co-processor, which had 512 adders and 128
multipliers. The co-processor area (76mm2) was compatible
to the vector processor area (54mm2). A speed-up of 1.56
compared to pure software implementation was achieved with
this design. Our experiments also concluded that systematic
exploration is needed, because the best architecture is far from
being intuitive.

References

[1] J. Stankovic, T. Abdelzaher et al, “Real-Time Communication and Coordination
in Embedded Sensor Networks”, Proc. of the IEEE, Vol. 91, No.7, July 2003, pp.
1002-1022.

[2] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next Century Challenges:
Scalable Coordination in Sensor Networks”, Proc. Int. Conf. Mobile Computing
and Networking (MOBICOM), 1999, pp. 263-270.

[3] F. Zhao, J. Shin, and J. Reich, “Information-driven Dynamic Sensor Collaboration
for Tracking Applications”, IEEE Signal Processing Magazine, Vol. 19, pp. 61-72,
March 2002.

[4] H. Qi, S. S. Iyengar, and K. Chakrabarty, “Multi-resolution Data Integration using
Mobile Agents in Distributed Sensor Networks”, IEEE Trans. Syst., Man, Cybern.,
Vol. 31, pp. 383-391, Aug. 2001.

[5] M.-H. Yang et. al., “Detecting Faces in Images: A Survey”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol.24, No. 1, Jan. 2002.

[6] D. Chai and K.N. Ngan, “Locating Facial Region of a Head-and-Shoulders Color
Image”, Proc. Third Int’l Conf. Automatic Face and Gesture Recognition, pp. 124-
129, 1998.

[7] M. Kirby and L. Sirovich, “Application of the Karhunen-Loe‘ve Procedure for the
Characterization of Human Faces”, IEEE Trans. Pattern Analysis and Machine In-
telligence, Vol. 12, No. 1, pp. 103-108, Jan. 1990.

[8] J.-E. Villet, and M. Collobert, “A Fast and Accuracte Face Detector Based on Neu-
ral Networks”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 22,
No. 1, pp. 42-53, Jan. 2001.

[9] http://www.cogsci.msu.edu/fasp/

[10] R. Ernst et al, “Hardware-software cosynthesis for microcontrollers”, IEEE Design
and Test of Computers, 10, No.4, Dec.1993, pp. 64-75.

[11] http://www.samsung.com/Products/Semiconductor/ASIC/IPCoreLibrary /Intellec-
tureProperties/MemoryCores/DRAMFlash/

[12] A. Abidi, G. J. Pottie, W. J. Kaiser, “Power Conscious Design of Wireless Circuits
and Systems”, Proc. of the IEEE, Vol. 88, No. 10, October 2000, pp. 1428-1455.

[13] F. Benett, D. Clarke, J. B. Evans, A. Hopper, A. Jones, D. Leask, “PicoNet: Embed-
ded Mobile Networking”, IEEE Personal Communication Magazine, 4(5): 8-15,
Oct. 1997.

[14] W. R. Heinzelman, A. Chandrakasan, H. Balakrishnan, “Energy-Efficient Com-
munication Protocol for Wireless Microsensor Networks”, Hawaii Int’l Conf. on
System Sciences, 2000, pp. 2-12.

[15] J. Hill, D. Culler, “A Wireless Embedded Sensor Architecture for System-Level
Optimization”, Technical Report, UC Berkeley, 2001.

[16] G. J. Pottie, W. J. Kaiser, “Wireless Integrated Network Sensors”, Communications
of the ACM, Vol. 43, No. 5, 2000, pp. 51-58.

[17] B. Warneke, M. Last, B. Liebowitz, K. Pister, “SmartDust: Communicating with a
Cubic Millimeter Computer”, IEEE Computer, January 2001, pp. 2-9.

[18] T. Grotker, S. Liao, G. Martin, S. Swan, “System Design with SystemC”, Kluwer,
2002.

