Alex Kendall

Alex Kendall
University of Cambridge | Cam · Department of Engineering

About

28
Publications
31,319
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
22,149
Citations
Introduction

Publications

Publications (28)
Preprint
Full-text available
The self driving challenge in 2021 is this century's technological equivalent of the space race, and is now entering the second major decade of development. Solving the technology will create social change which parallels the invention of the automobile itself. Today's autonomous driving technology is laudable, though rooted in decisions made a dec...
Preprint
Driving requires interacting with road agents and predicting their future behaviour in order to navigate safely. We present FIERY: a probabilistic future prediction model in bird's-eye view from monocular cameras. Our model predicts future instance segmentation and motion of dynamic agents that can be transformed into non-parametric future trajecto...
Chapter
We present a novel deep learning architecture for probabilistic future prediction from video. We predict the future semantics, geometry and motion of complex real-world urban scenes and use this representation to control an autonomous vehicle. This work is the first to jointly predict ego-motion, static scene, and the motion of dynamic agents in a...
Preprint
We present a novel deep learning architecture for probabilistic future prediction from video. We predict the future semantics, geometry and motion of complex real-world urban scenes and use this representation to control an autonomous vehicle. This work is the first to jointly predict ego-motion, static scene, and the motion of dynamic agents in a...
Preprint
Hand-crafting generalised decision-making rules for real-world urban autonomous driving is hard. Alternatively, learning behaviour from easy-to-collect human driving demonstrations is appealing. Prior work has studied imitation learning (IL) for autonomous driving with a number of limitations. Examples include only performing lane-following rather...
Preprint
Full-text available
Simulation can be a powerful tool for understanding machine learning systems and designing methods to solve real-world problems. Training and evaluating methods purely in simulation is often "doomed to succeed" at the desired task in a simulated environment, but the resulting models are incapable of operation in the real world. Here we present and...
Preprint
Full-text available
We demonstrate the first application of deep reinforcement learning to autonomous driving. From randomly initialised parameters, our model is able to learn a policy for lane following in a handful of training episodes using a single monocular image as input. We provide a general and easy to obtain reward: the distance travelled by the vehicle witho...
Article
Full-text available
We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically iden...
Conference Paper
Full-text available
Autonomous vehicle (AV) software is typically composed of a pipeline of individual components, linking sensor inputs to motor outputs. Erroneous component outputs propagate downstream, hence safe AV software must consider the ultimate effect of each component’s errors. Further, improving safety alone is not sufficient. Passengers must also feel saf...
Article
Full-text available
Dropout is used as a practical tool to obtain uncertainty estimates in large vision models and reinforcement learning (RL) tasks. But to obtain well-calibrated uncertainty estimates, a grid-search over the dropout probabilities is necessary - a prohibitive operation with large models, and an impossible one with RL. We propose a new dropout variant...
Article
Full-text available
Numerous deep learning applications benefit from multi-task learning with multiple regression and classification objectives. In this paper we make the observation that the performance of such systems is strongly dependent on the relative weighting between each task's loss. Tuning these weights by hand is a difficult and expensive process, making mu...
Article
Full-text available
Deep learning has shown to be effective for robust and real-time monocular image relocalisation. In particular, PoseNet is a deep convolutional neural network which learns to regress the 6-DOF camera pose from a single image. It learns to localize using high level features and is robust to difficult lighting, motion blur and unknown camera intrinsi...
Article
Full-text available
There are two major types of uncertainty one can model. Aleatoric uncertainty captures noise inherent in the observations. On the other hand, epistemic uncertainty accounts for uncertainty in the model -- uncertainty which can be explained away given enough data. Traditionally it has been difficult to model epistemic uncertainty in computer vision,...
Article
Full-text available
We propose a novel deep learning architecture for regressing disparity from a rectified pair of stereo images. We leverage knowledge of the problem's geometry to form a cost volume using deep feature representations. We learn to incorporate contextual information using 3-D convolutions over this volume. Disparity values are regressed from the cost...
Article
Full-text available
We present a novel deep learning framework for probabilistic pixel-wise semantic segmentation, which we term Bayesian SegNet. Pixel-wise semantic segmentation is an important step for visual scene understanding. It is a complex task requiring knowledge of support relationships and contextual information, as well as visual appearance. Our contributi...
Article
Full-text available
We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically iden...
Article
Full-text available
We present a robust and real-time monocular six degree of freedom visual relocalization system. We use a Bayesian convolutional neural network to regress the 6-DOF camera pose from a single RGB image. It is trained in an end-to-end manner with no need of additional engineering or graph optimisation. The algorithm can operate indoors and outdoors in...
Article
Full-text available
We present a robust and real-time monocular six degree of freedom relocalization system. Our system trains a convolutional neural network to regress the 6-DOF camera pose from a single RGB image in an end-to-end manner with no need of additional engineering or graph optimisation. The algorithm can operate indoors and outdoors in real time, taking 5...
Conference Paper
Full-text available
The development of an object tracking controller for a quadcopter using an on-board vision system is presented. Using low-cost components, a novel system is introduced that operates entirely on board the quadcopter, without external localization sensors or GPS. A low-frequency monocular computer vision algorithm is applied in closed-loop control to...

Network

Cited By