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Abstract

Given s > 1 we present initial data that belong to the Gevrey space G°
for which the solution to the Cauchy problem for the generalized mkf-KdV
equation does not belongs to G° in the time variable. Also, for the KdV,
in the periodic case, we show that the solution to the Cauchy problem
withanalytic initial data (Gevrey class G') belongs to G® in time.

1 Introduction

For k, ¢ € {1,2,3,4,5---} and m € {3,4,5,6,---}, we consider the Cauchy
problem for the generalized mk¢-KdV type equation

O = O™ u + uFdhu, (1.1)

u(z,0) =¢p(x), r€Tor x eR, teR, (1.2)

where ¢ is an appropriate function in Gevrey space G*, s > 1. If we let m = 3
and ¢ = 1, and replace ¢ with —¢ then we obtain the generalized KdV equation

o+ O3u + uF9,u = 0, (1.3)

for which it was shown in [GH1]| that for appropriate analytic initial data one can
construct non-analytic in time solutions. The purpose of this work is to extend to
equation (1.1) the results obtained in [GH1]. Also, using the estimates obtained
in [GH2|, for proving analyticity in the space variable for KdV solutions, we show
that these solutions belong in the Gevrey 3 space in the time variable.
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Analytic and Gevrey regularity properties for KdV-type equations have been
studied extensively by many authors in the literature. For example, in [T,
Trubowitz showed that the solution to the periodic initial value problem for the
KdV with analytic initial data is anallytic in the space variable (see also [GH2]
for another proof based on billinear estimates). For the non-periodic case we refer
the reader to T. Kato [K], T. Kato and Masuda [KM], and K. Kato and Ogawa
[KOJ. For further results, we refer the reader to Bercovici, Constantin, Foias and
Manley [BCFM], Bona and Gruji¢ [BGJ, Bona, Gruji¢ and Kalisch [BGK], Foias
and Temam [FT], De Bouard, Hayashi and Kato [DHK], Gruji¢ and Kukavica
[GK], and Hayashi [H]. Another motivation for studying regularity properties for
KdV-type equations is to contrast them with the Camassa-Holm equation (see
[CH| and [FF]) which has been shown in [HM] that the solution map is analytic
in time at time zero.

2 Periodic case

The main result of this section is given by the following

Theorem 2.1 Given s > 1 the solution to the mkl-KdV initial value problem
(1.1)-(1.2) with initial data in the Gevrey space G*(T) may not be in G*(R) in
time variable t. More precisely, if

pla) =i Y dn)e™, (2.1)

where P(n) = e, then the solution u to the initial value problem (1.1)-(1.2)
is not in G°(R) in t.

Observe that the initial data ¢(x) belong in the Sobolev space H*(T), for
any s, and therefore the Cauchy problem (1.1)-(1.2) is well-posed in H*(T) for s
large enough when m = 3 and ¢ = 1 (see Bourgain [B|, Kenig, Ponce and Vega
[KPV], Colliander, Keel, Staffilani, Takaoka and Tao [CKSTT1], [CKSTT2] and
the references therein).

Before starting the proof of Theorem 2.1, we show the following lemma, which
is crucial in estimating the higher-order derivatives of a solution with respect to
t.

Lemma 2.2 [fu is a solution to (1.1)-(1.2) then for every j € {1,2,...} we have

J
Ou=0Pu+> > CUI ) (05 ), (2.2)

7=1 |a]+(m—Ll)g=mj
where C4 > 0.



Proof. We prove this by induction. For j = 1, relation (2.2 holds since it is
nothing else but equation (1.1). Next, we assume that (2.2) holds for j > 1 and
we show that it holds for j + 1. Differentiating (2.2) with respect to ¢ and using
(1.1) we obtain

J
O u=or0 a4 o (W) + ) 0 Y CLo, (05 w) -+ (5 )
a=1 |o|+(m—£)g=mj

(2.3)

Using Leibniz rule, the term 977 (u*0%u) can be written as the sum of terms of
the form

Ca(07"u)(07%u) - - (07" w),
with C, > 0, and |a| = mj + £. Therefore, we have || + (m — ) -1 =m(j + 1).

Now each term in the sum of (2.3) is of the form
0, ((92) - (2 w)) = (9 Bu) (@) - (957 ) + -
+ (%) -+ (95 u) (9™ D).
Substituting dyu = O u+u*d%u in each term above yields terms which order of

the derivatives, |v|, satisfies either |y|+(m—¢)qg = m(j+1) or |y|+(m—¥{)(¢+1) =
m(j + 1). For example, the first term becomes

(08 Do) (B520) -~ (67 w) = (D2 (0" + u0kan)) (O5u) - (257 )
= (07 u)(952u) -+ (0™ ) + (95 (uF D)) (972w - (™),
where in the first term we have gk + 1 terms of the type d%u and the order of
derivatives satisfies |y| + (m —€)g = m(j + 1), where v = (a1 +m, g, - - -, Qgit1)-
In the second term, using Leibniz rule, we have (¢ + 1)k + 1 terms of the type
Oy and the order of the derivatives is given by |y| = ||+ = mj — (m —£)qg+/,
which can be written as |y| + (m — ¢)(¢ + 1) = m(j + 1), where we have used

Y= (al +€7 Qg, - 7aqk+1)'
This completes the proof of Lemma 2.2. O

Now, we are in the position to prove Theorem 2.1.

Proof of Theorem 2.1: We assume that the initial data is given by (2.1) and
we shall prove that the solution to the mk¢-KdV initial value problem (1.1)-(1.2)
is not in G*(R) in time ¢.

Differentiating (2.1) with respect to x we obtain that
Otu(x,0) = "% Y d(n)(in)te".
n=1
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Therefore,
02u(0,0) = i+ A,

where
Ag= " d(n)n? > 0. (2.4)
n=1

For j € N, using Lemma 2.2, we obtain

J
Ru(0,0) = i"FFMA 4> N CHITM A, T A,

a=1 |a|+(m—L)g=mj

J
= i TA+ ST Y Ay, Ay e = (gk+1)

7=1 |a|+(m—E)g=mj

J
m—£ - m—£
— My . q . Jal+(m—£)g+ "=
= ¢ F Apj + E E ClAy -+ Ayt %

9=1 |a+(m—€)g=mj

J
m—4 . .
T tmy . q . ymj+—7—
= ik Apj + E E ClA,, AaquZ k

7=l |a[+(m—€)g=mj

j
N Ay + Z Z ClAn; -+ Anpprs

7=1 |a|+(m—E)g=mj

Since )z'mT_umj =1 and C? > 0 it follows from the last equality and (2.4)

that

10/u(0,0)| > Ay = Z¢ (2.5)

We now are going to divide the proof in two cases.
First case: 1 < s < m.

In this case we notice that

=S D)™ > Glmg)(mg)™ = e (myym. (2.6)



Thanks to the fact that (mj)% <mjforalls>1and j=1,2,--- it follows
from (2.5) and (2.6) that

|6gu(0, 0)| > e~ M) ()™ (2.7)
Since (mj)™ > (j!1)™ it follows from (2.7) that
1\?

|0/u(0,0)| > (em> (™. (2.8)

Recall now that a function g(¢) is in G*(R) if g(t) € C*°(R) and for every compact
subset K of R there exists a positive constant C' such that

gD ()| < CItY(51)*, j=0,1,2,--- and t € K. (2.9)
Taking K = {0} and using estimates (2.8) and (2.9) we conclude that u(0,-) ¢
G*(R) in the case 1 < s < m.
Second case: s > m.

In this case we shall use [s] to represent the greatest integer that is less than
or equal to s. We also notice that

Ay = Y ™ > DRy = e 0D Gy (2.10)
n=1
Since [s] < s we have % < 1 and therefore
jils < forall j=1,2,---. (2.11)
It follows from (2.11) that
e UV = =G > e7i forall j=1,2,- - . (2.12)

Since [s] > s — 1 we have m[s] > ms — m. Thanks to the fact the s > m we
can conclude that ms —m > (m — 1)s. It follows from this that

(1) = it = () > (g > gy > (e (2.13)

where we have used the inequality j7 > j! and the fact that j! > 1.
It follows from (2.5), (2.10), (2.12) and (2.13) that

|0{u(0,0)| > Amj:ii(n)n g

> QUG = e (2.14)
> eI(gnmr,
which implies that «(0,-) ¢ G*(R), since m > 3. This completes the proof of

Theorem 2.1.



3 Non-periodic case

In the non-periodic case we consider analytic initial data and we show that the
solution is not analytic in time.

Theorem 3.1 The solution to the mkl-KdV initial value problem (1.1)-(1.2)
with initial data an analytic function may not be analytic in the t variable. More
precisely, if

w(z,0) = (i—2)" ", (3.1)
with p € N and k < 2m — 20 + 8p, then u(0,-) is not analytic near t = 0.

Observe that for any given s > 0 we can choose p large enough so that the
initial data w(z,0) belong in the Sobolev space H*(R). Therefore the Cauchy
problem (1.1)-(1.2) is well-posed in H*(T) when m = 3 and ¢ = 1 (see Kenig,
Ponce and Vega [KPV], Colliander, Keel, Staffilani, Takaoka and Tao [CKSTT1],
[CKSTT?2] and the references therein).

Proof of Theorem 3.1. We have

4 -1 4 —
o, 0) = LI L AT

It follows from this and from Lemma 2.2 that

+1)---(4P+Tm_€+n—1)(i—x)‘(”+

4dp+m—~ )
k .

- dp+m—4LC dp+m —{ dp+m — /4
0fu(0,0) = PSSy (R

Fmyj—1)(3) "It E 4

J
dp+m—4L dp+m —{ dp+m —4
Z Z Cg{p /:n <p I:;” _,_1)...(%4_@1_1)]...

7=1 |a[+(m—€)g=mj

dp+m — L dp+m — /1 dp+m — L (|4 ApEm—t
[ k ( k )"’(T + g — 1) | (1)U D),
Since |a] = mj — (m — £)q and i*?? = 1 we may factor, in the last equality,

the term (i)~ "% ) and therefore we have

| 4 04 iy 1 iy
0u(0,0)) > LTSI gy (IR )
2 2 2
4 iy
> “+(mj—1)! (3.2)
where C; = ‘lerTm_é.



Since mj — 1 > (m — 1)j, for j > 1, we have (mj — 1)! > ((m — 1)j)L
By using the inequality (¢ + n)! > ¢In! it follows from the last inequality that
(mj —1)! > (41)™~!. Thus, from this and (3.2) we obtain

[0/u(,0)] > C1 ()™

which shows that (0, -) cannot be analytic near ¢ = 0. O

4 @G° regularity in time for the KdV

Next we shall focus our attention to the periodic initial value problem for the
KdV equation

O = 02 + ud,u (4.1)

u(e,0) = (), (4.2)

when ¢(z) is analytic on the torus T. As we have mentioned before, this problem
is well-posed (see, for example, [B], [KPV] and [CKSTT1]) and its solution u(z, t)
is analytic in the spatial variable (see [T] and [GH2|). Here we shall use the
analyticity estimates obtained in [GH2] to prove the following result.

Theorem 4.1 The solution u(x,t) to the KdV initial value problem (4.1)-(4.2)
belongs to G® in the time variable t.

Proof of Theorem 4.1. By the work in [GH2| u(z,t) is analytic in x for all ¢
near zero. More precisely, there exist C' > 0 and ¢ > 0 such that

|0Fu(z,t)| < CFEL kE=0,1,2,---, t € (=65,6), v €T. (4.3)
In order to prove Theorem 4.1 it is enough to prove the following

Lemma 4.2 For k =0,1,--- and j = 0,1,2,--- the following inequality holds
true

0] 0Fu(z, )| < CHHT(k + 35)1(C? + C/2), (4.4)

forte (—0,0), x €T.



Proof. We will prove it by using induction on j. For j = 0 inequality (4.4) holds
for all k£ € {0,1,2,---} since it is nothing else but inequality (4.3). For j = 1 and
ke€{0,1,2,---} it follows from (4.1) that

0,0%u = OFPu 4 0F(ud,u)

k
= Ou+ ) <k) OF PPy, (4.5)
p
p=0

First, from (4.3) we obtain that

10530 (z, )| < CFPH (k4 3)l < CFPH (k43 1)IC2, t € (—6,0), z €T.
(4.6)

Now we notice that

k k
k k!
| E ( )Qﬁ_puﬁgﬂﬂ S E WCk—p-‘rl(k — p)!C’p—HH(p + 1)'
—\p = p'(k—p)!

CHEY “(p+1) = C*RI(k + 1) (k + 2)/2 (4.7)

p=0
= OB (k+2)1/2 = C* Y (k+2)!1C/2 < CFHY (K + 3)1C/2,
for t € (—=4,0), = € T, where we have used the fact that

k

Y p+1)=(k+1)(k+2)/2.

p=0
It follows from (4.6) and (4.7) that
10,0%u(x, )| < C*H (k4 3.1)(C? + C)2),

for t € (—=6,0), x € T, which complete the proof in this case.

We now suppose that (4.4) holds for all derivatives in ¢ of order < j and
k € {0,1,2,---} and we shall prove that (4.4) holds for j+1 and k € {0,1,2,--- }.



We have from (4.1) that

Nk = O3 u+ 910k (u- dpu)

k
. . Lk
= OOkty 4+ 5 §j< )a’;Puag“u
t t < P

p=0

k
_ aga§+3u+z( ) (D 0kPu) (9P ) (4.8)

p=0

(0 etrwieior

p

W

k .
n (1) (5) @ rorraetoro,
0

(=1 p=

Sl
= o

By using the induction assumption we obtain

00y Pl < ORI (k3 4 35)1(CP + C2))
CFHUHDHL (L 4 3(5 + 1)1(C? + C/2)'C?, (4.9)

for t € (=6,0), z € T.
For the second term in the formula (4.8), by using the induction assumption,
we obatin

> (’“) (Bhk ) 2

pOp

IN

k
va Ck PRIk — p+ 35)(C° + C /2 CPFH (p 4 1))
b=

= CMIC?+ Ok (p+ D)(k—p+1)(k—p+2).-- (k—p+3))
k
< CRIRCP 4+ 2R J(p+ 1)k + 1)(k+2). - (k+ 3)).

p=0



By using again the fact that Z];:O(p +1) = (k+ 1)(k+2)/2 it follows from
the last inequality that

k

> (F)@ier ez

C’;”*?’(OZ +C/2Y (k4 3)(k + 1)(k +2)/2 (4.10)
CHIT3(C? + C/2)7 (k + 35)!(k + 35 + 1)(k + 35 +2)/2

k43 (12 J ' :
CFIT(C? + C/2P (k430 + D) 5 3571)

%c“@m“«ﬂ+0ﬂyw+3u+1wcm.

IN A

IA

For the third term in the formula (4.8) we have

k

> (F) @t rueter

p=0
< 30O P (g 14 (CY 4 2y
= p'(k—p)!
k
= CMIB(CP+C2YKD) (p+ 1) +2)- - (p+ 1+ 3))
p=0
k
< CHIR(C 4+ Cf2P KDY (p+ 1) (k+2) - (k+ 1+ 35).

p=0
As in (4.10) we have

k

> (5) et ro@iera

p=0

CHIH(C2 4 C2) kN k+2) - (k+1+3))(k+1)(k+2)/2
CMHIT3(C? + C/2) (k + 35 + D)!(k +2)/2 (4.11)
CHFHIF3(C% 4+ CJ2) (k + 35 + 1)!(k + 35 +2)/2

CHHUHDIL(C2 L C/2) (k + 3(5 4 1))!C/2

IA A IA

IN

k130 +1)
%cﬂmﬂﬂaﬂ+cnyw+3u+1mcm.

10



In order to estimate the last term in (4.8) we shall recall that for £ < j and
p < k we have the following inequality

(0)G) =01
(see [DHK, Lemma 2.8)).

By using it and the induction assumption we obtain

Z (1) () et mmator

]:1 k
> (] +k)0k PR (R —p+3(7 — O)N(C* + C/2) "

<
—~ = {+p
X 0P+1+f+1(p +1430)!(C?* +C/2)
S\ (k+9)!
= CFIT(C? 4+ )2y 4.12
( /2) ;p l+p)l(k+7—L—p) (4.12)
x [k—=p+3({—0](p+1+30)!
-1 k
= CFIT(C2 1 C/2)9( k—l—j'zz F L+ D)(p+L+2). - (p+L+1+20)
=1 p=0
x (k+j—Ll—p+1)k+j—Cl—p+2).--- (k+j—LC—p+25—20).
We now notice that for any v € N we have
(p+l+v)<(k+j+v—1)
since p<kand ¢/ <j—1, and
(k+j—Ll—p+v)<(k+j+v—1)
since the maximum value is given when p =0 and ¢ = 1.
It follows from these inequalities and from (4.12) that
j=1 k .
ZZ()() o0 Pu) (0f0x )
=1 p=
-1 k
< CRICPHC2P (k+ ) ) o+ D) (k+j+1) - (k+5+20)
/=1 p=0
x (k+)k+j+1). - (k+j+2j—20—1). (4.13)

11



Since k+j7+v<k+j+v+20+1, for any v € N, it follows from this and
(4.13) that

X

= CMI(C 4+ C/2) (k + 35)!

Since

J

5> (1)) @ ot ruareo

/=1 p:()

< Ck+]+3(02+0/2) <k+j |

-1

.

DAL+ 1)k +j+ 1) (k+j+20)

“M

(k+j+20+1)(k+j+ 20 )p (k+375) (4.14)

Kv

M;r

(p+L+1).

I
o

/=1 p

-1 k
Y lp+l+1)=(k+1)(—(k+j+2)/2,
/=1 p=0

it follows from this and (4.14) that

IAIAIA A

IN

KZXkJ () ( ) A

CHIT(C? + C/2)0 (k+3)(k+7+2)(k+1)(j —1)/2
CHFHIT(C2 + C2) (k+3)(k+3j+ D(k+1)(j —1)/2
( (j
j—

CHFIT(C? + C/2) (k+ 35 + DI(k+1)(j — 1)/2
CHUTDTL(C2 4 C/2) (k + 35 + DIC/2(k + 1)(j — 1)

k4+(j+1)+1 /2 (k+ 10— 1)
CHHUHDH(C? 4 C)/2)) (k+3(J+1>>'C/2(k+3j+2)(k+3j+3)

C’“*““ O+ C/2Y (k4305 + 1)C/2,

(4.15)

where we have used that k + 7 +2 < k+7+2/j+1=k+3j+ 1since 1 <
implies that 2 < 25 < 2j 4+ 1 and we also have used that k+ 37 +2 >k + 1 and
k+3j+3>3j+3=3(j+1)>3(j—1).

Finally by using (4.8), (4.9), (4.10), (4.11) and (4.15) we obtain

0T Oku(a, £)] < OOV [k 4 3(j 4 1)I(C? + C/2)H.

This completes the proof of Lemma 4.2, and therefore it also completes the
proof of Theorem 4.1. Il
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