About
48
Publications
7,527
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,341
Citations
Publications
Publications (48)
Significance
Gene delivery by virus-like particles holds enormous therapeutic potential to correct inherited genetic disorders and to prevent infectious disease. However, cells express antiviral factors that prevent virus infection and, consequently, limit the success of gene therapy. Here, we reveal the mechanism by which the drug rapamycin improv...
The viral envelope glycoprotein, known as “Env” in Retroviridae , is found on the virion surface and facilitates virus entry into cells by mediating cell attachment and fusion. Env is a major structural component of retroviruses and is targeted by all arms of the immune response, including adaptive and innate immunity. Less is known about how cell-...
The interferon-inducible transmembrane (IFITM) proteins belong to the Dispanin/ CD225 family and inhibit diverse virus infections. IFITM3 reduces membrane fusion between cells and virions through a poorly characterized mechanism. Mutation of proline-rich transmembrane protein 2 (PRRT2), a regulator of neurotransmitter release, at glycine-305 was pr...
The interferon-induced transmembrane (IFITM) proteins broadly inhibit the entry of diverse pathogenic viruses, including Influenza A virus (IAV), Zika virus, HIV-1, and SARS coronaviruses by inhibiting virus-cell membrane fusion. IFITM3 was previously shown to disrupt cholesterol trafficking, but the functional relationship between IFITM3 and chole...
Virus entry, consisting of attachment to and penetration into the host target cell, is the first step of the virus life cycle and is a critical ‘do or die’ event that governs virus emergence in host populations. Most antiviral vaccines induce neutralizing antibodies that prevent virus entry into cells. However, while the prevention of virus invasio...
Interferon-induced transmembrane (IFITM) proteins are potent innate immune factors that restrict an array of viruses at the entry stage of infection. We previously characterized a GxxxG motif in the CD225 domain of human IFITM3 that mediates its multimerization, which is essential for the reduction of membrane fluidity by IFITM3 and for its antivir...
The viral accessory protein Nef is a major determinant of HIV-1 pathogenicity in vivo. Nef is a multifunctional, immunomodulatory protein that downmodulates cell surface proteins, including CD4 and MHC class I (MHC-I) important for T-cell-mediated immunity. In addition, Nef also regulates cell-intrinsic immunity. Nef boosts the infectivity of virio...
Species-specific interferon responses are shaped by the virus-host arms race. The human interferon-induced transmembrane protein (IFITM) family consists of three antiviral IFITM genes that arose by gene duplication. These genes restrict virus entry and are key players in antiviral interferon responses. The unique IFITM repertoires in different spec...
The CD225/Dispanin superfamily contains membrane proteins that regulate vesicular transport and membrane fusion events required for neurotransmission, glucose transport, and antiviral immunity. However, how the CD225 domain controls membrane trafficking has remained unknown. Here we show that the CD225 domain contains a SNARE-like motif that enable...
The CD225/Dispanins superfamily consists of membrane proteins that regulate vesicular transport and membrane fusion events driving neurotransmission, glucose transport, and antiviral immunity. However, how the CD225 domain controls membrane trafficking was unknown. We reveal that the CD225 domain contains a SNARE-like motif that enables interaction...
Omicron emerged following COVID-19 vaccination campaigns, displaced previous SARS-CoV-2 variants of concern worldwide, and gave rise to lineages that continue to spread. Here, we show that Omicron exhibits increased infectivity in primary adult upper airway tissue relative to Delta. Using recombinant forms of SARS-CoV-2 and nasal epithelial cells c...
SARS-CoV-2, like many viruses, generates syncytia. Using SARS-CoV-2 and Spike (S) expressing recombinant vesicular stomatitis and influenza A viruses, we show that S-mediated syncytia formation provides resistance to interferons in cultured cells, human small airway-derived air-liquid interface cultures and hACE2 transgenic mice. Amino acid substit...
SARS-CoV-2, like many viruses, generates syncytia. Using SARS-CoV-2 and S (S) expressing recombinant vesicular stomatitis and influenza A viruses, we show that S-mediated syncytia formation provides resistance to interferons in cultured cells, human small airway-derived air-liquid interface cultures and hACE2 transgenic mice. Amino acid substitutio...
The interferon response is shaped by the evolutionary arms race between hosts and the pathogens they carry. The human interferon-induced transmembrane protein (IFITM) family consists of three antiviral IFITM genes that arose by gene duplication, they restrict virus entry and are key players of the interferon response. Yet, little is known about IFI...
Omicron emerged following COVID-19 vaccination campaigns, displaced previous SARS-CoV-2 variants of concern worldwide, and gave rise to lineages that continue to spread. Here, we show that Omicron exhibits increased infectivity in primary adult upper airway tissue. Using recombinant forms of SARS-CoV-2 and nasal epithelial cells cultured at the liq...
Serine incorporator 5 (Ser5), a transmembrane protein, has recently been identified as a host antiviral factor against human immunodeficiency virus (HIV)-1 and gammaretroviruses like murine leukemia viruses (MLVs). It is counteracted by HIV-1 Nef and MLV glycogag. We have investigated whether it has antiviral activity against influenza A virus (IAV...
SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA-approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is comm...
The interferon-induced transmembrane (IFITM) proteins broadly inhibit the entry of diverse pathogenic viruses, including Influenza A virus (IAV), Zika virus, HIV-1, and SARS coronaviruses by inhibiting virus-cell membrane fusion. IFITM3 was previously shown to disrupt cholesterol trafficking, but the functional relationship between IFITM3 and chole...
The interferon-induced transmembrane ( IFITM ) family performs multiple functions in immunity, including inhibition of virus entry into cells. The IFITM repertoire varies widely between species and consists of protein-coding genes and pseudogenes. The selective forces driving pseudogenization within gene families are rarely understood. In this issu...
[This corrects the article DOI: 10.1371/journal.ppat.1008359.].
SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and the evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA-approved as mTOR inhibitors in clinical settings such as cancer and autoimmunity. Rapalog use is commonly associate...
The CD225 superfamily regulates vesicular membrane fusion events essential to neurotransmission, immunity, development, and metabolism. Its importance to physiology is reinforced by the identification of polymorphisms associated with disease. This article highlights the shared features that drive the function of CD225 proteins such as interferon-in...
Interferon-induced transmembrane proteins (IFITMs) restrict infections by many viruses, but a subset of IFITMs enhance infections by specific coronaviruses through currently unknown mechanisms. We show that SARS-CoV-2 Spike-pseudotyped virus and genuine SARS-CoV-2 infections are generally restricted by human and mouse IFITM1, IFITM2, and IFITM3, us...
The interferon-inducible transmembrane (IFITM) proteins belong to the Dispanin/CD225 family and inhibit diverse virus infections. IFITM3 reduces membrane fusion between cells and virions through a poorly characterized mechanism. Mutation of proline-rich transmembrane protein 2 (PRRT2), a regulator of neurotransmitter release, at glycine-305 was pre...
Interferon-induced transmembrane proteins (IFITMs) restrict infections by many viruses, but a subset of IFITMs enhance infections by specific coronaviruses through currently unknown mechanisms. Here we show that SARS-CoV-2 Spike-pseudotyped virus and genuine SARS-CoV-2 infections are generally restricted by expression of human IFITM1, IFITM2, and I...
The interferon-inducible transmembrane (IFITM) proteins belong to the Dispanin/CD225 family and inhibit diverse virus infections. IFITM3 reduces membrane fusion between cells and virions through a poorly characterized mechanism. We identified a GxxxG motif in many CD225 proteins, including IFITM3 and proline rich transmembrane protein 2 (PRRT2). Mu...
There has been resurgence in determining the role of host metabolism in viral infection yet deciphering how the metabolic state of single cells affects viral entry and fusion remains unknown. Here, we have developed a novel assay multiplexing genetically-encoded biosensors with single virus tracking (SVT) to evaluate the influence of global metabol...
Key Points
The cyclic resveratrol trimer caraphenol A safely enhances lentiviral vector gene delivery to hematopoietic stem and progenitor cells. Caraphenol A decreases interferon-induced transmembrane protein-mediated restriction in an endosomal trafficking-dependent manner.
There has been resurgence in determining the role of host metabolism in viral infection yet deciphering how the metabolic state of single cells affects viral entry and fusion remains unknown. Here, we have developed a novel assay multiplexing genetically encoded biosensors with single virus tracking (SVT) to evaluate the influence of global metabol...
The first responders of human antiviral immunity are components of the intrinsic immune response that reside within each and every one of our cells. This cell-autonomous arsenal consists of nucleic acid sensors and antiviral effectors strategically placed by evolution to detect and restrict invading viruses. While some factors are present at baseli...
HIV-1 disseminates to diverse tissues through different cell types and establishes long-lived reservoirs. The exact cellular compartment where fusion occurs differs depending on the cell type and mode of viral transmission. This implies that HIV-1 may modulate a number of common host cell factors in different cell types. In this review, we evaluate...
Interferon-induced transmembrane protein 3 (IFITM3) is a cellular factor that blocks virus fusion with cell membranes. IFITM3 has been suggested to alter membrane curvature and fluidity, though its exact mechanism of action is unclear. Using a bioinformatic approach, we predict IFITM3 secondary structures and identify a highly conserved, short amph...
The cytopathic effects of Zika virus (ZIKV) are poorly characterized. Innate immunity controls ZIKV infection and disease in most infected patients through mechanisms that remain to be understood. Here, we studied the morphological cellular changes induced by ZIKV and addressed the role of interferon-induced transmembrane proteins (IFITM), a family...
While less appreciated than the ubiquitous process of cell fission (division), cell fusion events
play crucial roles in all walks of life. In vertebrates, the multinucleated product of cell—cell
fusion, referred to as a syncytium, is central to the structure and function of tissue types like
skeletal muscle fibers and the fetal—maternal barrier in...
The interferon-induced transmembrane (IFITM) proteins protect host cells from diverse virus infections. IFITM proteins also incorporate into HIV-1 virions and inhibit virus fusion and cell-to-cell spread, with IFITM3 showing the greatest potency. Here, we report that amino-terminal mutants of IFITM3 preventing ubiquitination and endocytosis are mor...
The interferon-induced transmembrane (IFITM) proteins restrict the entry of diverse viruses into the host cell, and as such form an important part of the cell-intrinsic innate immune response. Their broad-spectrum activity makes them particularly interesting in the context of the fight between host and pathogens. They act in part by altering the pr...
The interferon-induced transmembrane (IFITM) proteins restrict the entry of diverse viruses into the host cell, and as such form an important part of the cell-intrinsic innate immune response. Their broad-spectrum activity makes them particularly interesting in the context of the fight between host and pathogens. They act in part by altering the pr...
The interferon-induced transmembrane (IFITM) proteins protect cells from diverse virus infections by inhibiting virus-cell fusion. IFITM proteins also inhibit HIV-1 replication through mechanisms only partially understood. We show that when expressed in uninfected lymphocytes, IFITM proteins exert protective effects during cell-free virus infection...
Simian immunodeficiency viruses (SIVs) have infected primate species long before human immunodeficiency virus has infected humans. Dozens of species-specific lentiviruses are found in African primate species, including two strains that have repeatedly jumped into human populations within the past century. Traditional phylogenetic approaches have gr...
Naturally circulating lentiviruses are abundant in African primate species today, yet their origins and history of transmitting between hosts remain obscure. As a means to better understand the age of primate lentiviruses, we analyzed primate genomes for signatures of lentivirus-driven evolution. Specifically, we studied the adaptive evolution of h...
APOBEC3G (A3G) is a host cytidine deaminase that inhibits retroviruses. HIV and related primate lentiviruses encode Vif, which counteracts A3G by inducing its degradation. This Vif-mediated A3G inhibition is species specific, suggesting that the A3G-Vif interaction has evolved as primate lentiviruses have adapted to their hosts. We examined the evo...
Virus-specific CD8+ T cells probably mediate control over HIV replication in rare individuals, termed long-term nonprogressors (LTNPs) or elite controllers. Despite extensive investigation, the mechanisms responsible for this control remain incompletely understood. We observed that HIV-specific CD8+ T cells of LTNPs persisted at higher frequencies...
The widely used hormonal herbicide, 2,4-dichlorophenoxyacetic acid, blocks meiotic maturation in vitro and is thus a potential environmental endocrine disruptor with early reproductive effects. To test whether maturation inhibition was dependent on protein kinase A, an endogenous maturation inhibitor, oocytes were microinjected with PKI, a specific...