About
346
Publications
81,504
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
33,008
Citations
Introduction
Additional affiliations
January 2013 - present
January 1996 - present
Publications
Publications (346)
In some systems, the behavior of the constituent units can create a “context” that modifies the direct interactions among them. This mechanism of indirect modification inspired us to develop a minimal model of context-dependent spreading. In our model, agents actively impede (favor) or not diffusion during an interaction, depending on the behavior...
Here we analyze SARS-CoV-2 genome copies in Catalonia's wastewater during the Omicron peak and develop a mathematical model to estimate the number of infections and the temporal relationship between reported and unreported cases. 1-liter samples from 16 wastewater treatment plants were collected and used in a compartmental epidemiological model. Th...
Background:
The initial wave of the COVID-19 pandemic placed a tremendous strain on health care systems worldwide. To mitigate the spread of the virus, many countries implemented stringent nonpharmaceutical interventions (NPIs), which significantly altered human behavior both before and after their enactment. Despite these efforts, a precise asses...
Background: SARS-CoV-2, the virus responsible for the COVID-19 pandemic, can be detected in stool samples and subsequently shed in the sewage system. The field of Wastewater-based epidemiology (WBE) aims to use this valuable source of data for epidemiological surveillance, as it has the potential to identify unreported infections and to anticipate...
The 2021 Nobel Prize in Physics recognized the fundamental role of complex systems in the natural sciences. In order to celebrate this milestone, this editorial presents the point of view of the editorial board of JPhys Complexity on the achievements, challenges, and future prospects of the field. To distinguish the voice and the opinion of each ed...
Many complex networked systems exhibit volatile dynamic interactions among their vertices, whose order and persistence reverberate on the outcome of dynamical processes taking place on them. To quantify and characterize the similarity of the snapshots of a time-varying network—a proxy for the persistence,—we present a study on the persistence of th...
The dynamics of many epidemic compartmental models for infectious diseases that spread in a single host population present a second-order phase transition. This transition occurs as a function of the infectivity parameter, from the absence of infected individuals to an endemic state. Here, we study this transition, from the perspective of dynamical...
Robust coordination and organization in large ensembles of nonlinear oscillatory units play a vital role in a wide range of natural and engineered system. The control of self-organizing network-coupled systems has recently seen significant attention, but largely in the context of modifying or augmenting existing structures. This leaves a gap in our...
The constituent units of certain systems are able to define a `context' that, altering the behavior of other units, indirectly modifies the (direct) interactions occurring among the latter.Motivated by mechanisms of `indirect modification' -- as they are called in ecology -- identified in real systems, we present a minimal model of context-dependen...
The dynamics of many epidemic compartmental models for infectious diseases that spread in a single host population present a second-order phase transition. This transition occurs as a function of the infectivity parameter, from the absence of infected individuals to an endemic state. Here, we study this transition, from the perspective of dynamical...
Research on network percolation and synchronization has deepened our understanding of abrupt changes in the macroscopic properties of complex engineered and natural systems. While explosive percolation emerges from localized structural perturbations that delay the formation of a connected component, explosive synchronization is usually studied by f...
Congestion emerges when high demand peaks put transportation systems under stress. Understanding the interplay between the spatial organization of demand, the route choices of citizens and the underlying infrastructures is thus crucial to locate congestion hotspots and mitigate the delay. Here we develop a model where links are responsible for the...
Robust coordination and organization in large ensembles of nonlinear oscillatory units play a vital role in a wide range of natural and engineered system. The control of self-organizing network-coupled systems has recently seen significant attention, but largely in the context of modifying or augmenting existing structures. This leaves a gap in our...
While significant effort has been devoted to understand the role of intra-urban characteristics on sustainability and growth, much remains to be understood about the effect of inter-urban interactions and the role cities have in determining each other’s urban welfare. Here we consider a global mobility network of population flows between cities as...
BACKGROUND
The initial wave of the COVID-19 pandemic placed a tremendous strain on health care systems worldwide. To mitigate the spread of the virus, many countries implemented stringent nonpharmaceutical interventions (NPIs), which significantly altered human behavior both before and after their enactment. Despite these efforts, a precise assessm...
Many complex networked systems exhibit volatile dynamic interactions among their vertices, whose order and persistence reverberate on the outcome of dynamical processes taking place on them. To quantify and characterize the similarity of the snapshots of a time-varying network -- a proxy for the persistence,-- we present a study on the persistence...
The behaviour of individuals is a main actor in the control of the spread of a communicable disease and, in turn, the spread of an infectious disease can trigger behavioural changes in a population. Here, we study the emergence of individuals’ protective behaviours in response to the spread of a disease by considering two different social attitudes...
Congestion emerges when high demand peaks put transportation systems under stress. Understanding the interplay between the spatial organization of demand, the route choices of citizens, and the underlying infrastructures is thus crucial to locate congestion hotspots and mitigate the delay. Here we develop a model where links are responsible for the...
Urban systems are characterized by populations with heterogeneous characteristics, and whose spatial distribution is crucial to understand inequalities in life expectancy or education level. Traditional studies on spatial segregation indicators focus often on first-neighbour correlations but fail to capture complex multi-scale patterns. In this wor...
The lack of medical treatments and vaccines upon the arrival of the SARS-CoV-2 virus has made non-pharmaceutical interventions the best allies in safeguarding human lives in the face of the COVID-19 pandemic. Here we propose a self-organized epidemic model with multi-scale control policies that are relaxed or strengthened depending on the extent of...
Urban systems are characterized by populations with heterogeneous characteristics, and whose spatial distribution is crucial to understand inequalities in life expectancy or education level. Traditional studies on spatial segregation indicators focus often on first-neighbour correlations but fail to capture complex multi-scale patterns. In this wor...
The analysis of contagion–diffusion processes in metapopulations is a powerful theoretical tool to study how mobility influences the spread of communicable diseases. Nevertheless, many metapopulation approaches use indistinguishable agents to alleviate analytical difficulties. Here, we address the impact that recurrent mobility patterns, and the sp...
Since its original formulation, the Kuramoto model and its many variants have served as critical tools for uncovering and understanding the emergence of nonlinear collective behavior. However, recent evidence suggests that in such phase-reduced systems, interactions beyond the typical pair-wise angle differences need to be considered to develop a f...
We introduce the concept of synchronization bombs as large networks of coupled heterogeneous oscillators that operate in a bistable regime and abruptly transit from incoherence to phase-locking (or vice-versa) by adding (or removing) one or a few links. Here we build a self-organized and stochastic version of these bombs, by optimizing global synch...
The spatiotemporal propagation patterns of recent infectious diseases, originated as localized epidemic outbreaks and eventually becoming global pandemics, are highly influenced by human mobility. Case exportation from endemic areas to the rest of the countries has become unavoidable because of the striking growth of the global mobility network, he...
Physical contacts do not occur randomly, rather, individuals with similar socio-demographic and behavioral characteristics are more likely to interact among them, a phenomenon known as homophily. Concurrently, the same characteristics correlate with the adoption of prophylactic tools. As a result, the latter do not unfold homogeneously in a populat...
The analysis of contagion-diffusion processes in metapopulations is a powerful theoretical tool to study how mobility influences the spread of communicable diseases. Nevertheless, many metapopulation approaches use indistinguishable agents to alleviate analytical difficulties. Here, we address the impact that recurrent mobility patterns, and the sp...
Percolation is a process that impairs network connectedness by deactivating links or nodes. This process features a phase transition that resembles paradigmatic critical transitions in epidemic spreading, biological networks, traffic and transportation systems. Some biological systems, such as networks of neural cells, actively respond to percolati...
While much effort has been devoted to understand the role of intra-urban characteristics on sustainability and growth, much remains to be understood about the effect of inter-urban interactions and the role cities have in determining each other's urban welfare. Here we consider a global mobility network of population flows between cities as a proxy...
Collective behavior plays a key role in the function of a wide range of physical, biological, and neurological systems where empirical evidence has recently uncovered the prevalence of higher-order interactions, i.e., structures that represent interactions between more than just two individual units, in complex network structures. Here, we study th...
Physical contacts do not occur randomly, rather, individuals with similar socio-demographic and behavioural characteristics are more likely to interact among them, a phenomenon known as homophily. Concurrently, the same characteristics correlate with the adoption of prophylactic tools. As a result, the latter do not unfold homogeneously in a popula...
Together with seasonal effects inducing outdoor or indoor activities, the gradual easing of prophylaxis caused second and third waves of SARS-CoV-2 to emerge in various countries. Interestingly, data indicate that the proportion of infections belonging to the elderly is particularly small during periods of low prevalence and continuously increases...
The behaviour of individuals is a main actor in the control of the spread of a communicable disease and, in turn, the spread of an infectious disease can trigger behavioural changes in a population. Here, we study the emergence of the individuals protective behaviours in response to the spread of a disease by considering two different social attitu...
The increasing agglomeration of people in dense urban areas coupled with the existence of efficient modes of transportation connecting such centers, make cities particularly vulnerable to the spread of epidemics. Here we develop a data-driven approach combines with a meta-population modeling to capture the interplay between population density, mobi...
Collective behavior plays a key role in the function of a wide range of physical, biological, and neurological systems where empirical evidence has recently uncovered the prevalence of higher-order interactions, i.e., structures that represent interactions between more than just two individual units, in complex network structures. Here, we study th...
We study how homophily of human physical interactions affects the impact of digital proximity tracing on the epidemic evolution. Analytical and numerical results show the existence of different dynamical regimes with respect to the mixing rate between adopters and nonadopters, revealing a rich phenomenology in terms of the reproduction number as we...
Human mobility, contact patterns, and their interplay are key aspects of our social behavior that shape the spread of infectious diseases across different regions. In the light of new evidence and data sets about these two elements, epidemic models should be refined to incorporate both the heterogeneity of human contacts and the complexity of mobil...
We study the synchronized state in a population of network-coupled, heterogeneous oscillators. In particular, we show that the steady-state solution of the linearized dynamics may be written as a geometric series whose subsequent terms represent different spatial scales of the network. Specifically, each additional term incorporates contributions f...
Contagion processes have been proven to fundamentally depend on the structural properties of the interaction networks conveying them. Many real networked systems are characterized by clustered substructures representing either collections of all-to-all pair-wise interactions (cliques) and/or group interactions, involving many of their members at on...
Financial networks have been the object of intense quantitative analysis during the last few decades. Their structure and the dynamical processes on top of them are of utmost importance to understand the emergent collective behavior behind economic and financial crises. In this paper, we propose a stylized model to understand the “domino effect” of...
We study the synchronized state in a population of network-coupled, heterogeneous oscillators. In particular, we show that the steady-state solution of the linearized dynamics may be written as a geometric series whose subsequent terms represent different spatial scales of the network. Namely, each addition term incorporates contributions from wide...
We study how homophily of human physical interactions affects the efficacy of digital proximity tracing. Analytical results show a non monotonous dependence of the reproduction number with respect to the mixing rate between individuals that adopt the contact tracing app and the ones that do not. Furthermore, we find regimes in which the attack rate...
Human mobility, contact patterns, and their interplay are key aspects of our social behavior that shape the spread of infectious diseases across different regions. In the light of new evidence and data sets about these two elements, epidemic models should be refined to incorporate both the heterogeneity of human contacts and the complexity of mobil...
After the blockade that many nations suffered to stop the growth of the incidence curve of COVID-19 during the first half of 2020, they face the challenge of resuming their social and economic activity. The rapid airborne transmissibility of SARS-CoV-2, and the absence of a vaccine, calls for active containment measures to avoid the propagation of...
One of the most important questions on the COVID-19 pandemic is ascertaining the correct timing to introduce non-pharmaceutical interventions (NPIs), based mainly on mobility restrictions, to control the rising of the daily incidence in a specific territory. Here, we make a retrospective analysis of the first wave of the epidemic in Spain and provi...
With the hit of new pandemic threats, scientific frameworks are needed to understand the unfolding of the epidemic. The use of mobile apps that are able to trace contacts is of utmost importance in order to control new infected cases and contain further propagation. Here we present a theoretical approach using both percolation and message-passing t...
In this work, we address the connection between population density centers in urban areas, and the nature of human flows between such centers, in shaping the vulnerability to the onset of contagious diseases. A study of 163 cities, chosen from four different continents reveals a universal trend, whereby the risk induced by human mobility increases...
Contagion processes have been proven to fundamentally depend on the structural properties of the interaction networks conveying them. Many real networked systems -- especially social ones -- are characterized by clustered substructures representing either collections of all-to-all pair-wise interactions (cliques) and/or group interactions, involvin...
On 31 December, 2019, an outbreak of a novel coronavirus, SARS-CoV-2, that causes the COVID-19 disease, was first reported in Hubei, mainland China. This epidemics’ health threat is probably one of the biggest challenges faced by our interconnected modern societies. According to the epidemiological reports, the large basic reproduction number R0∼3....
Synchronization processes play critical roles in the functionality of a wide range of both natural and man-made systems. Recent work in physics and neuroscience highlights the importance of higher-order interactions between dynamical units, i.e., three- and four-way interactions in addition to pairwise interactions, and their role in shaping collec...
After the blockade that many nations have faced to stop the growth of the incidence curve of COVID-19, it is time to resume social and economic activity. The rapid airborne transmissibility of SARS-CoV-2, and the absence of a vaccine, call for active containment measures to avoid the propagation of transmission chains. The best strategy to date is...
We study the dynamics of coupled oscillator networks with higher-order interactions and their ability to store information. In particular, the fixed points of these oscillator systems consist of two clusters of oscillators that become entrained at opposite phases, mapping easily to information more commonly represented by sequences of 0’s and 1’s....
A very simple epidemic model proposed a century ago is the linchpin of the current mathematical models of the epidemic spreading of the COVID-19. Nowadays, the abstracted compartmentalisation of the population in susceptible, infected and recovered individuals, combined with precise information about the networks of mobility flows within geographic...
We study the dynamics of coupled oscillator networks with higher-order interactions and their ability to store information. In particular, the fixed points of these oscillator systems consist of two clusters of oscillators that become entrained at opposite phases, mapping easily to information more commonly represented by sequences of 0's and 1's....
An elusive phenomenon in network neuroscience is the extent of neuronal activity remodeling upon damage. Here, we investigate the action of gradual synaptic blockade on the effective connectivity in cortical networks in vitro. We use two neuronal cultures configurations, one formed by about 130 neuronal aggregates and another one formed by about 60...
With the hit of new pandemic threats, scientific frameworks are needed to understand the unfolding of the epidemic. At the mitigation stage of the epidemics in which several countries are now, the use of mobile apps that are able to trace contacts is of utmost importance in order to control new infected cases and contain further propagation. Here w...
Many real systems are strongly characterized by collective cooperative phenomena whose existence and properties still need a satisfactory explanation. Coherently with their collective nature, they call for new and more accurate descriptions going beyond pairwise models, such as graphs, in which all the interactions are considered as involving only...
Many real systems are strongly characterized by collective cooperative phenomena whose existence and properties still need a satisfactory explanation. Coherently with their collective nature, they call for new and more accurate descriptions going beyond pairwise models, such as graphs, in which all the interactions are considered as involving only...
Human behavioral responses play an important role in the impact of disease outbreaks and yet they are often overlooked in epidemiological models. Understanding to what extent behavioral changes determine the outcome of spreading epidemics is essential to design effective intervention policies. Here we explore, analytically, the interplay between th...
Background: Genomic medicine has paved the way for identifying biomarkers and therapeutically actionable targets for complex diseases, but is complicated by the involvement of thousands of variably expressed genes across multiple cell types. Single-cell RNA-sequencing study (scRNA-seq) allows the characterization of such complex changes in whole or...
The spread of COVID-19 is posing an unprecedented threat to health systems worldwide[1]. The fast propagation of the disease combined with the existence of covert contagions by asymptomatic individuals make the controlling of this disease particularly challenging. The key parameter to track the progression of the epidemics is the effective reproduc...
An outbreak of a novel coronavirus, named SARS-CoV-2, that provokes the COVID-19 disease, was first reported in Hubei, mainland China on 31 December 2019. As of 20 March 2020, cases have been reported in 166 countries/regions, including cases of human-to-human transmission around the world. The proportions of this epidemics is probably one of the l...
Recent studies on network geometry, a way of describing network structures as geometrical objects, are revolutionizing our way to understand dynamical processes on networked systems. Here, we cope with the problem of epidemic spreading, using the susceptible-infected-susceptible (SIS) model, in simplicial complexes. In particular, we analyze the dy...
Many complex networks are built up from empirical data prone to experimental error. Thus, the determination of the specific weights of the links is a noisy measure. Noise propagates to those macroscopic variables researchers are interested in, such as the critical threshold for synchronization of coupled oscillators or for the spreading of a diseas...
Damage in biological neuronal networks triggers a complex functional reorganization whose mechanisms are still poorly understood. To delineate this reorganization process, here we investigate the functional alterations of in vitro rat cortical circuits following localized laser ablation. The analysis of the functional network configuration before a...
The joint analysis of shared genes and symptoms on a multi-layered disease network uncovers an alternative grouping of diseases. An international team of researchers from Brigham and Women’s Hospital and Universitat Rovira i Virgili built and analyzed a large-scale network of diseases that consisted of two layers representing gene and symptom relat...
Abstract Systemic risk of financial institutions and sectoral companies relies on their inter-dependencies. The inter-connectivity of the financial networks has proven to be crucial to understand the propagation of default, as it plays a central role to assess the impact of single default events in the full system. Here, we take advantage of comple...
Complex networks are the representative graphs of interactions in many complex systems. Usually, these interactions are abstractions of the communication/diffusion channels between the units of the system. Recently we have proved analytically the existence of a universal phase transition in the communicability–a topological descriptor that reveals...
Recent studies on network geometry, a way of describing network structures as geometrical objects, are revolutionizing our way to understand dynamical processes on networked systems. Here, we cope with the problem of epidemic spreading, using the Susceptible-Infected-Susceptible (SIS) model, in simplicial complexes. In particular, we analyze the dy...