
Automatically Testing Self-Driving Cars
with Search-Based Procedural Content Generation
Alessio Gambi

alessio.gambi@uni-passau.de
University of Passau
Passau, Germany

Marc Mueller
mmueller@beamng.gmbh

BeamNG GmbH
Bremen, Germany

Gordon Fraser
gordon.fraser@uni-passau.de

University of Passau
Passau, Germany

ABSTRACT

Self-driving cars rely on software which needs to be thoroughly
tested. Testing self-driving car software in real traffic is not only
expensive but also dangerous, and has already caused fatalities. Vir-
tual tests, in which self-driving car software is tested in computer
simulations, offer a more efficient and safer alternative compared
to naturalistic field operational tests. However, creating suitable
test scenarios is laborious and difficult. In this paper we combine
procedural content generation, a technique commonly employed in
modern video games, and search-based testing, a testing technique
proven to be effective in many domains, in order to automatically
create challenging virtual scenarios for testing self-driving car soft-
ware. OurAsFault prototype implements this approach to generate
virtual roads for testing lane keeping, one of the defining features
of autonomous driving. Evaluation on two different self-driving car
software systems demonstrates that AsFault can generate effective
virtual road networks that succeed in revealing software failures,
which manifest as cars departing their lane. Compared to random
testing AsFault was not only more efficient, but also caused up to
twice as many lane departures.

CCS CONCEPTS

•Theory of computation→Randomsearchheuristics; • Soft-
ware and its engineering → Empirical software validation;
Search-based software engineering; Virtual worlds training

simulations; Software safety.

KEYWORDS

automatic test generation, search-based testing, procedural content
generation, self-driving cars

ACM Reference Format:

Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. Automatically Test-
ing Self-Driving Cars with Search-Based Procedural Content Generation. In
Proceedings of the 28th ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA ’19), July 15–19, 2019, Beijing, China. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3293882.3330566

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’19, July 15–19, 2019, Beijing, China

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6224-5/19/07. . . $15.00
https://doi.org/10.1145/3293882.3330566

1 INTRODUCTION

Recently, autonomous driving has become an important part of
the industry, and experts forecast this will profoundly impact so-
ciety [6], in particular by increasing safety [8]. However, this is
not yet the case: Even though the prototypes of famous companies
like Waymo-Google [46], Tesla [39], or Uber [45] have reached
high level of autonomy and can drive in everyday urban traffic,
they have caused crashes and even fatal accidents (e.g.,[12, 37, 47]).
Self-driving car software clearly needs to be better tested, but there
is no standardized procedure to test automated vehicles yet [20],
and neither methods for testing traditional cars, nor traditional
software testing approaches translate well into the space of self-
driving cars [21, 24, 36]. A common approach lies in naturalistic
field operational tests (N-FOT), which put self-driving cars on trial
in the real world, but these are not only expensive and dangerous,
but also have limited effectiveness [18].

A more efficient and less risky alternative for testing self-driving
car software lies in virtual tests [23]. Virtual tests follow the X-in-
the-loop paradigm [41] and test self-driving car software by feeding
them simulated sensory data [26], synthesized images [40, 50], or
abstract test scenarios [1, 2]. Typically, these approaches require
models of the hardware implementing the self-driving car and its
sensors (e.g., [1, 2]). A more general approach consists in generating
entire digital realities, i.e., virtual worlds, in which the self-driving
car software is deployed [5, 33]. Generating such virtual environ-
ments for testing the self-driving car software comes with two main
technical challenges: (i) generating environmental elements, e.g.,
terrain, weather, roads; and, (ii) assembling them into simulations
which implement relevant test cases, i.e., test cases which challenge
the self-driving car software, hence have the potential to expose
problems in its implementation.

To address these challenges, we propose an approach for system-
atically testing self-driving car software which combines (1) pro-
cedural content generation (PCG) and (2) search-based testing
(SBST). PCG is a core element of modern video games, and enables
the automatic creation of photorealistic virtual environments [43].
SBST [25] describes the use of efficient meta-heuristic search algo-
rithms to generate program inputs that achieve testing objectives
such as achieving coverage or finding faults. PCG and SBST have
previously been combined, for example, to generate new game el-
ements driven by the feedback collected from the users playing
the game [42]. In the context of racing games, Loiacono et al. [22]
used generic algorithms to create racing tracks with various turns
and speed profiles to increase players’ enjoyment, while Geor-
giou et al. [17] automatically generated challenging tracks based
on players bio-metric feedback, such as eye gaze and movement.

https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1145/3293882.3330566

ISSTA ’19, July 15–19, 2019, Beijing, China Alessio Gambi, Marc Mueller, and Gordon Fraser

Start

Target

OBE1

OBE3
OBE2

Figure 1: Example of a test case generated by AsFault

The figure reports one test case generated by AsFault during our experimental
evaluation and the three safety-critical problems, called obe (Out of Bound Episodes),
it exposed. A test case is defined as a navigation path on the map (highlighted in
yellow) that the ego-car must follow without causing any obe.

In this paper, instead, we combine them for systematically creat-
ing virtual tests which effectively expose problems in self-driving
car software. In particular, our AsFault prototype targets the lane
keeping functionality of self-driving cars.

Lane keeping is the fundamental feature of autonomous driving
according to SAE international [32], and self-driving cars should
be able to always drive inside their lane no matter the weather
conditions or the shape of the road. In order to test lane keeping,
AsFault uses a genetic algorithm to iteratively refine virtual road
networks towards those which cause the self-driving car software
under test, i.e., the ego-car, to move away from the center of the
lane. Eventually, AsFault generates virtual roads which cause the
ego-car to drive off the lane. Figure 1 shows an example of a road
network generated by AsFault which caused the ego-car to drive
off the lane three times.

In detail, the contributions of this paper are as follows:

• We introduce an approach based on procedural content gen-
eration to generate virtual road networks (Section 3).

• We introduce a search-based approach to evolve virtual road
networks towards safety-critical scenarios that cause ego-car
to depart the road (Section 4).

• We evaluate our AsFault prototype implementation on two
self-driving car software systems (Section 5).

Our extensive evaluation, which consists of executing more than
160, 000 virtual tests against two test subjects shows that AsFault
efficiently generates virtual roads which always cause the ego-car
to drive off the lane in various occasions. Compared to random
testing,AsFault is not only faster, but also generates more effective
test suites which caused up to two times more out of bound episodes
(obe) than random testing for one of our test subjects.

2 BACKGROUND

In this paper, we describe a test generation technique targeting the
lane keeping functionality of self-driving cars. Keeping the lane
is one of the fundamental tasks in driving as well as autonomous
driving. If self-driving cars cannot drive inside their lane, they
might easily become a major safety-critical hazard. For instance,
if a self-driving car runs over a sidewalk, it might hurt passers-
by, and if it invades the opposite traffic lane, it might crash into
oncoming traffic. This section describes lane keeping and introduces
procedural content generation to provide context for this work.

Lane keeping systems work by continuously tracking the striped
and solid lane markings of the road ahead using advanced image
processing, deep learning, or machine learning techniques [49]. By
elaborating images captured by forward facing cameras attached to
the front of the vehicles the lane keeping systems derive lane data,
such as the width of the lane, the current position of the car with
respect to it (“in the middle”, “between lanes”, etc.), and the heading
angle of the car, which are necessary to compute the driving actions
to follow the lane or to regain its center.

Since lane keeping systems rely on visible lane markings, when
these are faded or missing, then lane keeping systems might not
operate correctly [15]. Therefore, state of the art approaches to test
lane keeping systems feed them images of real roads suitably altered
to simulate variable weather conditions [50] or to mimic distortions
introduced by faulty cameras [40]. Those approaches aim to check if
and how lane keeping becomes inconsistent; however, because they
test lane keeping systems using only single frames, they cannot be
used to evaluate closed-loop properties of lane keeping systems [44],
including the ability to drive within a lane.

Instead of altering images of real roads, in this paper we generate
virtual roads inside a driving simulator, which can generate photo-
realistic, but synthetic, images of roads. By altering the properties
of the virtual roads, for example by altering their geometry, we
indirectly change how the road markings are rendered in the im-
ages fed to the lane keeping systems. This, in turn, lets us test both
their ability to correctly elaborate the images to derive lane data in
different conditions and the effects which different road configura-
tions have on the systems acting on this input in order to keep the
vehicle in the lane. In principle, we can include additional elements
such as weather, obstacles, and traffic, in the simulation; however,
we choose to focus only on generating virtual road networks with
the reasoning that exposing problems in the lane keeping systems
under “perfect” conditions likely identifies the presence of severe
bugs. Simulating additional elements is part of our ongoing work.

Accurately simulating the physics of driving while rendering
photorealistic images is currently achieved by game engines, and
gaming technologies are already successfully employed for train-
ing and evaluating computer vision and other machine learning
algorithms [5, 11, 28, 31], despite several theoretical concerns about
their representativeness [29]. Game engines serve as a framework
for the creation of video games and require accurate descriptions
of the physical (e.g., mass, material) and visual (e.g., geometry, tex-
ture) properties of the various entities they simulate as well as the
definition of the game rules and levels to correctly operate. Gen-
erating these models and configuring games is cumbersome and
time consuming; therefore, the gaming industry uses procedural

Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation ISSTA ’19, July 15–19, 2019, Beijing, China

Figure 2: An example of multi-lane road segment repre-

sented as set of polylines.

The figure visualizes an example of a road segment which contains multiple lanes and
identifies the points which define their polylines as black dots.

content generation (PCG) [42], i.e., the algorithmic creation of game
content with limited or indirect user input.

Using PCG for generating roads automatically to test lane keep-
ing is challenging. On the one hand, there aremany different aspects
of real roads that affect the ability of lane keeping systems to behave
correctly, resulting in huge numbers of possible road configurations.
Examples of such aspects are the length and steepness of the road
segments, the shape of turns and the presence of intersections as
well as random artifacts like potholes. On the other side, roads must
be geometrically valid; for example, the various road segments must
line up, and roads should not self-intersect or partially overlap.

3 PROCEDURAL GENERATION OF ROAD

NETWORKS

The aim of the procedural generation of road networks is a pre-
cise description of the structure and the geometry of roads and
their lanes in terms of polylines (Section 3.1). We generate these
using an incremental approach: First, we build roads in isolation
by procedurally generating their road segments (Section 3.2) and
sealing road segments together to ensure gapless roads (Section 3.3).
Road segments are modeled in term of predefined parametrized
types such as “straight segment 30m long”, “20◦ left turn”, and so
on, while roads are sequences of consecutive road segments which
develop from a starting point on the map. Then, we combine roads
together on the same maps to form road networks (Section 3.4).

3.1 Representing Roads as Polylines

Polylines are discrete sequences of points which define the bound-
aries of bi-dimensional shapes, i.e., lanes in our work, and are the
basic geometrical representation of roads used by many game en-
gines, driving simulators, and geographical information systems [9].
Figure 2 shows an example of a road segment represented as a set of
polylines which define each of its five lanes (three on the left of the
road spine SPs , and two on its right), and the external edges of the
road segment (i.e., LEs and REs). The polyline-based representation
of roads simplifies the implementation of common operations for
rendering and manipulating roads as well as automatic checks on
their geometrical properties (e.g., self-intersection, partial overlap-
ping). Given their fundamentally discrete nature, polylines are not
as precise as other geometrical constructs, like clothoids; despite

a b

c d
Bs

Fs

IP

Figure 3: Road segment generation

The figure illustrates the procedural generation of a left turn with two lanes.

this, as Althoff et al. [3] illustrate, in the context of self-driving
car software validation using a polylines-based representation of
roads has a comparable expressive power to other formats, such as
OpenDrive [14] which is based on clothoids.

3.2 Generating Road Segments

The elementary activity when procedurally generating roads is the
creation of road segments, and we define it as follows (Figure 3):
For a road segment s , (a) we construct its back line (Bs) from the
starting point IP of the road spine SPs ; Bs is the edge which defines
where the road segment starts and contains the initial points of the
polylines which define the lanes. (b) We construct the road segment
front line (Fs) by applying affine transformations to all Bs points;
we generate straight road segments by translation and turns by
additional rotation. (c) We compute the position of all the internal
points of the lane polylines by interpolation; and, finally (d) we
obtain the geometrical representation of the road segment lanes.

3.3 Generating Roads

Roads are generated procedurally by stitching one road segment
to the next one. To construct gapless roads, we constrain the road
segment generation to use the front line of a road segment as the
back line of the following one.

In the context of lane keeping testing, in order to avoid test-
ing self-driving car software using impossible road configurations,
procedural road generation must ensure that only valid roads are
generated. In this work, we define valid roads as those which are
not only gapless, but also do not self-intersect. Additionally, to fit
with the capabilities of current driving simulators which cannot
accurately simulate physics over extremely long distances and usu-
ally reason in terms of maps, we constrain the procedural road
generation to generate roads within the boundaries of a fixed-size
map by checking that roads start and end on the map boundary.

Given a sequence of road segments and the initial position of
the road on the map boundary, we procedurally generate the road

ISSTA ’19, July 15–19, 2019, Beijing, China Alessio Gambi, Marc Mueller, and Gordon Fraser

c d

a b

Figure 4: Roads and road networks generation

The figure illustrates the process of generating roads (a) to (c) by automatically
appending road segments, and generating road networks (d) by stacking roads on the
same map.

as follows (Figure 4): (a) we generate a small straight road segment
from the given initial position on the map boundary towards the
inside of the map to ensure by construction that the direction of
the first back line is defined. (b) Next, we generate succeeding road
segments as described above, and check that the road generated so
far is valid. If the road becomes invalid, for example because it self-
intersects, the road generation fails; otherwise, we continuewith the
generation of the next road segment. (c) Eventually, after generating
all the road segments, we check if the road is valid, i.e., whether it
crosses the map boundary; otherwise, the road generation fails.

3.4 Generating Road Networks

To procedurally generate road networks, we generate roads and
place them on the same map (Figure 4 — d). As before, we need to
ensure that either the resulting configuration is valid, or we fail the
generation of the road network.

We define valid road networks as those networks which contain
only valid intersecting roads, that is, they contain valid roads whose
central polylines (SPs) intersect at least once. Figure 5 illustrates this
concept with an example of a valid configuration in which the roads
correctly intersect (a), and an example of an invalid configuration
in which the roads partially overlap (b). Additionally, in order to
ensure that, given a road network, lane keeping can be tested in all
the possible ways, we require that valid road networks allow a car
to drive from any two road segments.

4 SEARCH-BASED TESTING FOR LANE

KEEPING

4.1 Overview

AsFault uses a genetic algorithm to evolve road networks with
the aim of finding errors in the lane keeping functionality of self-
driving cars. The genetic algorithm is initialized with an initial
population of random road networks. To evaluate the fitness of test

a b

Figure 5: Valid and invalid road overlaps

The figure exemplifies a valid intersection (a) and an invalid partial overlap (b).

cases, the road networks are instantiated to driving simulations, in
which the ego-car is instructed to reach a target location following
a navigation path selected by AsFault. During the simulation,
AsFault traces the position of the ego-car at regular intervals such
that it can identify out of bound episodes (obes), i.e., lane departures.
The distance between the center of the lane and the position of the
ego-car is used to compute the fitness of individuals. This guides
the genetic algorithm in evolving the test cases by recombining and
mutating their road networks. The algorithm continues to execute
and evolve test cases until a user defined ending condition is met,
at which point AsFault returns the final test suite and stops.

4.2 Representation

Road networks are represented using an operational encoding,
which is more amenable for automatically evolving the road net-
works than polylines. The encoding consists of a hierarchical data
structure which associates road networks to roads, and roads to
road segments. This enables AsFault to automatically generate
the polylines of the roads when needed. In addition to the road
network, a test case also requires the definition of a driving task
for the ego-car. In the context of lane keeping, this essentially cor-
responds to the task of driving through a road network following
a given navigation path. A valid test requires that navigation is
possible along roads, a property that our procedural road network
generation guarantees for all road networks it generates. AsFault
identifies such navigation paths by (i) building a graph representa-
tion of the road network, in which edges model road segments and
nodes model either road intersections (internal nodes) or intersec-
tions between roads and map boundaries (source and destination
nodes), and (ii) selecting a navigation path between randomly cho-
sen source and destination nodes. In doing so, AsFault relies on
the fact that the road networks enable to drive between any two
road segments, hence result in fully connected graphs.

Despite this simplification, selecting a navigation path is not
trivial. On the one hand, there might be a large number of possible
paths between source and destination nodes (possibly infinite if the
graphs derived from the road networks contain cycles); on the other
hand, different paths in the same networkmight correspond to roads
which have very different geometrical properties and are likely to
stress the ego-car in different ways. For example, to increase the
chances of observing several obes, the roads on which the ego-car
is tested should not be too short, and different paths should result
in geometrically dissimilar roads. Additionally, to avoid subjecting
the ego-car to the same set of stimuli, a path should not traverse
the same kinds of road segments more often than necessary.

Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation ISSTA ’19, July 15–19, 2019, Beijing, China

Since an analytic solution to the path selection problem cannot
be efficiently computed in general [34], AsFault adopts a heuristic
which aims to maximize the amount of road network traversed
during test execution, while keeping the path selection fast despite
its complexity. In particular, given a road network AsFault, first,
randomly samples the set of simple paths

1 between the given source
and destination nodes; then, it selects the longest navigation path
among those. In the context of AsFault, the longest navigation
path corresponds to the navigation path which contains the largest
amount of road segments among the sampled ones.

4.3 Implementation and Execution of Tests

Converting the genotypic representation of tests to driving simula-
tions is where procedural content generation takes place. AsFault
uses code templates to generate the necessary simulation code,
which instantiates the virtual roads in the driving simulation from
the polylines, places the ego-car in the expected starting position,
and instructs the ego-car about how to reach the target location.
The ego-car then drives along the virtual roads following the chosen
navigation paths.

The simulation code also contains timeout logic which fails the
test execution and suspends the simulation if the ego-car cannot
reach the target location fast enough. AsFault computes the time-
out value based on the traveling distance to reach the end of the
navigation path and a minimum constant cruise speed (i.e., 1 m/s).

Once the simulation code is ready, AsFault spawns the driving
simulator and observes the driving behavior of the ego-car by sam-
pling the car position at a constant rate (i.e., every 250ms). Samples
are stored into a trace which enables AsFault to identify the oc-
currence of obe by finding sequences of observations for which
the distance between the recorded position of the ego-car and the
center of the lane was bigger than the half of the lane width. Fig-
ure 1 illustrates these concepts graphically over a few occurrences
of obe that AsFault identified during the experimental evaluation.

AsFault represents simulated cars by their center of mass, hence
obes are identified only if a big enough part of the ego-car goes
outside the lane; consequently, AsFault cannot identify very small
infractions. Extending AsFault to consider the bounding box of
the ego-car while checking for obe is an engineering effort which
does not affect the generality of the approach but only its precision.

AsFault checks the traces offline; hence, it does not halt the
test execution after observing the first obe. Instead, tests continue
until either the ego-car reaches the target position within the given
timeout or the timeout triggers. AsFault adopts this strategy to
balance the cost of running expensive computer simulations with
the benefit of collecting as many obe occurrences as possible within
the context of the same test execution. AsFault uses the execution
traces not only for counting how many times the ego-car drove out
of the lane, but also for evaluating the fitness of tests which guides
the evolution process as we describe in the next section.

4.4 Fitness Function

In the context of lane keeping, effective tests are those which
cause the self-driving car software to break out of the lane bounds,

1A simple path between two nodes is the path which connects them by traversing
each node at most once

that is, cause obes. Therefore, AsFault uses as fitness function
DLANE (Eq. 1), which rewards those tests which cause the ego-car
to move the furthest away from the lane centre. Given a test (T), the
navigation path defining it (PT), and the execution trace collected
during its execution (v = (v1, ...,vn)), we define DLANE as:

DLANE(T ,v) =

{
max
vi ∈v

D(vi , PT) if max
vi ∈v

D(vi , PT) ≤WLANE/2

WLANE/2 otherwise
(1)

where D(•, PT) is the shortest distance of a point (•) to the centre
of the lane in path PT andWLANE is the width of such lane.

DLANE captures the intuition that tests which cause the ego-car
to drive away from the lane center might contain road segments
which stress the self-driving car software more, and this eventually
leads the ego-car to drive out of the road. AsFault works under
the assumption that obes are the exception, not the rule. Under this
assumption, using the average distance to the lane center would
smooth out, and effectively filter, short out of bound episodes; hence,
we opted for the maximum value of the distance to the lane center
to define DLANE. Additionally, in order to promote the generation
of more tests in a test suite which cause obes, instead of generating
tests which try to expose more extreme problems, we cap the value
of DLANE toWLANE/2 for tests which achieve their purpose.

4.5 Search Operators

AsFault evolves road networks by applying search operators which
mutate and recombine roads and road networks according to con-
figurable probabilities. Figures 6, 7, and 8 illustrate the application
of those genetic operators on sample road networks.

AsFault mutates roads by randomly replacing their road seg-
ments with new ones (Figure 6), while it recombines roads using the
join crossover operator (Figure 7). The join crossover operator splits
roads from parent road networks at random points and re-joins
their road segments shuffled such that no two road segments in the
offsprings road networks come from the same parent road network;
notably, this search operator does not change the number of roads
in the road networks. To generate road networks with different
roads in them, AsFault uses the merge crossover operator, which
selects random, possibly empty, subsets of roads from parent road
networks and re-distributes them into their offspring (Figure 8).

These search operators may produce invalid road configurations.
For example, after a road mutation or the application of the join
crossover roads might self-intersect or might not intersect the map
boundary anymore; similarly, after the application of the merge
crossover roads might partially overlap. When such a case is de-
tected, AsFault retries the application of the same search operator
with a probability of giving up which increases per failed attempt.
This way,AsFault ensures that either a valid configuration is found
quickly or the entire search operation is aborted, such that the test
generation process can continue. The application of search oper-
ators is rather efficient, and many different configurations can be
generated in a very short time; hence, we prefer to “generate and
validate” configurations rather than using constraint solvers in or-
der to generate valid configurations. We will investigate the use of
constraints for generating valid roads in future work.

ISSTA ’19, July 15–19, 2019, Beijing, China Alessio Gambi, Marc Mueller, and Gordon Fraser

A1

A2

Figure 6: Road mutation

B2
A1

B1

A2

A1
B1

B2A2

Figure 7: Join crossover Figure 8: Merge crossover

The figures show the application of the genetic operators defined by AsFault: road network mutation (Figure 6), which randomly replaces road segments in a road; join (Figure 7),
which recombines road segments from parent roads to form new roads; and, merge (Figure 8), which recombines roads in parent road networks to form new road networks.

Mutating and recombining road networks might also generate
similar tests, that is, tests defined over navigation paths which have
similar geometrical properties. We expect that the similar tests
stress lane keeping in similar ways; hence, executing those tests
would not likely provide any additional insight on the lane keeping
behavior, while it would considerably slow down the generation
process. So, to improve the efficiency of test generation, AsFault
identifies and filters out similar tests before executing them. Our
expectation is grounded in the fact that AsFault is black-box and
randomized, hence, it cannot rely on information about the internals
of the system under test to systematically guide the search towards
identifying those very few adversarial tests among the multitude
of similar tests that can be generated via mutation and crossover.

AsFault computes the similarity between tests by means of the
Jaccard Index of their road segments. Formally, given tests T1 and
T2, we define their similarity by means of Eq. 2:

similarity(T 1,T 2) =
|CT1 ∩CT2 |

|CT1 ∪CT2 |
(2)

where CTi refers to sequences of consecutive road segments of a
given size. Values of similarity close to 1 indicates that the tests
contains many common sub-sequences of road segments, while
values close to 0 suggest that tests differ in many regards.

As consequence of filtering out invalid and similar test cases, the
number of offspring in newer generations might be smaller than
the configured population size. In this case, AsFault pads the new
generations with the fittest individuals from the previous one, and
the process continues by executing only the newly generated tests.

5 EVALUATION

To assess the benefits of using procedural content generation for
testing lane keeping systems and to understand how AsFault’s
main configuration parameters affect the quality of both the test
generation process and the tests it generates, we investigate the
following main research questions:
RQ1 Can we expose safety-critical problems in lane keep-

ing systems by procedurally generating roads? To the
best of our knowledge, we are the first using procedural road

generation for testing lane keeping systems. Hence, we are
interested to understand if this leads to effective tests.

RQ2 Does search-based testing improve the effectiveness of

testing with procedural content generation? Generat-
ing road networks using search is more complex than gener-
ating them randomly. This raises the question whether using
a genetic algorithm leads to more obes than generating tests
randomly.

RQ3 Does generating tests which feature intersecting roads

improve testing effectiveness? Compared to single-road
networks, multi-road networks offer the possibility to cre-
ate more scenarios, but might be harder to generate. This
raises the question whether generating tests from multi-road
networks actually pays off.

RQ4 How does the size of the map impact testing? Using
large maps allows us to generate long roads which contain
many road segments. This increases the chances of observing
obes, but also slows down both the test generation and the
test execution, which raises the question whether and how
the map size affects testing.

5.1 Experimental Settings

To address the research questions, we implemented AsFault in
a prototype [16], and conducted a large number of experiments
by executing AsFault and the driving simulator on a commodity
“gaming” PC running Windows 10 and equipped with an AMD
Ryzen 7 1700X 8-Core CPU (3.4 GHz), 64 GB of memory, and an
NVIDIA Geforce GTX 1080 GPU.
Driving simulator. In the current implementation, AsFault re-
lies on the state of art driving simulator BeamNG.research [7], a
freely available research-oriented version of the commercial game
BeamNG.drive. We opted for BeamNG.research instead of other
available simulators used for testing autonomous vehicles (e.g.,
[13], [35]) for two main reasons: first, BeamNG.research exposes an
intuitive API for programmatically configuring virtual roads and
controlling the simulations, which the other simulators currently
do not provide; and, second, it features a very accurate driving
physics engine.

Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation ISSTA ’19, July 15–19, 2019, Beijing, China

Figure 9: Test suite effectiveness — BeamNG.AI Figure 10: Test suite effectiveness — DeepDriving

Design of Experiments. Although we can generate roads with
multiple lanes per traffic direction, we configured the procedural
road generation to generate only roads with one lane per traffic
direction. This choice is motivated by two reasons: First, roads
with only one lane per direction are the simplest to generate which
enable us to test lane keeping with respect to different unsafe be-
haviors such as driving off the road and invading the opposite
traffic lane. Second, single lane roads simplify the definition of a
test oracle for lane keeping; in case of roads with multiple lanes
for each direction, if the ego-car switches lane, it might be hard to
tell if that is the expected behavior or the manifestation of a bug.
We configured AsFault to generate single- and multi- road net-
works, over small (1 Km2) and largemaps (4 Km2). Additionally, we
configured AsFault to filter similar test cases when the similarity
value computed over pairs of road segments scores a value of 0.9 or
above. For generating single-road networks, AsFault always used
the join crossover operator, while multi-road networks selected join
or crossover with equal probability (50%). In both settings, AsFault
mutates offspring with a chance of 5%.

5.2 Test Subjects

We consider two test subjects, both implementing all the required
functionality to drive the ego-car autonomously and in the lane.
BeamNG.AI. BeamNG.research ships with a driving AI that we
refer to as BeamNG.AI. It has perfect knowledge of the virtual roads
and drives the ego-car by computing an ideal driving trajectory to
stay in the center of the lane. Then, it derives the actual driving
actions (i.e., acceleration, braking, and steering) to follow this tra-
jectory. The behavior of BeamNG.AI can be parameterized with a
so-called “aggression” factor which controls the risk the driver is
willing to take in order to decrease the time to reach the designated
destination. As explained by BeamNG.research developers, low ag-
gression values (e.g., 0.7) result in a smooth driving, while high
aggression values (e.g., 1.2 and above) result in an edgy driving,
which might even “cut corners.” For this evaluation, we set the ag-
gression value to 0.75, which corresponds to a rather conservative
driver that always favors safe travels over quick ones.

DeepDriving. DeepDriving is a vision-based self-driving car soft-
ware developed by Chen et al. [11]. It implements the direct percep-
tion paradigm: first, it uses a Convolutional Neural Network (CNN)
to predict a number of driving affordance indicators, such as the
current position of the car on the road, from the images captured by
a forward facing camera attached to the front of the ego-car; then,
it uses a standard rule-based driving controller to compute the driv-
ing actions from those indicators. For this evaluation, we used the
open-source implementation of DeepDriving based on TensorFlow2

provided by A. Netzeband [30], and we extended it by including a
safety logic which mimics the setup of current autonomous vehi-
cles. Our extension monitors the quality of DeepDriving predictions
and disengages DeepDriving when the quality of its predictions
is not satisfactory. At this point, the control of the ego-car passes
to BeamNG.AI until the quality of DeepDriving predictions raises
back to acceptable values, and the ego-car regains the center of
the lane. During the test execution, the driving simulator renders
the images required by DeepDriving, and pauses the simulation
waiting for DeepDriving to compute the driving controls. As soon
as the driving controls are ready, they are applied to the ego-car and
the simulation resumes until the next control cycle. As described
by Chen and co-authors, we configured DeepDriving to operate at
a frequency of 10Hz.

5.3 RQ1. Can We Expose Safety-Critical

Problems in Lane Keeping by Procedurally

Generating Roads?

To answer the first research question, we procedurally generated
single-road road networks at random, and used those for testing
BeamNG.AI and DeepDriving. In particular, for testing BeamNG.AI,
we evolved populations of 25 individuals, used the large map, and
stopped the generation after 24 hours; we repeated this experiment
for n = 40 times. At the end of each experiment,AsFault generated
test suites containing the best 25 tests.

2https://www.tensorflow.org/

https://www.tensorflow.org/

ISSTA ’19, July 15–19, 2019, Beijing, China Alessio Gambi, Marc Mueller, and Gordon Fraser

Figure 11: Test generation efficiency Figure 12: Test generation effectiveness

DeepDriving requires to run simulations in synchronousmode for
suitably controlling the ego-car.3 This is considerably slower than
the setup we used to test BeamNG.AI, so, to reduce the execution
time for running the experiments we reduced the number of tests
executed at each iteration. For testing DeepDriving, we therefore
generated test suites composed of 20 tests using the small map; we
repeated this experiments for n = 10 times. Additionally, we limit
the generation budget to 5 hours, because the empirical evidence
collected while testing BeamNG.AI suggested that around that time
AsFault converged and improved only marginally afterwards.

Figure 9 and Figure 10 plot the overall amount of obes (Cumu-

lative obe) identified by the best randomly generated test suites
under the labels “Random Single Road LargeMap” and “Random Sin-
gle Road Small Map”. From these results we observe that procedu-
rally generating roads effectively was able to cause a multitude of
obes in both test subjects already at the beginning of the execu-
tion; for example, after the first hour, Random caused on average
21.4 obes in BeamNG.AI and 13.6 obes in DeepDriving. Random
kept causingmore obes as the test generation progressed and, by the
end of the execution, it caused on average 29.1 obes in BeamNG.AI,
and 18.1 obes in DeepDriving. These results let us conclude that:

RQ1: In our experiments, procedurally generated road networks

found 29 and 18 obe on average in the two test subjects.

5.4 RQ2. Does Search-Based Testing Improve

the Effectiveness of Testing with

Procedural Content Generation?

To answer the second research question, we configured AsFault to
generate single-road road networks over the large map. As before,
for testing BeamNG.AI we evolved populations composed of 25
individuals using the large map and a generation budget of 24 hours,
and repeated the experiment 40 times. For testing DeepDriving we
evolved populations of 20 individuals using the small map and a
generation budget of 5 hours, and repeated the experiment 10 times.

3In synchronous mode, the simulation is paused while the driving controller computes
the driving commands and resumed afterwards for the duration of a control period.

Comparing the results under the labels “AsFault Single Road
Large Map” and “Random Single Road Large Map” in Figure 9 we
observe that AsFault produced more obes on BeamNG.AI than
Random during the entire generation (Â12 ranges from 0.85 after 1
hour, to 0.96 after 24 hours, and p is always less than 0.005).

We also observe that the number of obes identified by AsFault
quickly increased from an average amount of 30.1 obes after 1 hour
to an average number of 42.1 after 3 hours, and then stabilized to
reach an average amount of 47.5 obes after 24 hours. Compared to
this, the test effectiveness achieved by Random increased slower
passing from an average of 21.4 obes after 1 hour to an average
of 25.2 obes after 3 hours; moreover, Random did not catch up
with AsFault over the observation period, and after 24 the average
number of obes it discovered was 29.1.

The results reported in Figure 10 show a similar trend also for
DeepDriving. In this case, AsFault always caused more obes than
Random, and the difference between the amount of obes caused
by the two techniques increased with execution time. Between
hours 1 and 5, the average number of obes caused by AsFault
almost doubled, passing from 16.9 to 36, the average number of
obes caused by Random during the same period increased only
marginally, passing from 13.6 to 18 (Â12 increased from 0.68 to 1,
while the p-value passed from 0.18 to less than 0.005). In light of
these results we conclude that:

RQ2: In our experiments, the genetic algorithm found 47.5 and 36
obes on average, twice as many obe as random search.

5.5 RQ3. Does Generating Tests which Feature

Intersecting Roads Improve Testing

Effectiveness?

To answer the third research question, we configured AsFault to
generatemulti-road road networks. As before, we tested BeamNG.AI
by generating test suites composed of 25 tests using the large map
and a generation budget of 24 hours, and repeated the experiment

Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation ISSTA ’19, July 15–19, 2019, Beijing, China

for 40 times. However, since DeepDriving cannot handle intersect-
ing roads, we were not able to test it in this configuration.

From Figure 9, comparing the results achieved by AsFault using
single roads (“AsFault Single Road Large Map”) and multi-roads
(“AsFault Multi Road Large Map”), we observe that the number
of obes exposed by AsFault follows the same trend as before.
At the beginning of the generation, both configurations achieved
comparable results, but the multi-road configuration was slightly
better than single-road (Â12 = 0.65 and p = 0.01): AsFault in
single-road configuration exposed an average of 30.1 obes, while
AsFault in multi-road exposed an average of 34.6 obes. During
the generation, the results of both configurations improved, but
“AsFault Multi Road Large Map” improved at a faster pace and al-
ways achieved better results than “AsFault Single Road Large Map”
(Â12 passed from 0.65 to 0.88, while p value dropped from 0.01 to
less than 0.005).

From Figure 11, we can observe that AsFault took less time to
generate single-road tests compared to generate multi-road tests
(Â12 = 0.1 and p < 0.005): On average, AsFault took 41.1 sec to
generate a single-road tests, while it took 152.6 sec to generate a
multi-road one. We expect this result as for generating and evolving
multi-road road networks AsFault did process more data and did
perform more checks to establish road networks validity.

From the results in Figure 12, instead, we can make an interest-
ing observation: compared to the multi-road case, evolving single-
road tests took less time but generated fewer valid configurations
(Â12 = 0.59, p < 0.005). The average value of the ratio of valid
configurations generated by AsFault decreased from 0.39% for the
multi-road to 0.34% for single-road, which suggests that evolving
single-road road networks might be more difficult than evolving
multi-road road networks. To explain this, we consider that the
merge crossover operation used in the multi-road setting works
with roads already considered valid and cannot produce, for exam-
ple, self-intersecting ones, whereas the join operation the single-
road setting is restricted to can. Neither crossover operator nor
mutation can guarantee valid results. Given the restrictions im-
posed on road networks, it is challenging to create valid configu-
rations, but more so using the join and mutation operators which
alter road geometry and can thus cause self-intersections or roads
that do not start or end at the boundary. Hence, the single-road
configuration, which only had join and mutation operator available,
generated a larger number of invalid configurations than the multi-
road configuration. All in all, these results let us conclude that:

RQ3: Although single-road tests are three time as fast to generate,

they revealed fewer obes and their generation is more difficult.

5.6 RQ4. How Does the Size of the Map Impact

Testing?

To answer the last research question, we configured AsFault to
generate multi-road road networks over the small map and tested
BeamNG.AI only. As before, we generated test suites composed of
25 tests, used a generation budget of 24 hours, and repeated the
experiment for 40 times.

From Figure 9, comparing the results achieved by AsFault gen-
erating multi-road tests over the small map (“AsFault Multi Road
Small Map”) and the large map (“AsFault Multi Road Large Map”),

we observe once again the same trend: at the beginning of the exe-
cution, both configurations achieved very similar results, but, as
we expected, the large map enabled AsFault to expose more obes
(34.6 on average) than the small map (34.4 on average). During
the execution, the results of both configurations improved, how-
ever, this time the difference between the obes found by AsFault
in the two configurations was not as large as before (Â12 = 0.65,
p = 0.045), and by the end of the execution,AsFault using the small
map found 61.4 obes on average, while AsFault using the large
map found 71.1 obes on average. From Figure 11, we observe that
compared to using the large map, generating tests using the small
map was faster both for generating single-road tests (Â12 = 0.31,
p < 0.005) and multi-road tests (Â12 = 0.3, p < 0.005). On average,
to generate single-road tests, AsFault took 10.5 seconds using the
small map and 41.1 seconds using the large map, while to generate
multi-road tests it took on average 97.0 seconds using the small map
and 152.6 using the large map. Additionally, using the small map
led to the generation of fewer valid multi-road tests (Â12 = 0.46,
p = 0.055), but more valid single-road tests (Â12 = 0.54, p < 0.005).
This suggests that intersecting multiple roads into a smaller map
was slightly more difficult than putting them into a larger one, while
using a smaller map was easier to generate roads which intersect
the map boundary. In summary, we can conclude that:

RQ4: Large maps led to slightly more effective tests, but small maps

allow for substantially faster search.

5.7 Threats to Validity

Internal validity To ensure that our integration of DeepDriving
into BeamNG.research is correct, we used the author’s guidelines,
manually tested the integration, and validated DeepDriving by hav-
ing it successfully drive along randomly generated roads. While
AsFault does not recreate all the elements that can be found in real
roads, i.e., trees, weather conditions, all the elements required by
DeepDriving are correctly generated. To increase internal validity,
we use BeamNG.AI as test subject. Being tightly integrated with
the driving simulator, BeamNG.AI has perfect knowledge of the
roads, hence it does not suffer from the traditional limitations of
vision-based lane keeping systems, and is less sensitive to miscon-
figurations of the procedurally generated roads. In conducting our
experimental evaluation, we followed the guidelines for comparing
randomized test generation algorithms presented by Arcuri and
Briand [4]; hence, to support our conclusions we repeated each
experiment several times, performed significance tests (i.e., Mann–
Whitney U-test p-values), and considered the effect size measures
(i.e., non-parametric Vargha–Delaney’s Â12 statistic).
External validity Our evaluation, like any empirical investiga-
tion, considered a limited number of test subjects in its experimen-
tal setup, so results might not generalize. We only used a single
vision-based lane keeping system for evaluation, because most lane
keeping systems are not publicly available, and the available ones
which are used in similar research (e.g., [40, 50]) implement only
a subset of the required functionalities, i.e., steering model. While
we therefore cannot say if effectiveness results generalize, our eval-
uation nevertheless demonstrates that AsFault is able to generate
effective test cases under different execution conditions (i.e., types
of road networks and maps of different size).

ISSTA ’19, July 15–19, 2019, Beijing, China Alessio Gambi, Marc Mueller, and Gordon Fraser

6 RELATEDWORK

Self-driving car testing is still a fairly open field, and current ap-
proaches to it span from N-FOT to simulation-based tests [20]. In
this paper, we propose to combine procedural road generation and
genetic algorithms for systematically testing lane keeping software.
Testing vision-based lane keeping software Several works test
vision-based lane keeping software by means of adversarial image
generation. For example, Müller et al. [27] and Zhang et al. [50]
test steering prediction models by simulating the effects of vari-
ous weather conditions on the images elaborated by lane keeping
systems; Tian et al. [40], instead, alter those images by applying
transformations which simulate possible distortions introduced
by the cameras pointing towards the road. Differently than those
approaches, we do not focus on testing only the prediction compo-
nents of lane keeping systems, but we target the entire system in-
stead. Moreover, we define test cases in term of driving tasks which
the ego-car must complete; hence, we can stress the interactions
between the prediction components and the driving controllers,
and study the closed-loop properties of the ego-car, which is not
possible by only considering single images during testing.
Using procedural content generation for testing In the con-
tent of testing unmanned vehicles and robots, various works advo-
cate the use of procedural content generation. Arnold and Alexan-
der [5] generate random bi-dimensional bit maps, while Sotiropou-
los et al. [38] generate three-dimensional terrains. Compared to
those algorithms, which test navigation algorithms, we target a
different type of systems under test, i.e., vision-based lane keep-
ing, hence we procedurally generate more realistic environments,
i.e. roads. In the context of virtual testing of self-driving cars,
Schuldt et al. [33] developed a construction kit for generating PCG-
based tests; however, in this work, generating the virtual tests and
setting up the environment remain manually activities. AsFault, at
the contrary, is fully automated. Similarly to us, Kendall et al. [19]
also automatically generate roads; however, Kendall and co-authors
focus on developing reinforcement learning algorithms and gener-
ate only random roads, while we aim at test generation and follow
a systematic approach based on search.
Search-based procedural road generation AsFault generates
roads automatically by combining a genetic algorithm and PCG.
In this area, the focus is usually the generation of racing tracks,
and the goal is to generate tracks which entertain the players. For
example, Loiacono et al. [22] automatically generate racing tracks
with various curvature and speed profiles which require different
driving skills to be completed, while Georgiou et al. [17] and Car-
damone et al. [10] used live-feedback from the gameplay to study
player reactions and use those information to drive the generation
of new tracks which maximize player enjoyment. Those works are
our inspiration, hence, we adopt a similar strategy in generating
roads. However, our procedural road generation aims at generating
realistic roads and not racing track, it uses a different geometrical
representations of the roads, i.e., polylines instead of Bézier curves,
and, most importantly, targets completely different test subjects,
i.e., self-driving cars instead of human players.

Search-based testing of self-driving car softwareAsFault uses
search to systematically generate simulation-based tests. Simulation-
based tests require the execution of time-consuming computer sim-
ulations, which strongly affects the efficiency of the overall test
generation process. To cope with that, some authors optimize the
search process in order to minimize the amount of test executions
required to generate effective tests. Abdessalem et al.[1, 2] combine
genetic algorithms and machine learning to test a pedestrian de-
tection system. The machine learning components speed up the
search by predicting the value of the fitness function without exe-
cuting the tests and drive the test generation towards regions in
the input space which most likely expose safety-critical problems.
Similarly, Mullins et al. [28] use Gaussian Processes to drive the
search towards yet unexplored regions of the input space. We also
improve the efficiency of test generation by limiting the amount
of executed tests; however, we do so by means of using a different
technique based on the similarity of roads.

7 CONCLUSIONS AND FUTUREWORK

Simulation-based testing has emerged as an alternative to the dan-
gerous and costly practice of testing self-driving cars by means of
N-FOT; however, simulation-based testing comes with the main
challenge of systematically generating tests which expose safety-
critical behavior of self-driving cars among the multitude of driving
scenarios which can be simulated.

In this paper, we presented AsFault, a novel approach for sys-
tematically testing lane keeping systems. AsFault addresses the
challenges of simulation-based testing by combining search-based
testing and procedural content generation to generate virtual roads
which cause self-driving cars to depart from their lane. Our exten-
sive evaluation showed that AsFault can generate effective test
suites and expose many safety-critical problems related to lane
keeping in a multitude of configurations.

Despite the positive results achieved by AsFault, our work on
combining procedural content generation and search-based test-
ing for testing self-driving cars is preliminary; hence, we plan to
address some relevant aspects of this research in the future. Our
ongoing work includes (i) extending the road generation algorithm
to generate roads with varying lanes and width, which follows
upland and lowland terrains; (ii) using existing terrains and real
roads as seeds for the generation; (iii) enlarging the scope of the
test generation algorithm to generate obstacles and traffic on the
roads; (iv) extending the procedural content generation algorithm
to generate more realistic virtual environments, possibly drawing
inspiration from data collected in the real world [48]; (v) investigat-
ing alternative search-based techniques, such as novelty search, to
generate effective simulation-based tests.

In the future, we also plan to work on improving the efficiency
of the test generation by employing surrogate models and machine
learning components, and extend AsFault to work with multi-
objective fitness functions which can capture additional aspects of
driving, such as passenger comfort, in addition to safety.

ACKNOWLEDGMENT

This work is supported by EPSRC project EP/N023978/2.

Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation ISSTA ’19, July 15–19, 2019, Beijing, China

REFERENCES

[1] Abdessalem, R. B., Nejati, S., Briand, L. C., and Stifter, T. Testing advanced
driver assistance systems using multi-objective search and neural networks. In
2016 31st IEEE/ACM International Conference on Automated Software Engineering

(ASE) (Sept. 2016), pp. 63–74.
[2] Abdessalem, R. B., Nejati, S., Briand, L. C., and Stifter, T. Testing vision-based

control systems using learnable evolutionary algorithms. In Proceedings of the

40th International Conference on Software Engineering (New York, NY, USA, 2018),
ICSE ’18, ACM, pp. 1016–1026.

[3] Althoff, M., Urban, S., and Koschi, M. Automatic conversion of road networks
from opendrive to lanelets. In Proceedings of the IEEE International Conference on

Service Operations and Logistics, and Informatics (2018 - to appear), SOLI’18.
[4] Arcuri, A., and Briand, L. AHitchhiker’s Guide to Statistical Tests for Assessing

Randomized Algorithms in Software Engineering. Softw. Test. Verif. Reliab. 24, 3
(May 2014), 219–250.

[5] Arnold, J., and Alexander, R. Testing Autonomous Robot Control Software Us-
ing Procedural Content Generation. In Computer Safety, Reliability, and Security

(Sept. 2013), Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,
pp. 33–44.

[6] Bansal, P., and Kockelman, K. M. Forecasting Americans’ long-term adoption
of connected and autonomous vehicle technologies. Transportation Research Part

A: Policy and Practice 95 (Jan. 2017), 49–63.
[7] BeamNG GmbH. BeamNG.research. https://beamng.gmbh/research/, 2018.
[8] Bertoncello, M., and Wee, D. Ten ways autonomous driving could redefine

the automotive world | McKinsey & Company.
[9] Boissonnat, J.-D., and Teillaud, M., Eds. Effective Computational Geometry

for Curves and Surfaces. Mathematics and Visualization. Springer-Verlag, Berlin
Heidelberg, 2006.

[10] Cardamone, L., Lanzi, P. L., and Loiacono, D. TrackGen: An interactive track
generator for TORCS and Speed-Dreams. Applied Soft Computing 28 (Mar. 2015),
550–558.

[11] Chen, C., Seff, A., Kornhauser, A., and Xiao, J. DeepDriving: Learning Af-
fordance for Direct Perception in Autonomous Driving. In Proceedings of the

International Conference on Computer Vision (2015), ICCV ’15, pp. 2722–2730.
[12] Davies, A. Google’s Self-Driving Car Caused Its First Crash. Wired (Feb. 2016).
[13] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V. CARLA:

An Open Urban Driving Simulator. arXiv:1711.03938 [cs] (Nov. 2017). arXiv:
1711.03938.

[14] Dupuis, M., Strobl, M., and Grezlikowski, H. Opendrive 2010 and beyond–
status and future of the de facto standard for the description of road networks.
In Proceedings of the Driving Simulation Conference Europe (2010), pp. 231–242.

[15] Fritsch, J., Kühnl, T., and Geiger, A. A new performance measure and eval-
uation benchmark for road detection algorithms. In 16th International IEEE

Conference on Intelligent Transportation Systems (ITSC 2013) (Oct. 2013), pp. 1693–
1700.

[16] Gambi, A., Mueller, M., and Fraser, G. AsFault: Testing self-driving car soft-
ware using search-based procedural content generation. In Proceedings of the

41th International Conference on Software Engineering (2019), ICSE ’19.
[17] Georgiou, T., and Demiris, Y. Personalised track design in car racing games. In

2016 IEEE Conference on Computational Intelligence and Games (CIG) (Sept. 2016),
pp. 1–8.

[18] Kalra, N., and Paddock, S. M. Driving to safety: How many miles of driving
would it take to demonstrate autonomous vehicle reliability? Transportation

Research Part A: Policy and Practice 94 (Dec. 2016), 182–193.
[19] Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., Lam, V.-D.,

Bewley, A., and Shah, A. Learning to Drive in a Day. arXiv:1807.00412 [cs, stat]
(July 2018). arXiv: 1807.00412.

[20] Khastgir, S., Birrell, S., Dhadyalla, G., and Jennings, P. Identifying a gap in
existing validationmethodologies for intelligent automotive systems: Introducing
the 3xd simulator. In 2015 IEEE Intelligent Vehicles Symposium (IV) (June 2015),
pp. 648–653.

[21] Koopman, P., and Wagner, M. Challenges in Autonomous Vehicle Testing and
Validation. SAE Int. J. Trans. Safety 4, 1 (Apr. 2016), 15–24.

[22] Loiacono, D., Cardamone, L., and Lanzi, P. L. Automatic Track Generation for
High-End Racing Games Using Evolutionary Computation. IEEE Transactions on

Computational Intelligence and AI in Games 3, 3 (Sept. 2011), 245–259.
[23] Masuda, S. Software Testing Design Techniques Used in Automated Vehicle

Simulations. In 2017 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW) (Mar. 2017), pp. 300–303.

[24] Mauritz, M., Howar, F., and Rausch, A. Assuring the Safety of Advanced Driver
Assistance Systems Through a Combination of Simulation and Runtime Moni-
toring. In Leveraging Applications of Formal Methods, Verification and Validation:

Discussion, Dissemination, Applications (Oct. 2016), Lecture Notes in Computer
Science, Springer, Cham, pp. 672–687. Alessio Marc.

[25] McMinn, P. Search-based software testing: Past, present and future. In Pro-

ceedings of the 2011 IEEE Fourth International Conference on Software Testing,

Verification and Validation Workshops (Washington, DC, USA, 2011), ICSTW ’11,

IEEE Computer Society, pp. 153–163.
[26] Minnerup, P., and Knoll, A. Testing Automated Vehicles Against Actuator

Inaccuracies in a Large State Space. IFAC-PapersOnLine 49, 15 (Jan. 2016), 38–43.
[27] Müller, S., Hospach, D., Bringmann, O., Gerlach, J., and Rosenstiel, W.

Robustness Evaluation and Improvement for Vision-Based Advanced Driver
Assistance Systems. In 2015 IEEE 18th International Conference on Intelligent

Transportation Systems (Sept. 2015), pp. 2659–2664.
[28] Mullins, G. E., Stankiewicz, P. G., and Gupta, S. K. Automated generation of

diverse and challenging scenarios for test and evaluation of autonomous vehicles.
In Robotics and Automation (ICRA), 2017 IEEE International Conference on (2017),
IEEE, pp. 1443–1450.

[29] Nentwig, M., Miegler, M., and Stamminger, M. Concerning the applicability
of computer graphics for the evaluation of image processing algorithms. In 2012

IEEE International Conference on Vehicular Electronics and Safety (ICVES 2012)

(July 2012), pp. 205–210. Marc.
[30] Netzeband, A. Deepdriving for tensorflow V1.0. https://bitbucket.org/

Netzeband/deepdriving/src, 11 2017.
[31] Richter, S. R., Vineet, V., Roth, S., and Koltun, V. Playing for Data: Ground

Truth from Computer Games. In Computer Vision – ECCV 2016 (Oct. 2016),
Lecture Notes in Computer Science, Springer, Cham, pp. 102–118.

[32] SAE. Automated Driving Levels. http://www.sae.org/misc/pdfs/automated_
driving.pdf, 2013.

[33] Schuldt, F. Ein Beitrag für den methodischen Test von automatisierten Fahrfunk-

tionen mit Hilfe von virtuellen Umgebungen, Towards testing of automated driving

functions in virtual driving environments. PhD thesis, Technischen Universitaet
Braunschweig, 2017.

[34] Sedgewick, R. Algorithms in C, Part 5: Graph Algorithms, Third Edition, third ed.
Addison-Wesley Professional, 2001.

[35] Shah, S., Dey, D., Lovett, C., and Kapoor, A. AirSim: High-Fidelity Visual and
Physical Simulation for Autonomous Vehicles. arXiv:1705.05065 [cs] (May 2017).
arXiv: 1705.05065.

[36] Sippl, C., Bock, F., Wittmann, D., Altinger, H., and German, R. From Sim-
ulation Data to Test Cases for Fully Automated Driving and ADAS. In Testing

Software and Systems (Oct. 2016), Lecture Notes in Computer Science, Springer,
Cham, pp. 191–206.

[37] Solon, O. Tesla that crashed into police car was in ’autopilot’ mode, California
official says. The Guardian (May 2018).

[38] Sotiropoulos, T., Guiochet, J., Ingrand, F., andWaeselynck, H. VirtualWorlds
for Testing Robot Navigation: A Study on the Difficulty Level. In Proceedings of

the European Dependable Computing Conference (2016), EDCC ’16, pp. 153–160.
[39] Tesla, I. Autopilot. https://www.tesla.com/autopilot.
[40] Tian, Y., Pei, K., Jana, S., and Ray, B. DeepTest: Automated testing of deep-

neural-network-driven autonomous cars. arXiv preprint arXiv:1708.08559 (2017).
[41] Tibba, G., Malz, C., Stoermer, C., Nagarajan, N., Zhang, L., and

Chakraborty, S. Testing automotive embedded systems under x-in-the-loop
setups. In Proceedings of the 35th International Conference on Computer-Aided

Design (New York, NY, USA, 2016), ICCAD ’16, ACM, pp. 35:1–35:8.
[42] Togelius, J., Champandard, A. J., Lanzi, P. L., Mateas, M., Paiva, A., Preuss,

M., and Stanley, K. O. Procedural Content Generation: Goals, Challenges and
Actionable Steps. InArtificial and Computational Intelligence in Games, S. M. Lucas,
M. Mateas, M. Preuss, P. Spronck, and J. Togelius, Eds., vol. 6 of Dagstuhl Follow-
Ups. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
2013, pp. 61–75.

[43] Togelius, J., Kastbjerg, E., Schedl, D., and Yannakakis, G. N. What is Proce-
dural Content Generation?: Mario on the Borderline. In Proceedings of the 2Nd

International Workshop on Procedural Content Generation in Games (New York,
NY, USA, 2011), PCGames ’11, ACM, pp. 3:1–3:6.

[44] Tuncali, C. E., Fainekos, G., Ito, H., and Kapinski, J. Simulation-based adversar-
ial test generation for autonomous vehicles with machine learning components.
In 2018 IEEE Intelligent Vehicles Symposium (IV) (June 2018), pp. 1555–1562.

[45] UberATG. Self-driving cars return to Pittsburgh roads in manual mode, July
2018.

[46] Waymo. Waymo. https://waymo.com/.
[47] Wehner, M. Video shows Tesla Model S slamming into a wall while driving on

Autopilot, Mar. 2017.
[48] Yang, L., Liang, X., Wang, T., and Xing, E. Real-to-virtual domain unification for

end-to-end autonomous driving. In Computer Vision - ECCV 2018 - 15th European

Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part IV (2018),
V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., vol. 11208 of Lecture
Notes in Computer Science, Springer, pp. 553–570.

[49] Yenikaya, S., Yenikaya, G., and Düven, E. Keeping the vehicle on the road: A
survey on on-road lane detection systems. ACM Computing Surveys (CSUR) 46, 1
(2013), 2.

[50] Zhang, M., Zhang, Y., Zhang, L., Liu, C., and Khurshid, S. DeepRoad: GAN-
based Metamorphic Autonomous Driving System Testing. arXiv:1802.02295 [cs]
(Feb. 2018). arXiv: 1802.02295.

https://beamng.gmbh/research/
https://bitbucket.org/Netzeband/deepdriving/src
https://bitbucket.org/Netzeband/deepdriving/src
http://www.sae.org/misc/pdfs/automated_driving.pdf
http://www.sae.org/misc/pdfs/automated_driving.pdf
https://www.tesla.com/autopilot
https://waymo.com/

	Abstract
	1 Introduction
	2 Background
	3 Procedural Generation of Road Networks
	3.1 Representing Roads as Polylines
	3.2 Generating Road Segments
	3.3 Generating Roads
	3.4 Generating Road Networks

	4 Search-based Testing for Lane Keeping
	4.1 Overview
	4.2 Representation
	4.3 Implementation and Execution of Tests
	4.4 Fitness Function
	4.5 Search Operators

	5 Evaluation
	5.1 Experimental Settings
	5.2 Test Subjects
	5.3 RQ1. Can We Expose Safety-Critical Problems in Lane Keeping by Procedurally Generating Roads?
	5.4 RQ2. Does Search-Based Testing Improve the Effectiveness of Testing with Procedural Content Generation?
	5.5 RQ3. Does Generating Tests which Feature Intersecting Roads Improve Testing Effectiveness?
	5.6 RQ4. How Does the Size of the Map Impact Testing?
	5.7 Threats to Validity

	6 Related Work
	7 Conclusions and Future Work
	References

