Alessandro Montemurro

Alessandro Montemurro
  • Technical University of Denmark

About

7
Publications
1,011
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
322
Citations
Current institution
Technical University of Denmark

Publications

Publications (7)
Article
Full-text available
Pairing of the T cell receptor (TCR) with its cognate peptide-MHC (pMHC) is a cornerstone in T cell-mediated immunity. Recently, single-cell sequencing coupled with DNA-barcoded MHC multimer staining has enabled high-throughput studies of T cell specificities. However, the immense variability of TCR-pMHC interactions combined with the relatively lo...
Preprint
Full-text available
Pairing of the T cell receptor (TCR) with its cognate peptide-MHC (pMHC) is a cornerstone in T cell-mediated immunity. Recently, single-cell sequencing coupled with DNA-barcoded MHC multimer staining has enabled high-throughput studies of T cell specificities. However, the immense variability of TCR-pMHC interactions combined with the relatively lo...
Article
Full-text available
T cell receptors (TCR) define the specificity of T cells and are responsible for their interaction with peptide antigen targets presented in complex with major histocompatibility complex (MHC) molecules. Understanding the rules underlying this interaction hence forms the foundation for our understanding of basic adaptive immunology. Over the last d...
Preprint
Full-text available
Many different solutions to predicting the cognate epitope target of a T-cell receptor (TCR) have been proposed. However several questions on the advantages and disadvantages of these different approaches remain unresolved, as most methods have only been evaluated within the context of their initial publications and data sets. Here, we report the f...
Article
Full-text available
Prediction of T-cell receptor (TCR) interactions with MHC-peptide complexes remains highly challenging. This challenge is primarily due to three dominant factors: data accuracy, data scarceness, and problem complexity. Here, we showcase that "shallow" convolutional neural network (CNN) architectures are adequate to deal with the problem complexity...

Network

Cited By