Alessandro FlamminiIndiana University Bloomington | IUB · Center for Bioinformatics Research
Alessandro Flammini
About
155
Publications
130,481
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
21,760
Citations
Introduction
Additional affiliations
January 2007 - present
January 2009 - present
January 2002 - December 2007
Publications
Publications (155)
Social media platforms have become a hub for political activities and discussions, democratizing participation in these endeavors. However, they have also become an incubator for manipulation campaigns, like information operations (IOs). Some social media platforms have released datasets related to such IOs originating from different countries. How...
Coordinated reply attacks are a tactic observed in online influence operations and other coordinated campaigns to support or harass targeted individuals, or influence them or their followers. Despite its potential to influence the public, past studies have yet to analyze or provide a methodology to detect this tactic. In this study, we characterize...
Social media, seen by some as the modern public square, is vulnerable to manipulation. By controlling inauthentic accounts impersonating humans, malicious actors can amplify disinformation within target communities. The consequences of such operations are difficult to evaluate due to the challenges posed by collecting data and carrying out ethical...
Malicious actors exploit social media to inflate stock prices, sway elections, spread misinformation, and sow discord. To these ends, they employ tactics that include the use of inauthentic accounts and campaigns. Methods to detect these abuses currently rely on features specifically designed to target suspicious behaviors. However, the effectivene...
Social media has enabled the spread of information at unprecedented speeds and scales, and with it the proliferation of high-engagement, low-quality content. *Friction* -- behavioral design measures that make the sharing of content more cumbersome -- might be a way to raise the quality of what is spread online. Here, we study the effects of frictio...
Malicious actors exploit social media to inflate stock prices, sway elections, spread misinformation, and sow discord. To these ends, they employ tactics that include the use of inauthentic accounts and campaigns. Methods to detect these abuses currently rely on features specifically designed to target suspicious behaviors. However, the effectivene...
Widespread uptake of vaccines is necessary to achieve herd immunity. However, uptake rates have varied across U.S. states during the first six months of the COVID-19 vaccination program. Misbeliefs may play an important role in vaccine hesitancy, and there is a need to understand relationships between misinformation, beliefs, behaviors, and health...
Newsfeed algorithms frequently amplify misinformation and other low-quality content. How can social media platforms more effectively promote reliable information? Existing approaches are difficult to scale and vulnerable to manipulation. In this paper, we propose using the political diversity of a website’s audience as a quality signal. Using news...
Climate system teleconnections are crucial for improving climate predictability, but difficult to quantify. Standard approaches to identify teleconnections are often based on correlations between time series. Here we present a novel method leveraging Granger causality, which can infer/detect relationships between any two fields. We compare teleconn...
Information spreading on social media contributes to the formation of collective opinions. Millions of social media users are exposed every day to popular memes — some generated organically by grassroots activity, others sustained by advertising, information campaigns or more or less transparent coordinated efforts. While most information campaigns...
In this study we investigate how social media shape the networked public sphere and facilitate communication between communities with different political orientations. We examine two networks of political communication on Twitter, comprised of more than 250,000 tweets from the six weeks leading up to the 2010 U.S. congressional midterm elections. U...
We study astroturf political campaigns on microblogging platforms: politically-motivated individuals and organizations that use multiple centrally-controlled accounts to create the appearance of widespread support for a candidate or opinion. We describe a machine learning framework that combines topological, content-based and crowdsourced features...
BACKGROUND
Widespread uptake of vaccines is necessary to achieve herd immunity. However, uptake rates varied across U.S. states during the first six months of the COVID-19 vaccination program. Online misinformation may play an important role in vaccine hesitancy, and there is a need to comprehensively quantify the impact of misinformation on belief...
Coordinated campaigns are used to influence and manipulate social media platforms and their users, a critical challenge to the free exchange of information online. Here we introduce a general, unsupervised network-based methodology to uncover groups of accounts that are likely coordinated. The proposed method constructs coordination networks based...
While social media make it easy to connect with and access information from anyone, they also facilitate basic influence and unfriending mechanisms that may lead to segregated and polarized clusters known as “echo chambers.” Here we study the conditions in which such echo chambers emerge by introducing a simple model of information sharing in onlin...
Widespread uptake of COVID-19 vaccines is necessary to achieve herd immunity. However, surveys have found concerning numbers of U.S. adults hesitant or unwilling to be vaccinated. Online misinformation may play an important role in vaccine hesitancy, but we lack a clear picture of the extent to which it will impact vaccination uptake. Here, we stud...
We analyze the relationship between partisanship, echo chambers, and vulnerability to online mis-information by studying news sharing behavior on Twitter. While our results confirm prior findings that online misinformation sharing is strongly correlated with right-leaning partisanship, we also uncover a similar, though weaker, trend among left-lean...
To what extent can we predict the structure of online conversation trees? We present a generative model to predict the size and evolution of threaded conversations on social media by combining machine learning algorithms. The model is evaluated using datasets that span two topical domains (cryptocurrency and cyber-security) and two platforms (Reddi...
Climate system teleconnections, which are far-away climate responses to perturbations or oscillations, are difficult to quantify, yet understanding them is crucial for improving climate predictability. Here we leverage Granger causality in a novel method of identifying teleconnections. Because Granger causality is explicitly defined as a statistica...
We analyze the relationship between partisanship, echo chambers, and vulnerability to online misinformation by studying news sharing behavior on Twitter. While our results confirm prior findings that online misinformation sharing is strongly correlated with right-leaning partisanship, we also uncover a similar, though weaker trend among left-leanin...
Newsfeed algorithms frequently amplify misinformation and other low-quality content. How can social media platforms more effectively promote reliable information? Existing approaches are difficult to scale and vulnerable to manipulation. In this paper, we propose using the political diversity of a website's audience as a quality signal. Using news...
Malicious actors create inauthentic social media accounts controlled in part by algorithms, known as social bots, to disseminate misinformation and agitate online discussion. While researchers have developed sophisticated methods to detect abuse, novel bots with diverse behaviors evade detection. We show that different types of bots are characteriz...
Propaganda, disinformation, manipulation, and polarization are the modern illnesses of a society increasingly dependent on social media as a source of news. In this paper, we explore the disinformation campaign, sponsored by Russia and allies, against the Syria Civil Defense (a.k.a. the White Helmets). We unveil coordinated groups using automatic r...
Coordinated campaigns are used to influence and manipulate social media platforms and their users, a critical challenge to the free exchange of information online. Here we introduce a general network-based framework to uncover groups of accounts that are likely coordinated. The proposed method construct coordination networks based on arbitrary beha...
Online communication channels, especially social web platforms, are rapidly replacing traditional ones. Online platforms allow users to overcome physical barriers, enabling worldwide participation. However, the power of online communication bears an important negative consequence --- we are exposed to too much information to process. Too many parti...
Simulating and predicting planetary-scale techno-social systems poses heavy computational and modeling challenges. The DARPA SocialSim program set the challenge to model the evolution of GitHub, a large collaborative software-development ecosystem, using massive multi-agent simulations. We describe our best performing models and our agent-based sim...
Social media are vulnerable to deceptive social bots, which can impersonate humans to amplify misinformation and manipulate opinions. Little is known about the large-scale consequences of such pollution operations. Here we introduce an agent-based model of information spreading with quality preference and limited individual attention to evaluate th...
Simulating and predicting planetary-scale techno-social systems poses heavy computational and modeling challenges. The DARPA SocialSim program set the challenge to model the evolution of GitHub, a large collaborative software-development ecosystem, using massive multi-agent simulations. We describe our best performing models and our agent-based sim...
While social media make it easy to connect with and access information from anyone, they also facilitate basic influence and unfriending mechanisms that may lead to segregated and polarized clusters known as "echo chambers." Here we study the conditions in which such echo chambers emerge by introducing a simple model of information sharing in onlin...
The authors wish to retract this Letter as follow-up work has highlighted that two errors were committed in the analyses used to produce Figs 4d and 5. In Fig. 4d, a software bug led to an incorrect value of the discriminative power represented by the blue bar. The correct value is τ = 0.17, as opposed to the value τ = 0.15 reported in the Letter....
The increased relevance of social media in our daily life has been accompanied by efforts to manipulate online conversations and opinions. Deceptive social bots -- automated or semi-automated accounts designed to impersonate humans -- have been successfully exploited for these kinds of abuse. Researchers have responded by developing AI tools to arm...
The massive spread of digital misinformation has been identified as a major threat to democracies. Communication, cognitive, social, and computer scientists are studying the complex causes for the viral diffusion of misinformation, while online platforms are beginning to deploy countermeasures. Little systematic, data-based evidence has been publis...
Our consumption of online information is mediated by filtering, ranking, and recommendation algorithms that introduce unintentional biases as they attempt to deliver relevant and engaging content. It has been suggested that our reliance on online technologies such as search engines and social media may limit exposure to diverse points of view and m...
Algorithms that favor popular items are used to help us select among many choices, from engaging articles on a social media news feed to songs and books that others have purchased, and from top-raked search engine results to highly-cited scientific papers. The goal of these algorithms is to identify high-quality items such as reliable news, beautif...
Our consumption of online information is mediated by filtering, ranking, and recommendation algorithms that introduce unintentional biases as they attempt to deliver relevant and engaging content. It has been suggested that our reliance on online technologies such as search engines and social media may limit exposure to diverse points of view and m...
Granovetter’s weak tie theory of social networks is built around two central hypotheses. The first states that strong social ties carry the large majority of interaction events; the second maintains that weak social ties, although less active, are often relevant for the exchange of especially important information (e.g., about potential new jobs in...
In this chapter, we apply the theoretical framework introduced in the previous chapter to study how the modular structure of the social network affects the spreading of complex contagion. In particular, we focus on the notion of optimal modularity, that predicts the occurrence of global cascades when the network exhibits just the right amount of mo...
Massive amounts of misinformation flood social media like Twitter and Facebook. Digital misinformation includes articles about hoaxes, conspiracy theories, fake news, and other misleading claims. This content has been alleged to disrupt the public debate, leading to questions about its impact on the real world. A number of research questions have b...
Massive amounts of fake news and conspiratorial content have spread over social media before and after the 2016 US Presidential Elections despite intense fact-checking efforts. How do the spread of misinformation and fact-checking compete? What are the structural and dynamic characteristics of the core of the misinformation diffusion network, and w...
We present RelSifter, a supervised learning approach to the problem of assigning relevance scores to triples expressing type-like relations such as 'profession' and 'nationality.' To provide additional contextual information about individuals and relations we supplement the data provided as part of the WSDM 2017 Triple Score contest with Wikidata a...
The volume and velocity of information that gets generated online limits current journalistic practices to fact-check claims at the same rate. Computational approaches for fact checking may be the key to help mitigate the risks of massive misinformation spread. Such approaches can be designed to not only be scalable and effective at assessing verac...
The massive spread of fake news has been identified as a major global risk and has been alleged to influence elections and threaten democracies. Communication, cognitive, social, and computer scientists are engaged in efforts to study the complex causes for the viral diffusion of digital misinformation and to develop solutions, while search and soc...
Social media are massive marketplaces where ideas and news compete for our attention1. Previous studies have shown that quality is not a necessary condition for online virality2 and that knowledge about peer choices can distort the relationship between quality and popularity3. However, these results do not explain the viral spread of low-quality in...
Social media expose millions of users every day to information campaigns --- some emerging organically from grassroots activity, others sustained by advertising or other coordinated efforts. These campaigns contribute to the shaping of collective opinions. While most information campaigns are benign, some may be deployed for nefarious purposes. It...
Increasing evidence suggests that a growing amount of social media content is generated by autonomous entities known as social bots. In this work we present a framework to detect such entities on Twitter. We leverage more than a thousand features extracted from public data and meta-data about users: friends, tweet content and sentiment, network pat...
Online social networks are marketplaces in which memes compete for our attention. While one would expect the best ideas to prevail, empirical evidence suggests that high-quality information has no competitive advantage. Here we investigate this puzzling lack of discriminative power through an agent-based model that incorporates behavioral limitatio...
The Observatory on Social Media (OSoMe) provides a Terabyte-scale historical and ongoing collection of approximately 70 billion public tweets.
The study of social phenomena is becoming increasingly reliant on big data from online social networks. Broad access to social media data, however, requires software development skills that not all researchers possess. Here we present the IUNI Observatory on Social Media , an open analytics platform designed to facilitate computational social scien...
From politicians and nation states to terrorist groups, numerous organizations reportedly conduct explicit campaigns to influence opinions on social media, posing a risk to freedom of expression. Thus, there is a need to identify and eliminate "influence bots"--realistic, automated identities that illicitly shape discussions on sites like Twitter a...
The study of social phenomena is becoming increasingly reliant on big data from online social networks. Broad access to social media data, however, requires software development skills that not all researchers possess. Here we present the IUNI Observatory on Social Media, an open analytics platform designed to facilitate computational social scienc...
The study of social phenomena is becoming increasingly reliant on big data from online social networks. Broad access to social media data, however, requires software development skills that not all researchers possess. Here we present the IUNI Observatory on Social Media, an open analytics platform designed to facilitate computational social scienc...
We present a machine learning framework that leverages a mixture of metadata, network, and temporal features to detect extremist users, and predict content adopters and interaction reciprocity in social media. We exploit a unique dataset containing millions of tweets generated by more than 25 thousand users who have been manually identified, report...
While most online social media accounts are controlled by humans, these platforms also host automated agents called social bots or sybil accounts. Recent literature reported on cases of social bots imitating humans to manipulate discussions, alter the popularity of users, pollute content and spread misinformation, and even perform terrorist propaga...
Massive amounts of misinformation have been observed to spread in uncontrolled fashion across social media. Examples include rumors, hoaxes, fake news, and conspiracy theories. At the same time, several journalistic organizations devote significant efforts to high-quality fact checking of online claims. The resulting information cascades contain in...
While most online social media accounts are controlled by humans, these platforms also host automated agents called social bots or sybil accounts. Recent literature reported on cases of social bots imitating humans to manipulate discussions, alter the popularity of users, pollute content and spread misinformation, and even perform terrorist propaga...
A number of organizations ranging from terrorist groups such as ISIS to
politicians and nation states reportedly conduct explicit campaigns to
influence opinion on social media, posing a risk to democratic processes. There
is thus a growing need to identify and eliminate "influence bots" - realistic,
automated identities that illicitly shape discus...
The study of social phenomena is becoming increasingly reliant on big data from online social networks. Broad access to social media data, however, requires software development skills that not all researchers possess. Here we present the IUNI Observatory on Social Media, an open analytics platform designed to facilitate computational social scienc...
Information extracted from social media streams has been leveraged to forecast the outcome of a large number of real-world events, from political elections to stock market fluctuations. An increasing amount of studies demonstrates how the analysis of social media conversations provides cheap access to the wisdom of the crowd. However, extents and c...
There is an error in the last sentence of the “Validation on factual statements” section of the Results. The sentence should read: With this method we estimate that, in the four subject areas, true statements are assigned higher truth values than false ones with probability 95%, 98%, 100%, and 95%, respectively.
Fig 4 is incorrect. Please view the...
Citation metrics are becoming pervasive in the quantitative evaluation of scholars, journals, and institutions. Hiring, promotion, and funding decisions increasingly rely on a variety of impact metrics that cannot disentangle quality from quantity of scientific output, and are biased by factors such as discipline and academic age. Biases affecting...
Increasingly detailed data on the network topology of neural circuits create a need for theoretical principles that explain how these networks shape neural communication. Here we use a model of cascade spreading to reveal architectural features of human brain networks that facilitate spreading. Using an anatomical brain network derived from high-re...
A Sleeping Beauty (SB) in science refers to a paper whose importance is not
recognized for several years after publication. Its citation history exhibits a
long hibernation period followed by a sudden spike of popularity. Previous
studies suggest a relative scarcity of SBs. The reliability of this conclusion
is, however, heavily dependent on identi...
The goal of this work is to introduce a simple modeling framework to study the diffusion of hoaxes and in particular how the availability of debunking information may contain their diffusion. As traditionally done in the mathematical modeling of information diffusion processes, we regard hoaxes as viruses: users can become infected if they are expo...