Alessandro Cianchi

Alessandro Cianchi
  • Ph.D.
  • Associate Professor at University of Rome Tor Vergata

About

349
Publications
122,175
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,957
Citations
Current institution
University of Rome Tor Vergata
Current position
  • Associate Professor
Additional affiliations
January 2012 - present
University of Rome Tor Vergata
Position
  • Prof of Particle Accelerator
January 2010 - present
INFN - Istituto Nazionale di Fisica Nucleare
Position
  • ODRI Optical Diffraction Radiation Interference
January 2006 - present
INFN - Istituto Nazionale di Fisica Nucleare
Position
  • SPARC LAB
Education
November 1998 - November 2001
University of Rome Tor Vergata
Field of study
  • Physics

Publications

Publications (349)
Preprint
Full-text available
Dielectric capillaries are widely used to generate plasmas for plasma wakefield acceleration. When a relativistic drive bunch travels through a capillary with misaligned trajectory with respect to the capillary axis, it is deflected by the effect of the dielectric transverse wakefields it drives. We experimentally show that the deflection effect in...
Article
Full-text available
An overview of the 200 TW Frascati Laser for Acceleration and Multidisciplinary Experiments (FLAME) at the SPARC_LAB Test Facility at the National Laboratories of Frascati (LNF-INFN) is presented. The FLAME laser is employed to investigate different laser–matter interaction schemes, i.e., electron acceleration and secondary radiation sources throug...
Article
Full-text available
The EuPRAXIA EU project is at the forefront of advancing particle accelerator research and the development of photon sources through innovative plasma acceleration approaches. Within this framework, the EuAPS project aims to exploit laser wakefield acceleration to build and operate a betatron radiation source at the INFN Frascati National Laborator...
Article
Full-text available
The space-charge field of a relativistic charged bunch propagating in plasma is screened due to the presence of mobile charge carriers. We experimentally investigate such screening by measuring the effect of dielectric wakefields driven by the bunch in an uncoated dielectric capillary where the plasma is confined. We show that the plasma screens th...
Article
Full-text available
Plasma wakefield acceleration revolutionized the field of particle accelerators by generating gigavolt-per-centimeter fields. To compete with conventional radio-frequency (RF) accelerators, plasma technology must demonstrate operation at high repetition rates, with a recent research showing feasibility at megahertz levels using an Argon source that...
Preprint
Plasma wakefield acceleration revolutionized the field of particle accelerators by generating gigavolt-per-centimeter fields. To compete with conventional radio-frequency (RF) accelerators, plasma technology must demonstrate operation at high repetition rates, with a recent research showing feasibility at megahertz levels using an Argon source that...
Preprint
Full-text available
The space-charge field of a relativistic charged bunch propagating in plasma is screened due to the presence of mobile charge carriers. We experimentally investigate such screening by measuring the effect of dielectric wakefields driven by the bunch in a uncoated dielectric capillary where the plasma is confined. We show that the plasma screens the...
Article
We present a new approach that demonstrates the deflection and guiding of relativistic electron beams over curved paths by means of the magnetic field generated in a plasma-discharge capillary. We experimentally prove that the guiding is much less affected by the beam chromatic dispersion with respect to a conventional bending magnet and, with the...
Article
Full-text available
Plasma wakefield acceleration represented a breakthrough in the field of particle accelerators by pushing beams to gigaelectronvolt energies within centimeter distances. The large electric fields excited by a driver pulse in the plasma can efficiently accelerate a trailing witness bunch paving the way toward the realization of laboratory-scale appl...
Preprint
Plasma wakefield acceleration represented a breakthrough in the field of particle accelerators by pushing beams to gigaelectronvolt energies within centimeter distances. The large electric fields excited by a driver pulse in the plasma can efficiently accelerate a trailing witness bunch paving the way toward the realization of laboratory-scale appl...
Article
Full-text available
CompactLight is a Design Study funded by the European Union under the Horizon 2020 research and innovation funding programme, with Grant Agreement No. 777431. CompactLight was conducted by an International Collaboration of 23 international laboratories and academic institutions, three private companies, and five third parties. The project, which st...
Article
Full-text available
In this article, we highlight that the interaction potential confining Dirac particles in a box must be invariant under the charge conjugation to avoid the Klein paradox, in which an infinite number of negative-energy particles are excited. Furthermore, we derive the quantization rules for a relativistic particle in a cylindrical box, which emulate...
Article
Full-text available
A comprehensive characterization of lattice Boltzmann (LB) schemes to perform warm fluid numerical simulations of particle wakefield acceleration (PWFA) processes is discussed in this paper. The LB schemes we develop hinge on the moment matching procedure, allowing the fluid description of a warm relativistic plasma wake generated by a driver pulse...
Article
Full-text available
X-ray sources have a strong social impact, being implemented for biomedical research, material and environmental sciences. Nowadays, compact and accessible sources are made using lasers. We report evidence of nontrivial spectral-angular correlations in a laser-driven betatron X-ray source. Furthermore, by angularly-resolved spectral measurements, w...
Preprint
X-ray sources have a strong social impact, being implemented for biomedical research, material and environmental sciences. Nowadays, compact and accessible sources are made using lasers. We report evidence of nontrivial spectral-angular correlations in a laser-driven betatron X-ray source. Furthermore, by angularly-resolved spectral measurements, w...
Article
Full-text available
The SPARC_LAB test facility at the LNF (Laboratori Nazionali di Frascati, Rome) holds a high brightness photo-injector used to investigate advanced beam manipulation techniques. High brightness electron bunch trains (so-called comb beams) can be generated striking on the photo-cathode of a Radio Frequency (RF) photo-injector with a ultra-short UV l...
Article
Full-text available
X-ray production through betatron radiation emission from electron bunches is a valuable resource for several research fields. The EuAPS (EuPRAXIA Advanced Photon Sources) project, within the framework of EuPRAXIA, aims to provide 1–10 keV photons (X-rays), developing a compact plasma-based system designed to exploit self-injection processes that o...
Article
Full-text available
In modern particle accelerators involving short (few hundreds of fs or less) photon and particle beams, a crucial requirement is the arrival timing jitter and its modeling, taking into account different noise sources. This paper considers the arrival timing jitter of an electron beam measured at the SPARC LAB photo-injector test facility (INFN-LNF,...
Preprint
X-rays production through betatron radiation emission from electron bunches is a valuable resource for several research fields. The EuAPS (EuPRAXIA Advanced Photon Sources) project, within the framework of the EuPRAXIA project, aims to provide 1-10 keV photons (soft X-rays) developing a compact plasma-based system designed to exploit self-injection...
Preprint
Full-text available
A comprehensive characterization of lattice Boltzmann (LB) schemes to perform warm fluid numerical simulations of particle wakefield acceleration (PWFA) processes is discussed in this paper. The LB schemes we develop hinge on the moment matching procedure, allowing the fluid description of a warm relativistic plasma wake generated by a driver pulse...
Conference Paper
EuPRAXIA@SPARC LAB is a new multidisciplinary user-facility that is currently under construction at the Laboratori Nazionali di Frascati of the INFN in the framework of the EuPRAXIA collaboration. The electron beam will be accelerated by an X-band normal conducting linac followed by a Plasma WakeField Acceleration (PWFA) stage. It will be character...
Article
Full-text available
Coherent emission coming from relativistic charged bunches is of great interest in a wide range of user-oriented applications and high-resolution diagnostics. The complete characterization of such emission is therefore important in view of a complete understanding of its potential. Here we present a complete temporally-resolved characterization of...
Preprint
Coherent emission coming from relativistic charged bunches is of great interest in a wide range of user-oriented applications and high-resolution diagnostics. The complete characterization of such emission is therefore important in view of a complete understanding of its potential. Here we present a complete temporally-resolved characterization of...
Article
In this article, we share our experience related to the new photo-injector commissioning at the SPARC_LAB test facility. The new photo-injector was installed into an existing machine and our goal was not only to improve the final beam parameters themselves but to improve the machine handling in day-to-day operations as well. Thus, besides the pure...
Preprint
In this article, we share our experience related to the new photo-injector commissioning at the SPARC\_LAB test facility. The new photo-injector was installed into an existing machine and our goal was not only to improve the final beam parameters themselves but to improve the machine handling in day-to-day operations as well. Thus, besides the pure...
Article
Full-text available
We present an analysis of the performance of a broadband secondary radiation source based on a high-gradient laser-plasma wakefield electron accelerator. In more detail, we report studies of compact and ultra-short X-ray generation via betatron oscillations in plasma channels. For the specific working point examined in this paper, determined by the...
Article
The breakthrough provided by plasma-based accelerators enabled unprecedented accelerating fields by boosting electron beams to gigaelectronvolt energies within a few centimeters [1–4]. This, in turn, allows the realization of ultracompact light sources based on free-electron lasers (FELs) [5], as demonstrated by two pioneering experiments that repo...
Article
Full-text available
The possibility to accelerate electron beams to ultra-relativistic velocities over short distances by using plasma-based technology holds the potential for a revolution in the field of particle accelerators1–4. The compact nature of plasma-based accelerators would allow the realization of table-top machines capable of driving a free-electron laser...
Article
Full-text available
EuPRAXIA is a leading European project aimed at the development of a dedicated, ground-breaking, ultra-compact accelerator research infrastructure based on novel plasma acceleration concepts and laser technology and on the development of their users’ communities. Within this framework, the Laboratori Nazionali di Frascati (LNF, INFN) will be equipp...
Article
Full-text available
Towards the next generation of compact plasma-based accelerators, useful in several fields, such as basic research, medicine and industrial applications, a great effort is required to control the plasma creation, the necessity of producing a time-jitter free channel, and its stability namely uniformity and reproducibility. In this Letter, we descri...
Preprint
Towards the next generation of compact plasma-based accelerators, useful in several fields, such as basic research, medicine and industrial applications, a great effort is required to control the plasma creation, the necessity of producing a time-jitter free channel, and its stability namely uniformity and reproducibility. In this Letter, we descri...
Article
Full-text available
One of the most important features of plasma-based accelerators is their compactness because plasma modules can have dimensions of the order of mm cm−1 , providing very high-accelerating fields up to hundreds of GV m−1 . The main challenge regarding this type of acceleration lies in controlling and characterising the plasma itself, which then deter...
Preprint
One of the most important features of plasma-based accelerators is their compactness because plasma modules can have dimensions of the order of mm/cm, providing very high accelerating fields up to hundreds of GV/m. The main challenge regarding this type of acceleration lies in controlling and characterising the plasma itself, and therefore in the s...
Article
Full-text available
We explore a novel simulation route for Plasma Wakefield Acceleration (PWFA) by using the computational method known as the Lattice Boltzmann Method (LBM). LBM is based on a discretization of the continuum kinetic theory while assuring the convergence toward hydrodynamics for coarse-grained fields (i.e., density, velocity, etc.). LBM is an establis...
Preprint
We explore a novel simulation route for Plasma Wakefield Acceleration (PWFA) by using the computational method known as the Lattice Boltzmann Method (LBM). LBM is based on a discretization of the continuum kinetic theory while assuring the convergence towards hydrodynamics for coarse-grained fields (i.e., density, velocity, etc.). LBM is an establi...
Article
Plasma-based technology promises a tremendous reduction in size of accelerators used for research, medical, and industrial applications, making it possible to develop tabletop machines accessible for a broader scientific community. The use of high-power laser pulses on gaseous targets is a promising method for the generation of accelerated electron...
Book
Full-text available
The report presents, as the main result of the CompactLight project, the conceptual design of the CompactLight hard X-ray FEL. It is divided in the following chapters: 1. Executive Summary 2. Introduction 3. Science Goals and Photon Output Requirements 4. Systems Design and Performance 5. Accelerator 6. Light Production 7. Civil Engineering...
Preprint
Plasma-based technology promises a tremendous reduction in size of accelerators used for research, medical, and industrial applications, making it possible to develop tabletop machines accessible for a broader scientific community. The use of high-power laser pulses on gaseous targets is a promising method for the generation of accelerated electron...
Conference Paper
SABINA (Source of Advanced Beam Imaging for Novel Applications) is a project aimed at the enhancement of the SPARC_LAB research facility. This enhancement is carried out through the following actions: first, the increase of the uptime through the consolidation of technological systems and the replacement of some critical equipment in order to limit...
Article
Full-text available
Owing to their ultra-high accelerating gradients, combined with injection inside micrometer-scale accelerating wakefield buckets, plasma-based accelerators hold great potential to drive a new generation of free-electron lasers (FELs). Indeed, the first demonstration of plasma-driven FEL gain was reported recently, representing a major milestone for...
Article
Full-text available
Photoemission is one of the fundamental processes that describes the generation of charged particles from materials irradiated by photons. The continuous progress in the development of ultrashort lasers allows investigation into the dynamics of the process at the femtosecond timescale. Here we report about experimental measurements using two ultras...
Article
Full-text available
Muon tomography is a very promising imaging technique for the control of cargo containers. It takes advantage of cosmic muons and their interaction mechanisms to reconstruct images of the volume traversed by these particles. In the present work, the imaging performance of a novel muon tomography scanner based on resistive plate chambers detectors i...
Article
Full-text available
Next-generation plasma-based accelerators can push electron beams to GeV energies within centimeter distances. The plasma, excited by a driver pulse, is indeed able to sustain huge electric fields that can efficiently accelerate a trailing witness bunch, which was experimentally demonstrated on multiple occasions. Thus, the main focus of the curren...
Preprint
Full-text available
Next-generation plasma-based accelerators can push electron beams to GeV energies within centimetre distances. The plasma, excited by a driver pulse, is indeed able to sustain huge electric fields that can efficiently accelerate a trailing witness bunch, which was experimentally demonstrated on multiple occasions. Thus, the main focus of the curren...
Article
Full-text available
Next-generation plasma-based accelerators can push electron bunches to gigaelectronvolt energies within centimetre distances1,2. The plasma, excited by a driver pulse, generates large electric fields that can efficiently accelerate a trailing witness bunch3–5, enabling the realization of laboratory-scale applications ranging from high-energy collid...
Article
Full-text available
This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator r...
Article
This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator r...
Article
Figure 20.1 was not correct in the published article. The original article has been corrected. The published apologizes for the inconvenience.
Article
Full-text available
In the field of beam physics, two frontier topics have taken center stage due to their potential to enable new approaches to discovery in a wide swath of science. These areas are: advanced, high gradient acceleration techniques, and x-ray free electron lasers (XFELs). Further, there is intense interest in the marriage of these two fields, with the...
Article
Full-text available
External injection is a promising method to achieve high accelerating gradients and to control the beam properties. The energy gain of an electron via the wakefield is proportional to the product of the accelerating field multiplied by the effective propagation distance of the laser. Therefore, in order to bring the electron energy in the order of...
Article
Full-text available
We report on simulation results relevant both for EuPRAXIA@SPARC LAB [1] and EuPRAXIA [2] showing how to boost a high brightness electron bunch, delivered by a conventional accelerator at 500 MeV, up to 5 GeV and more by external injection in a laser driven plasma wave. Beam slice quality is preserved along acceleration and the bunch is shown to be...
Article
Full-text available
Plasma based technology will allow an unprecedented reduction of the size of accelerating machines. Both fundamental research and applied science and technology will take profit of this feature. The same compactness is required downstream the accelerator module, where the plasma-accelerated beams usually experience a large angular divergences growt...
Article
Full-text available
A proposal for building a new Free Electron Laser facility at the Laboratori Nazionali di Frascati, EuPRAXIA@SPARC LAB, is at present under consideration. This FEL facility will exploit plasma acceleration to produce ultra-bright photon pulses with durations of few femtoseconds down to the wavelengths between 2 and 4 nm, in the so called “water win...
Article
Full-text available
Ultra-short electron bunches, such as those delivered by a high-brightness photo-injector, are suitable to produce high peak power THz radiation, both broad and narrow band, with sub-picosecond down to femtosecond pulse shaping. The features of this kind of source in the THz range of the electromagnetic spectrum are extremely appealing for frequenc...
Preprint
Full-text available
Next-generation plasma-based accelerators can push electron bunches to gigaelectronvolt energies within centimetre distances. The plasma, excited by a driver pulse, generates large electric fields that can efficiently accelerate a trailing witness bunch making possible the realization of laboratory-scale applications ranging from high-energy collid...
Preprint
Wakefield accelerators are under development in many laboratories worldwide. They bring the promise of a high accelerating gradient, orders of magnitude higher than current machines. The reduction in the overall length of the accelerators will pave the way to a wider use of such machines, for industrial, medical, research, and educational purposes....
Preprint
There is a big gap between the charming principles ideas and the real implementation of a diagnostic. In this lecture we review some details that make the difference between a good and bad measurement, highlighting also the relation between the measured quantities and the real ones.
Article
Full-text available
Every year, 700 million twenty-foot (container) equivalent units pass through the container terminals of the harbours all over the world. Only a small percentage (34%) are scanned to inspect the presence of radioactive materials. The need for controls is hampered essentially by three factors: the amount of both time and personnel necessary to contr...
Preprint
Full-text available
In the field of beam physics, two frontier topics have taken center stage due to their potential to enable new approaches to discovery in a wide swath of science. These areas are: advanced, high gradient acceleration techniques, and x-ray free electron lasers (XFELs). Further, there is intense interest in the marriage of these two fields, with the...
Article
Full-text available
Plasma wakefield acceleration represents one of the most promising techniques able to overcome the limits of conventional rf technology and make possible the development of compact accelerators. With respect to laser-driven schemes, the particle beam-driven scenario is not limited by diffraction and dephasing issues; thus, it allows one to achieve...
Article
Full-text available
The Horizon 2020 project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction si...
Article
Full-text available
The EuPRAXIA project aims at designing the world's first accelerator based on advanced plasma-wakefield techniques to deliver 5 GeV electron beams that simultaneously have high charge, low emittance and low energy spread, which are required for applications by future user communities. Meeting this challenging objective will only be possible through...
Conference Paper
Full-text available
Plasma accelerators present one of the most suitable candidates for the development of more compact particle acceleration technologies, yet they still lag behind radiofrequency (RF)-based devices when it comes to beam quality, control, stability and power efficiency. The Horizon 2020-funded project EuPRAXIA (“European Plasma Research Accelerator wi...
Preprint
Plasma Wakefield Acceleration represents one of the most promising techniques able to overcome the limits of conventional RF technology and make possible the development of compact accelerators. With respect to the laser-driven schemes, the beam-driven scenario is not limited by diffraction and dephasing issues, thus it allows to achieve larger acc...
Article
Full-text available
Following the promising results obtained at the SPARC_LAB test-facility in Frascati (Italy), we have recently submitted a proposal to develop a new facility driven by a plasma accelerator module for extended and user-oriented applications. The new multi-disciplinary user-facility will be equipped with a soft X-ray Free Electron Laser (FEL) operatin...
Article
Full-text available
The need of a fs-scale pulsed, high repetition rate, X-ray source for time-resolved fine analysis of matter (spectroscopy and photon scattering) in the linear response regime is addressed by the conceptual design of a facility called MariX (Multi-disciplinary Advanced Research Infrastructure for the generation and application of X-rays) outperformi...
Article
The development of compact accelerator facilities providing high-brightness beams is one of the most challenging tasks in the field of next-generation compact and cost affordable particle accelerators, to be used in many fields for industrial, medical, and research applications. The ability to shape the beam longitudinal phase space, in particular,...
Article
Full-text available
A proposal for building a Free Electron Laser, EuPRAXIA@SPARC_LAB, at the Laboratori Nazionali di Frascati, is at present under consideration. This FEL facility will provide a unique combination of a high brightness GeV-range electron beam generated in a X-band RF linac, a 0.5 PW-class laser system and the first FEL source driven by a plasma accele...
Article
Plasma confinement represents a crucial point for plasma-based accelerators and plasma lenses because it can strongly affect the beam properties. For this reason, an accurate measurement of the plasma parameters, as plasma temperature, pressure and electron density, must be performed. In this paper, we introduce a novel method to detect the plasma...
Preprint
Full-text available
The development of compact accelerator facilities providing high-brightness beams is one of the most challenging tasks in field of next-generation compact and cost affordable particle accelerators, to be used in many fields for industrial, medical and research applications. The ability to shape the beam longitudinal phase-space, in particular, play...
Article
Full-text available
In this paper a technique to measure the phase space and the rms emittance of plasma accelerated electron beams is described. The first tests have been performed at the SPARC-LAB test facility through the interaction of the ultra-short ultra-intense Ti:Sa laser FLAME with a He gas-jet target. The proposed technique seems to be promising for the det...
Article
Full-text available
Plasma-based technology promises a tremendous reduction in size of accelerators used for research, medical, and industrial applications, making it possible to develop tabletop machines accessible for a broader scientific community. By overcoming current limits of conventional accelerators and pushing particles to larger and larger energies, the ava...
Article
Full-text available
The TIARA (Test Infrastructure and Accelerator Research Area) project funded by the European Union 7th framework programme made a survey of provision of education and training in accelerator science in Europe. This survey highlighted the need for more training opportunities targeting undergraduate-level students. This need is now being addressed by...
Article
Plasma-based acceleration experiments require capillaries with a radius of a few hundred microns to confine plasma up to a centimeter scale capillary length. A long and controlled plasma channel allows to sustain high fields which may be used for manipulation of the electron beams or to accelerate electrons. The production of these capillaries is r...
Article
Advanced diagnostics are essential tools in the development of plasma-based accelerators. The accurate measurement of the quality of beams at the exit of the plasma channel is crucial to optimize the parameters of the plasma accelerator. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement, which is particularly comp...
Article
Full-text available
One of the key elements of the plasma wakefield blowout regime is the strong, linear focusing provided by the ion density. One advantage of this focusing is its extraordinary strength whose gradient is proportional to the local background plasma density, that is particularly important for adiabatic focusing schemes in future compact linear collider...
Article
Full-text available
Several experiments for neutron generation using high intensity laser sources, with a power exceeding 10¹⁹ W/cm² via TNSA (Target Normal Sheath Acceleration) or other similar methods, have been performed in recent years in different laboratories. However, so far there is no one running neutron source based on such a technology. We have just started...
Preprint
Multi MeV protons \cite{snavely2000intense} and heavier ions are emitted by thin foils irradiated by high-intensity lasers, due to the huge accelerating fields, up to several teraelectronvolt per meter, at sub-picosecond timescale \cite{dubois2014target}. The evolution of these huge fields is not well understood till today. Here we report, for the...
Article
Full-text available
Multi MeV protons (Snavely et al., 2000) and heavier ions are emitted by thin foils irradiated by high-intensity lasers, due to the huge accelerating fields, up to several teraelectronvolt per meter, at sub-picosecond timescale (Dubois et al., 2014). The evolution of these huge fields is not well understood till today. Here we report, for the first...
Article
Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enh...
Article
Full-text available
Plasma confinement inside capillaries has been developed in the past years for plasma-based acceleration to ensure a stable and repeatable plasma density distribution during the interaction with either particles or laser beams. In particular, gas-filled capillaries allow a stable and almost predictable plasma distribution along the interaction with...
Article
Full-text available
At EuPRAXIA@SPARC_LAB, the unique combination of an advanced high-brightness RF injector and a plasma-based accelerator will drive a new multi-disciplinary user-facility. The facility, that is currently under study at INFN-LNF Laboratories (Frascati, Italy) in synergy with the EuPRAXIA collaboration, will operate the plasma-based accelerator in the...
Preprint
Full-text available
At EuPRAXIA@SPARC_LAB, the unique combination of an advanced high-brightness RF injector and a plasma-based accelerator will drive a new multi-disciplinary user-facility. The facility, that is currently under study at INFN-LNF Laboratories (Frascati, Italy) in synergy with the EuPRAXIA collaboration, will operate the plasma-based accelerator in the...
Article
Full-text available
The interaction of high-power ultra-short lasers with materials offers fascinating wealth of transient phenomena which are in the core of novel scientific research. Deciphering its evolution is a complicated task that strongly depends on the details of the early phase of the interaction, which acts as complex initial conditions. The entire process,...
Article
Full-text available
In this paper, we report results of simulations, in the framework of both EuPRAXIA \cite{Walk2017} and EuPRAXIA@SPARC\_LAB \cite{Ferr2017} projects, aimed at delivering a high brightness electron bunch for driving a Free Electron Laser (FEL) by employing a plasma post acceleration scheme. The boosting plasma wave is driven by a tens of \SI{}{\tera\...
Article
Full-text available
Transition and diffraction radiation from charged particles is commonly used for diagnostics purposes in accelerator facilities as well as THz sources for spectroscopy applications. Therefore, an accurate analysis of the emission process and the transport optics is crucial to properly characterize the source and precisely retrieve beam parameters....
Article
Full-text available
We are proposing a facility based on high gradient acceleration via x-band RF structures and plasma acceleration. We plan to reach an electron energy of the order of 1 GeV, suitable to drive a Free Electron Laser for applications in the so called "water window" (2 - 4 nm). A conceptual design of the beamline, from the photon beam from the undulator...
Preprint
We are proposing a facility based on high gradient acceleration via x-band RF structures and plasma acceleration. We plan to reach an electron energy of the order of 1 GeV, suitable to drive a Free Electron Laser for applications in the so called "water window" (2 - 4 nm). A conceptual design of the beamline, from the photon beam from the undulator...
Article
Full-text available
A design study of the diagnostics of a high brightness linac, based on X-band structures, and a plasma accelerator stage, has been delivered in the framework of the EuPRAXIA@SPARC_LAB project. In this paper, we present a conceptual design of the proposed diagnostics, using state of the art systems and new and under development devices. Single shot...
Preprint
A design study of the diagnostics of a high brightness linac, based on X-band structures, and a plasma accelerator stage, has been delivered in the framework of the EuPRAXIA@SPARC_LAB project. In this paper, we present a conceptual design of the proposed diagnostics, using state of the art systems and new and under development devices. Single shot...
Article
Full-text available
Advanced linear accelerator design may use Optical Transition Radiation (OTR) screens to measure beam spot size; for instance, such screens are foreseen in plasma based accelerators (EuPRAXIA@SPARC_LAB) or Compton machines (Gamma Beam Source@ELI-NP). Optical Transition Radiation angular distribution strongly depends on beam energy. Since OTR screen...
Preprint
Advanced linear accelerator design may use Optical Transition Radiation (OTR) screens to measure beam spot size; for instance, such screens are foreseen in plasma based accelerators (EuPRAXIA@SPARC_LAB) or Compton machines (Gamma Beam Source@ELI-NP). Optical Transition Radiation angular distribution strongly depends on beam energy. Since OTR screen...
Article
Full-text available
Plasma wakefield acceleration is the most promising acceleration technique for compact and cheap accelerators, thanks to the high accelerating gradients achievable. Nevertheless, this approach still suffers of shot-to-shot instabilities, mostly related to experimental parameters fluctuations. Therefore, the use of single shot diagnostics is needed...
Article
Full-text available
Coherent radiation produced by relativistic charged bunches is nowadays of great interest for user-oriented applications and high-resolution diagnostics. Here we present experimental results obtained by using a temporal monitor based on the electro-optical sampling that allows us to reveal the features of the radiation emitted in terahertz range by...
Article
Full-text available
Beam injection and extraction from a plasma module is still one of the crucial aspects to solve in order to produce high quality electron beams with a plasma accelerator. Proper matching conditions require to focus the incoming high brightness beam down to few microns size and to capture a high divergent beam at the exit without loss of beam qualit...
Article
Full-text available
FLAME is a high power laser system installed at the SPARC_LAB Test Facility in Frascati (Italy). The ultra-intense laser pulses are employed to study the interaction with matter for many purposes: electron acceleration through LWFA, ion and proton generation exploiting the TNSA mechanism, study of new radiation sources and development of new electr...
Article
Full-text available
The plasma-based acceleration is an encouraging technique to overcome the limits of the accelerating gradient in the conventional RF acceleration. A plasma accelerator is able to provide accelerating fields up to hundreds of $GeV/m$, paving the way to accelerate particles to several MeV over a short distance (below the millimetre range). Here the c...

Network

Cited By