Alessandro CescattiEuropean Commission | ec · Joint Research Centre (JRC)
Alessandro Cescatti
Ph.D.
About
317
Publications
164,514
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
30,191
Citations
Introduction
Additional affiliations
September 2006 - present
November 1991 - November 1994
November 1994 - August 2006
Centro di Ecologia Alpina
Position
- Group Leader
Publications
Publications (317)
Biodiversity relates to ecosystem functioning by modulating biogeochemical cycles of carbon, water, energy, and nutrients within and between multiple biotic and abiotic components of the ecosystems. However, large-scale, systematic measurements of plant biodiversity are still lacking, and the effects of biodiversity on measured biogeochemical proce...
In the framework of the RECCAP2 initiative, we present the greenhouse gas (GHG) and carbon (C) budget of Europe. For the decade of the 2010s, we present a bottom‐up (BU) estimate of GHG net‐emissions of 3.9 Pg CO2‐eq. yr⁻¹ (using a global warming potential on a 100 years horizon), which are largely dominated by fossil fuel emissions. In this decade...
Stand age significantly influences the functioning of forest ecosystems by shaping structural and physiological plant traits, affecting water and carbon budgets. Forest age distribution is determined by the interplay of tree mortality and regeneration, influenced by both natural and anthropogenic disturbances. Unfortunately, human-driven alteration...
Tropical forest degradation from selective logging, fire and edge effects is a major driver of carbon and biodiversity loss1–3, with annual rates comparable to those of deforestation⁴. However, its actual extent and long-term impacts remain uncertain at global tropical scale⁵. Here we quantify the magnitude and persistence of multiple types of degr...
Although afforestation is a potential strategy to mitigate climate change by sequestering carbon, its potential biophysical effects on climate, such as regulating surface albedo, evapotranspiration, and energy balance, have not been fully incorporated into climate change mitigation strategies. This is partly due to the challenges associated with mo...
Land-surface phenology is a widely used indicator of how terrestrial ecosystems respond to environmental change. The spatial variability of this plant functional trait has also been advocated as an indicator of the functional composition of ecosystems. However, a global-scale assessment of spatial patterns in the spatial heterogeneity of forest phe...
In the framework of the RECCAP2 initiative, we present the greenhouse gas (GHG) and carbon (C) budget of Europe. For the decade of the 2010s, we present a bottom-up (BU) estimate of GHG net-emissions of 3.9 Pg CO2-eq. yr-1 (global warming potential on 100 year horizon), and are largely dominated by fossil fuel emissions. In this decade, terrestrial...
The international community, through treaties such as the Paris Agreement, aims to limit climate change to well below 2°C, which implies reaching carbon neutrality around the second half the century. In the current calculations underpinning the various roadmaps toward carbon neutrality, a major component is a steady or even expanding terrestrial ca...
Tree age plays an essential role in forest ecosystems' functioning by affecting structural and physiological plant traits that modulate the water and carbon budgets. On the other hand, tree age distribution in forests depends on population dynamics and, therefore, on the balance between tree mortality and regeneration events, which are ultimately c...
Although elevated atmospheric CO2 concentration (eCO2) has substantial indirect effects on vegetation carbon uptake via associated climate change, their dynamics remain unclear. Here we investigate how the impacts of eCO2-driven climate change on growing-season gross primary production have changed globally during 1982–2014, using satellite observa...
Atmospheric reanalyses combine observations and models through data assimilation techniques to provide spatio-temporally continuous fields of key surface variables. They can do so for extended historical periods whilst ensuring a coherent representation of the main Earth system cycles. ERA5 and its enhanced land surface component, ERA5-Land, are wi...
Insect and disease outbreaks in forests are biotic disturbances that can profoundly alter ecosystem dynamics. In many parts of the world, these disturbance regimes are intensifying as the climate changes and shifts the distribution of species and biomes. As a result, key forest ecosystem services, such as carbon sequestration, regulation of water f...
The direct biophysical effects of fine-scale tree cover changes on temperature are not well understood. Here, we show how land surface temperature responds to subgrid gross tree cover changes. We find that in many forests, the biophysical cooling induced by enhanced evapotranspiration due to tree cover gain is greater in magnitude than the warming...
Investigation on the future impacts of climatic and environmental change on vegetation photosynthesis has been largely restricted to controlled field experiments, which can hardly be extended to global scale due to limited spatial, species and ecosystem coverages. However, in urban areas plants experience altered environments that mimic potential f...
Fundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories –...
The increasing availability of remotely sensed data have offered unprecedented possibilities for monitoring and analysis of environmental variables, including boosting recent studies in the field of ecosystem resilience relying on indicators derived from timeseries analysis, such as the temporal autocorrelation of vegetation indices. A forest ecosy...
Photosynthesis and evapotranspiration in Amazonian forests are major contributors to the global carbon and water cycles. However, their diurnal patterns and responses to atmospheric warming and drying at regional scale remain unclear, hindering the understanding of global carbon and water cycles. Here, we used proxies of photosynthesis and evapotra...
The population experiencing high temperatures in cities is rising due to anthropogenic climate change, settlement expansion, and population growth. Yet, efficient tools to evaluate potential intervention strategies to reduce population exposure to Land Surface Temperature (LST) extremes are still lacking. Here, we implement a spatial regression mod...
The ongoing rapid changes in climate pose significant pressures on forests’ health and growth with modalities that are still poorly understood 1–3 . Trees’ structural properties like tree height, leaf and root biomass, result from the interplay between plant physiology and key environmental factors like temperature and water. On the other hand, the...
Carbon storage in forests is a cornerstone of policy-making to prevent global warming from exceeding 1.5°C. However, the global impact of management (for example, harvesting) on the carbon budget of forests remains poorly quantified. We integrated global maps of forest biomass and management with machine learning to show that by removing human inte...
The effectiveness of Protected Areas in conserving forest ecosystems has been examined at the continental scale using area-based habitat parameters, but knowledge of the three-dimensional structure of forest habitats is still lacking. Here, we assess the effectiveness of European Protected Areas in conserving the vertical structure of forests by an...
As the focus of climate policy shifts from pledges to implementation, there is a growing need to track progress on climate change mitigation at the country level, particularly for the land-use sector. Despite new tools and models providing unprecedented monitoring opportunities, striking differences remain in estimations of anthropogenic land-use C...
Tropical forests have undergone extensive deforestation and degradation during the past few decades, but the area and the carbon loss due to degradation could be larger than the losses from deforestation. Degraded forests also induce biophysical feedback on climate, as they sustain less cooling from evapotranspiration. Here we estimate the biophysi...
Space-based remote sensing can make an important contribution toward monitoring greenhouse gas emissions and removals from the agriculture, forestry, and other land use (AFOLU) sector, and to understanding and addressing human-caused climate change through the UNFCCC Paris Agreement. Space agencies have begun to coordinate their efforts to identify...
Although rice cultivation is one of the most important agricultural sources of methane (CH4) and contributes ∼8% of total global anthropogenic emissions, large discrepancies remain among estimates of global CH4 emissions from rice cultivation (ranging from 18 to 115 Tg CH4 yr⁻¹) due to a lack of observational constraints. The spatial distribution o...
Fundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether trade-offs and optimality principles in functional traits of leaves are conserved at the ecosystem level. We tested three well-known leaf- and plant-level coordination theories...
Forest management practices might act as nature-based methods to remove CO2 from the atmosphere and slow anthropogenic climate change and thus support an EU forest-based climate change mitigation strategy. However, the extent to which diversified management actions could lead to quantitatively important changes in carbon sequestration and stocking...
Climate change alters surface water availability (precipitation minus evapotranspiration, P–ET) and consequently impacts agricultural production and societal water needs, leading to increasing concerns on the sustainability of water use. Although the direct effects of climate change on water availability have long been recognized and assessed, indi...
Atmospheric reanalyses combine observations and models through data assimilation techniques to provide spatio-temporally continuous fields of key surface variables. They can do so for extended historical periods whilst ensuring a coherent representation of the main Earth system cycles. ERA5, and its enhanced land surface component ERA5-Land, are wi...
Sun-induced chlorophyll a fluorescence (SIF) retrieved from satellites has shown potential as a remote sensing proxy for gross primary productivity (GPP). However, to fully exploit the potential of this signal, the robustness and stability of the SIF–GPP relationship across vegetation types and climates must be assessed. For this purpose, current s...
Forest management practices might act as nature-based methods to remove CO2 from the atmosphere and slow anthropogenic climate change and thus support an EU forest-based climate change mitigation strategy. However, the extent to which diversified management actions could lead to quantitatively important changes in carbon sequestration and stocking...
With the focus of climate policy shifting from pledges to implementation, there is an increasing need to track progress on climate change mitigation at country level, especially for the land-use sector. Despite new tools and models offering unprecedented monitoring opportunities, striking differences remain in estimations of anthropogenic land-use...
Forest ecosystems depend on their capacity to withstand and recover from natural and anthropogenic perturbations (that is, their resilience)1. Experimental evidence of sudden increases in tree mortality is raising concerns about variation in forest resilience2, yet little is known about how it is evolving in response to climate change. Here we inte...
Extreme urban heat exposure due to anthropogenic climate change and population growth is rising. Yet, efficient tools to evaluate potential intervention strategies to reduce heat exposure are still lacking. Here we implement a spatial regression model that is able to predict with high accuracy the Land Surface Temperature (LST) of urban environment...
The timely and accurate monitoring of forest resources is becoming of increasing importance in light of the multi-functionality of these ecosystems and their increasing vulnerability to climate change. Remote sensing observations of tree cover and systematic ground observations from National Forest Inventories (NFIs) represent the two major sources...
To become carbon neutral by 2050, the European Union (EU27) net carbon sink from forests should increase from the current level of about -360 to -450 Mt CO2eq yr-1 by 2050. Reaching this target requires additional efforts, which should be informed by the expected interactions between current age-class distributions, the effect of forest management...
We present “EU-Trees4F”, a dataset of current and future potential distributions of 67 tree species in Europe at 10 km spatial resolution. We provide both climatically suitable future areas of occupancy and the future distribution expected under a scenario of natural dispersal for two emission scenarios (RCP 4.5 and RCP 8.5) and three time steps (2...
The mitigation potential of vegetation-driven biophysical effects is strongly influenced by the background climate and will therefore be influenced by global warming. Based on an ensemble of remote sensing datasets, here we first estimate the temperature sensitivities to changes in leaf area over the period 2003–2014 as a function of key environmental...
To become carbon neutral by 2050, the European Union (EU27) net carbon sink from forests should increase from the current level of about −360 Mt CO2e yr−1 to −450 Mt CO2e yr−1 by 2050. Reaching this target requires additional efforts, which should be based on a strategic view of the realistic evolution of European forests within the next decades, c...
Sun-induced chlorophyll fluorescence (SIF) retrieved from satellites has shown potential as a remote sensing proxy for gross primary productivity (GPP). However, to fully exploit the potential of this signal, the robustness and stability of the SIF-GPP relationship across vegetation types and climates must be assessed. For this purpose, current stu...
More than half of the solar energy absorbed by land surfaces is currently used to evaporate water 1. Climate change is expected to intensify the hydrological cycle 2 and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct o...
The leaf economics spectrum1,2 and the global spectrum of plant forms and functions³ revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species². Ecosystem functions depend on environmental conditions and the traits of species that comprise...
Our study suggests that the global CO2 fertilization effect (CFE) on vegetation photosynthesis has declined during the past four decades. The Comments suggest that the temporal inconsistency in AVHRR data and the attribution method undermine the results’ robustness. Here, we provide additional evidence that these arguments did not affect our findin...
Global warming is likely to cause a progressive drought increase in some regions, but how population and natural resources will be affected is still underexplored. This study focuses on global population, forests, croplands and pastures exposure to meteorological drought hazard in the 21st century, expressed as frequency and severity of drought eve...
The terrestrial component of the Earth system has witnessed considerable changes in the past decades due to anthropogenic action. Throughout this period, the NASA Terra mission has been constantly monitoring the surface with the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. When combined with the MODIS instrument on-board of the...
Forests play a key role in humanity’s current challenge to mitigate climate change thanks to their capacity to sequester carbon. Preserving and expanding forest cover is considered essential to enhance this carbon sink. However, changing the forest cover can further affect the climate system through biophysical effects. One such effect that is seld...
Mapping carbon stocks in the tropics is essential for climate change mitigation. Passive microwave remote sensing allows estimating carbon from deep canopy layers through the Vegetation Optical Depth (VOD) parameter. Although their spatial resolution is coarser than that of optical vegetation indices or airborne Lidar data, microwaves present a hig...
Mitigation pathways by Integrated Assessment Models (IAMs) describe future emissions that keep global warming below specific temperature limits and are compared with countries’ collective greenhouse gas (GHG) emission reduction pledges. This is needed to assess mitigation progress and inform emission targets under the Paris Agreement. Currently, ho...
A recent study on forest harvest in the EU (Ceccherini et al. 2020) reported a strong increase in clear-cut harvested area in recent years, based on remote sensing information. This triggered a heated debate and many critical comments. Apart from several fair and constructive criticisms, which were welcome, we found that some comments have been eit...
Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ F C H 4 ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ F C H 4 projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ F C H 4...
Ecosystem respiration is a major component of the global terrestrial carbon cycle and is strongly influenced by temperature. The global extent of the temperature–ecosystem respiration relationship, however, has not been fully explored. Here, we test linear and threshold models of ecosystem respiration across 210 globally distributed eddy covariance...
The rising atmospheric CO2 concentration leads to a CO2 fertilization effect on plants—that is, increased photosynthetic uptake of CO2 by leaves and enhanced water‐use efficiency. Yet, the resulting net impact of CO2 fertilization on plant growth and soil moisture savings at large scale is poorly understood. Drylands provide a natural experimental...
Forest disturbance regimes are expected to intensify as Earth’s climate changes. Quantifying forest vulnerability to disturbances and understanding the underlying mechanisms is crucial to develop mitigation and adaptation strategies. However, observational evidence is largely missing at regional to continental scales. Here, we quantify the vulnerab...
Empirical vegetation indices derived from spectral reflectance data are widely used in remote sensing of the biosphere, as they represent robust proxies for canopy structure, leaf pigment content, and, subsequently, plant photosynthetic potential. Here, we generalize the broad family of commonly used vegetation indices by exploiting all higher-orde...
Climate model biases in the representation of albedo variations between land cover classes contribute to uncertainties on the climate impact of land cover changes since pre-industrial times, especially on the associated radiative forcing. Recent publications of new observation-based datasets offer opportunities to investigate these biases and their...
The enhanced vegetation productivity driven by increased concentrations of carbon dioxide (CO2)
[i.e., the CO2 fertilization effect (CFE)] sustains an important negative feedback on climate warming, but the temporal dynamics of CFE remain unclear. Using multiple long-term satellite- and ground-based datasets, we showed that global CFE has declined...