Alenka Copic

Alenka Copic
French National Centre for Scientific Research | CNRS · Center for Research in Cell Biology of Montpellier

PhD

About

40
Publications
4,878
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,613
Citations
Introduction
Employed as a CNRS researcher, I have recently moved from Institute Jacques Monod in Paris, to the CRBM - Montpellier Cell Biology Research Center, where I am starting a new lab entitled 'Cell biology of lipid storage and transfer'. We use diverse model systems, from in vitro-reconstituted protein-lipid complexes to budding yeast and cultured mammalian cells. We are excited to restart our projects and get the lab going!
Additional affiliations
April 2013 - present
CNRS
Position
  • Researcher
January 2009 - June 2012
Columbia University
Position
  • Fellow
Description
  • Instructor and course organizer in the undergraduate inter-departmental course 'Frontiers of Science'
November 2006 - June 2012
Columbia University
Position
  • Fellow
Education
September 2000 - April 2006
University of California, Berkeley
Field of study
  • Molecular and Cell Biology

Publications

Publications (40)
Article
Full-text available
Phosphatidylserine (PS) is a negatively charged glycerophospholipid found mainly in the plasma membrane (PM) and in the late secretory/endocytic compartments, where it regulates cellular activity and can mediate apoptosis. Export of PS from the endoplasmic reticulum, its site of synthesis, to other compartments, and its transbilayer asymmetry must...
Article
Full-text available
Phosphatidylserine (PS) is a negatively charged phospholipid that displays a highly uneven distribution within cellular membranes, essential for establishment of cell polarity and other processes. In this review, we discuss how combined action of PS biosynthesis enzymes in the endoplasmic reticulum (ER), lipid transfer proteins (LTPs) acting within...
Article
Full-text available
Numerous proteins target lipid droplets (LDs) through amphipathic helices (AHs). It is generally assumed that AHs insert bulky hydrophobic residues in packing defects at the LD surface. However, this model does not explain the targeting of perilipins, the most abundant and specific amphipathic proteins of LDs, which are weakly hydrophobic. A striki...
Article
Full-text available
Comprehensive libraries of plasmids for SARS‐CoV‐2 proteins with various tags (e.g. Strep, HA, Turbo) are now available. They enable the identification of numerous potential protein‐protein interactions between the SARS‐CoV‐2 virus and host proteins. To facilitate further cellular investigations, notably by imaging techniques, we present here a lar...
Preprint
Full-text available
Comprehensive libraries of plasmids for SARS-CoV-2 proteins with various tags (e.g. Strep, HA, Turbo) are now available. They enable the identification of numerous potential protein-protein interactions between the SARS-CoV-2 virus and host proteins. To facilitate further cellular investigations, notably by imaging techniques, we present here a lar...
Preprint
Full-text available
Numerous proteins target lipid droplets (LDs) through amphipathic helices (AHs). It is generally assumed that AHs insert bulky hydrophobic residues in packing defects at the LD surface. However, this model does not explain the targeting of perilipins, the most abundant and specific amphipathic proteins of LDs. The gigantic Plin4 contains a highly r...
Article
Full-text available
Osh6 and Osh7 are lipid transfer proteins (LTPs) that move phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM). High PS levels at the PM are key for many cellular functions. Intriguingly, Osh6 and Osh7 localize to ER–PM contact sites, although they lack membrane-targeting motifs, in contrast to multidomain LTPs t...
Preprint
Full-text available
Osh6 and Osh7 are lipid transfer proteins (LTPs) that transport phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM). High PS level at the PM is key for many cellular functions. Intriguingly, Osh6/7 localize to ER-PM contact sites, although they lack membrane-targeting motifs, in contrast to multidomain LTPs that...
Article
Full-text available
Article
Full-text available
A central assumption is that lipid transfer proteins (LTPs) bind transiently to organelle membranes to distribute lipids in the eukaryotic cell. Osh6p and Osh7p are yeast LTPs that transfer phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM) via PS/phosphatidylinositol-4-phosphate (PI4P) exchange cycles. It is un...
Chapter
In order to understand how lipids are sorted between cellular compartments, kinetic assays are required to selectively follow the transport of lipid species in cells. We present here a microfluidics-based protocol to follow the transport of phosphatidylserine (PS) in yeast cells from the site of its synthesis, the endoplasmic reticulum (ER), to dow...
Article
Full-text available
Amphipathic helices (AHs), a secondary feature found in many proteins, are defined by their structure and by the segregation of hydrophobic and polar residues between two faces of the helix. This segregation allows AHs to adsorb at polar–apolar interfaces such as the lipid surfaces of cellular organelles. Using various examples, we discuss here how...
Article
Membrane surface charge is critical for the transient, yet specific recruitment of proteins with polybasic regions to certain organelles. In eukaryotes, the plasma membrane (PM) is the most electronegative compartment of the cell, which specifies its identity. As such, membrane electrostatics is a central parameter in signaling, intracellular traff...
Article
Full-text available
How proteins are targeted to lipid droplets (LDs) and distinguish the LD surface from the surfaces of other organelles is poorly understood, but many contain predicted amphipathic helices (AHs) that are involved in targeting. We have focused on human perilipin 4 (Plin4), which contains an AH that is exceptional in terms of length and repetitiveness...
Preprint
Full-text available
Membrane surface charge is critical for the transient, yet specific recruitment of proteins with polybasic regions to certain organelles. In all eukaryotes, the plasma membrane (PM) is the most electronegative compartment of the cell, which specifies its identity. As such, membrane electrostatics is a central parameter in signaling, intracellular t...
Preprint
Full-text available
How proteins are targeted to lipid droplets (LDs) and distinguish the LD surface from the surfaces of other organelles is poorly understood, but many contain predicted amphipathic helices (AHs) that are involved in targeting. We have focused on human perilipin 4 (Plin4), which contains an AH that is exceptional in terms of length and repetitiveness...
Article
Full-text available
Fission of cellular membranes is ubiquitous and essential for life. Complex protein machineries, such as the dynamin and ESCRT spirals, have evolved to mediate membrane fission during diverse cellular processes, for example, vesicle budding. A new study suggests that non-specialized membrane-bound proteins can induce membrane fission through mass a...
Article
Transfer of lipid across the cytoplasm is an essential process for intracellular lipid traffic. Lipid transfer proteins (LTPs) are defined by highly controlled in vitro experiments. The functional relevance of these is supported by evidence for the same reactions inside cells. Major advances in the LTP field have come from structural bioinformatics...
Article
Lipids are precisely distributed in cell membranes, along with associated proteins defining organelle identity. Because the major cellular lipid factory is the endoplasmic reticulum (ER), a key issue is to understand how various lipids are subsequently delivered to other compartments by vesicular and non-vesicular transport pathways. Efforts are cu...
Article
Crowding of asymmetrically-distributed membrane proteins has been recently recognized as an important factor in remodeling of biological membranes, for example during transport vesicle formation. In this paper, we theoretically analyze the effect of protein crowding on membrane bending and examine its dependence on protein size, shape, transmembran...
Article
In eukaryotic cells, phosphatidylserine (PS) is synthesized in the endoplasmic reticulum (ER) but is highly enriched in the plasma membrane (PM), where it contributes negative charge and to specific recruitment of signaling proteins. This distribution relies on transport mechanisms whose nature remains elusive. Here, we found that the PS transporte...
Article
Eukaryotic protein secretion requires efficient and accurate delivery of diverse secretory and membrane proteins. This process initiates in the ER, where vesicles are sculpted by the essential COPII coat. The Sec13p subunit of the COPII coat contributes to membrane scaffolding, which enforces curvature on the nascent vesicle. A requirement for Sec1...
Article
Upon nutrient deprivation, cells metabolize fatty acids (FAs) in mitochondria to supply energy, but how FAs, stored as triacylglycerols in lipid droplets, reach mitochondria has been mysterious. Rambold et al. (2015) now show that FA mobilization depends on triacylglycerol lipolysis, whereas autophagy feeds the lipid droplet pool for continued fuel...
Article
Many cellular processes require membrane deformation, which is driven by specialized protein machinery and can often be recapitulated using pure lipid bilayers. However, biological membranes contain a large amount of embedded proteins. Recent research suggests that membrane-bound proteins with asymmetric distribution of mass across the bilayer can...
Article
Full-text available
A Fair COP During eukaryotic intracellular membrane traffic, how is membrane curvature imparted by the cytoplasmic proteins that form the COPII coat, which mediates vesicle budding from the endoplasmic reticulum? Čopič et al. (p. 1359 , published online 2 February; see the Perspective by Silvius ) dissected this process by exploiting yeast bypass-o...
Article
Full-text available
To gain new mechanistic insight into ER homeostasis and the biogenesis of secretory proteins, we screened a genomewide collection of yeast mutants for defective intracellular retention of the ER chaperone, Kar2p. We identified 87 Kar2p-secreting strains, including a number of known components in secretory protein modification and sorting. Further c...
Article
Full-text available
The phosphoinositide-binding proteins Ent3p and Ent5p are required for protein transport from the trans-Golgi network (TGN) to the vacuole in Saccharomyces cerevisiae. Both proteins interact with the monomeric clathrin adaptor Gga2p, but Ent5p also interacts with the clathrin adaptor protein 1 (AP-1) complex, which facilitates retention of proteins...
Article
Ammodytoxin is a presynaptically neurotoxic (beta-neurotoxic) snake venom secretory phospholipase A(2) (sPLA(2)). We detected a 25 kDa protein which binds the toxin with very high affinity (R25) in porcine cerebral cortex. Here we show that R25 is an integral membrane protein with intracellular localisation. It is the first sPLA(2) receptor known t...
Article
Crotoxin, a potent neurotoxin from the South American rattlesnake Crotalus durissus terrificus, is a heterodimeric phospholipase A(2) (EC 3.1.1.4), which blocks the release of acetylcholine from peripheral neurons. We previously have suggested the existence of a 48 kDa crotoxin-binding protein in the presynaptic membranes of the electric organ of T...
Article
Ammodytoxin is a presynaptically neurotoxic (β-neurotoxic) snake venom secretory phospholipase A2 (sPLA2). We detected a 25 kDa protein which binds the toxin with very high affinity (R25) in porcine cerebral cortex [Vučemilo et al., Biochem. Biophys. Res. Commun. 251 (1998) 209–212]. Here we show that R25 is an integral membrane protein with intrac...
Article
Full-text available
One of the high affinity binding proteins for ammodytoxin C, a snake venom presynaptically neurotoxic phospholipase A(2), has been purified from porcine cerebral cortex and characterized. After extraction from the membranes, the toxin-binding protein was isolated in a homogenous form using wheat germ lectin-Sepharose, Q-Sepharose, and ammodytoxin-C...
Article
Full-text available
The positive charge concentrated at the C-terminal region of ammodytoxin (Atx) A, which is involved in presynaptic toxicity, has been reversed. A six-site mutant of AtxA (K108N/K111N/K127T/K128E/E129T/K132E , where K108N=Lys(108)-->Asn etc. ) was prepared, in which five out of seven C-terminal basic amino acid residues were substituted with neutral...
Article
The positive charge concentrated at the C-terminal region of ammodytoxin (Atx) A, which is involved in presynaptic toxicity, has been reversed. A six-site mutant of AtxA (K108N/K111N/K127T/K128E/E129T/K132E, where K108N = Lys108 → Asn etc.) was prepared, in which five out of seven C-terminal basic amino acid residues were substituted with neutral o...
Article
Quadruple (Y115K/I116K/R118M/N119L) and double (Y115K/I116K) mutants of ammodytoxin A, a presynaptically toxic phospholipase A(2) from Vipera ammodytes ammodytes venom, were prepared and characterized. The enzymatic activity of the quadruple mutant on phosphatidylcholine micelles was threefold higher than that of AtxA, presumably due to higher phos...
Article
Full-text available
A specific phospholipase A(2) receptor from porcine cerebral cortex has been characterized (K(d) = 145 nM, B(max) = 0.4 pmol/mg membrane protein) by using a radioiodinated derivative of ammodytoxin C (AtxC), a snake venom presynaptically neurotoxic group IIA phospholipase A(2). After the receptor was solubilized in a ligand-binding form, it was app...
Article
Ammodytoxin C is a neurotoxic phospholipase A2 which blocks the release of neurotransmitter from the nerve terminal. Using a radioiodinated derivative of the toxin, we located its specific high-affinity binding site in the demyelinated P2 fraction of porcine cerebral cortex (Kd = 15 nM; Bmax = 1.5 pmol/mg membrane protein). In cross-linking experim...

Network

Cited By