Aleksander Jankowski

Aleksander Jankowski
University of Warsaw | UW · Faculty of Mathematics, Informatics and Mechanics

19.14
 · 
PhD

About

10
Publications
3,329
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
267
Citations
Research Experience
October 2014 - present
European Molecular Biology Laboratory
Position
  • Postdoctoral Fellow
October 2012 - September 2013
Genome Institute of Singapore
Position
  • Ph.D. student
October 2010 - September 2011
Genome Institute of Singapore
Position
  • Ph.D. student

Publications

Publications (10)
Article
Full-text available
Chromatin topology is intricately linked to gene expression, yet its functional requirement remains unclear. Here, we comprehensively assessed the interplay between genome topology and gene expression using highly rearranged chromosomes (balancers) spanning ~75% of the Drosophila genome. Using transheterozyte (balancer/wild-type) embryos, we measur...
Article
Full-text available
FOXA1 is a transcription factor capable to bind silenced chromatin to direct context-dependent cell fate conversion. Here, we demonstrate that a compact palindromic DNA element (termed 'DIV' for its diverging half-sites) induces the homodimerization of FOXA1 with strongly positive cooperativity. Alternative structural models are consistent with eit...
Article
Full-text available
Motivation: Computational prediction of transcription factor (TF) binding sites in the genome remains a challenging task. Here, we present Romulus, a novel computational method for identifying individual TF binding sites from genome sequence information and cell-type–specific experimental data, such as DNase-seq. It combines the strengths of previo...
Article
Full-text available
The enhanceosome is an enhancer located upstream of the human interferon β gene, bound by transcription factor (TF) complex of extremely rigid structure. Within these rigid constraints, even a slight change of distances between transcription factor binding sites (TFBS) results in loss of functionality of the enhanceosome. We hypothesized that small...
Article
Full-text available
The SOXE transcription factors SOX8, SOX9 and SOX10 are master regulators of mammalian development directing sex determination, gliogenesis, pancreas specification and neural crest development. We identified a set of palindromic SOX binding sites specifically enriched in regulatory regions of melanoma cells. SOXE proteins homodimerize on these sequ...
Article
Full-text available
Cooperative binding of transcription factor (TF) dimers to DNA is increasingly recognized as a major contributor to binding specificity. However, it is likely that the set of known TF dimers is highly incomplete, given that they were discovered using ad hoc approaches, or through computational analyses of limited datasets. Here, we present TACO (Tr...
Article
Full-text available
The binding of transcription factors (TFs) to their specific motifs in genomic regulatory regions is commonly studied in isolation. However, in order to elucidate the mechanisms of transcriptional regulation, it is essential to determine which TFs bind DNA cooperatively as dimers, and to infer the precise nature of these interactions. So far, only...
Article
Full-text available
Machine learning methods are often used to classify objects described by hundreds of attributes; in many applications of this kind a great fraction of attributes may be totally irrelevant to the classification problem. Even more, usually one cannot decide a priori which attributes are relevant. In this paper we present an improved version of the al...
Article
Full-text available
Algorithms for estimating similarity between two macromolecular sequences are of profound importance for molecular biology. The standard methods utilize so-called primary structure, that is a string of characters denoting the sequence of monomers in hetero-polymer. These methods find the substrings of maximal similarity, as defined by the so-called...
,