Aleksander S Popel

Aleksander S Popel
Johns Hopkins University | JHU · Department of Biomedical Engineering

Ph.D.
Systems Biology; Immuno-Oncology; Multi-Scale Modeling

About

527
Publications
53,463
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
16,098
Citations
Introduction
Areas of interest: Systems Biology, Computational Biology, Quantitative Systems Pharmacology, Immuno-Oncology, Angiogenesis, Microcirculation, Angiogenesis- and lymphangiogenesis-dependent diseases: Cancer, Age-related macular degeneration, Peripheral arterial disease. Experimental in vitro and in vivo studies in cancer. VEGF-Vascular Endothelial Growth Factors. Drug discovery. Anti-angiogenic and anti-lymphangiogenic peptides.
Additional affiliations
April 1984 - present
Johns Hopkins University School of Medicine
Position
  • Professor

Publications

Publications (527)
Article
The recent development of genome-wide spatial transcriptomics (ST) approaches enable near single-cell gene expression profiling to infer cellular composition and intercellular interactions that drive cancer development and responses to therapy. This study applied ST on 10 surgical biospecimens from a clinical trial with neoadjuvant therapy with cab...
Preprint
Full-text available
Recent advances in spatial transcriptomics (ST) enable gene expression measurements from a tissue sample while retaining its spatial context. This technology enables unprecedented in situ resolution of the regulatory pathways that underlie the heterogeneity in the tumor and its microenvironment (TME). The direct characterization of cellular co-loca...
Article
The Angiopoietin-Tie (Ang-Tie) pathway is a key signaling pathway regulating vascular stability and permeability, and it significantly intersects and crosstalk with the vascular endothelial growth factor (VEGF) signaling pathway, a major signaling pathway regulating angiogenesis and vascular permeability. Disrupted Ang-Tie and VEGF signaling is lin...
Article
Full-text available
Background Concomitant inhibition of vascular endothelial growth factor (VEGF) and programmed cell death protein 1 (PD-1) or its ligand PD-L1 is a standard of care for patients with advanced hepatocellular carcinoma (HCC), but only a minority of patients respond, and responses are usually transient. Understanding the effects of therapies on the tum...
Article
Full-text available
In peripheral arterial disease (PAD), the degree of endogenous capacity to modulate revascularization of limb muscle is central to the management of leg ischemia. To characterize the multiscale and multicellular nature of revascularization in PAD, we have developed the first computational systems biology model that mechanistically incorporates intr...
Article
Full-text available
Angiogenesis is a highly regulated multiscale process that involves a plethora of cells, their cellular signal transduction, activation, proliferation, differentiation, as well as their intercellular communication. The coordinated execution and integration of such complex signaling programs is critical for physiological angiogenesis to take place i...
Article
Background Structured and spatial-nuanced interactions between components in tumor microenvironment (TME) regulates the efficacy of anti-tumor regimens. Insights into this orchestrated behavior in therapeutic responders and non-responders will facilitate immunotherapies. High-multiplex imaging and spatial statistics enable deep profiling of TMEs by...
Preprint
Full-text available
Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing only coarse and approximate annotations is a much e...
Article
Full-text available
The ability to measure and analyze the complex dynamic multi-marker features of macrophages is critical for the understanding of their diverse phenotypes and functions in health and disease. To that end, we have recently developed a multi-pathway computational model that for the first time enables a systems-level characterization of macrophage sign...
Article
Full-text available
The Ang–Tie signaling pathway is an important vascular signaling pathway regulating vascular growth and stability. Dysregulation in the pathway is associated with vascular dysfunction and numerous diseases that involve abnormal vascular permeability and endothelial cell inflammation. The understanding of the molecular mechanisms of the Ang–Tie path...
Article
Full-text available
Characterizing likelihood of response to neoadjuvant chemotherapy (NAC) in muscle-invasive bladder cancer (MIBC) is an important yet unmet challenge. In this study, a machine-learning framework is developed using imaging of biopsy pathology specimens to generate models of likelihood of NAC response. Developed using cross-validation (evaluable N = 6...
Article
Full-text available
Quantitative systems pharmacology (QSP) models have become increasingly common in fundamental mechanistic studies and drug discovery in both academic and industrial environments. With imaging techniques widely adopted and other spatial quantification of tumor such as spatial transcriptomics gaining traction, it is crucial that these data reflecting...
Article
Full-text available
Response to cancer immunotherapies depends on the complex and dynamic interactions between T cell recognition and killing of cancer cells that are counteracted through immunosuppressive pathways in the tumor microenvironment. Therefore, while measurements such as tumor mutational burden provide biomarkers to select patients for immunotherapy, they...
Article
Full-text available
Background Immune checkpoint blockade therapy has clearly shown clinical activity in patients with triple-negative breast cancer, but less than half of the patients benefit from the treatments. While a number of ongoing clinical trials are investigating different combinations of checkpoint inhibitors and chemotherapeutic agents, predictive biomarke...
Article
Full-text available
Macrophages are highly plastic immune cells that dynamically integrate microenvironmental signals to shape their own functional phenotypes, a process known as polarization. Here we develop a large-scale mechanistic computational model that for the first time enables a systems-level characterization, from quantitative, temporal, dose-dependent, and...
Article
Full-text available
Progress in immunotherapy has resulted in explosively increased new therapeutic interventions and they have shown promising results in the treatment of cancer. Animal testing is performed to provide preliminary efficacy and safety data for drugs under development prior to clinical trials. However, translational challenges remain for preclinical stu...
Article
Cancer immunotherapy has achieved positive clinical outcomes and is revolutionizing cancer treatment. However, cancer immunotherapy has thus far failed to improve outcomes for most “cold tumors”, which are characterized by low infiltration of immune cells and immunosuppressive tumor microenvironment. Enhancing the responsiveness of cold tumors to c...
Article
Full-text available
Overwhelming evidence has shown the significant role of the tumor microenvironment (TME) in governing the triple-negative breast cancer (TNBC) progression. Digital pathology can provide key information about the spatial heterogeneity within the TME using image analysis and spatial statistics. These analyses have been applied to CD8+ T cells, but qu...
Article
Full-text available
Background T cells have been recognized as core effectors for cancer immunotherapy. How to restore the anti-tumor ability of suppressed T cells or improve the lethality of cytotoxic T cells has become the main focus in immunotherapy. Bispecific antibodies, especially bispecific T cell engagers (TCEs), have shown their unique ability to enhance the...
Article
Full-text available
Persistent inflammation is a complication associated with many ocular diseases. Changes in ocular vessels can amplify disease responses and contribute to vision loss by influencing the delivery of leukocytes to the eye, vascular leakage, and perfusion. Here, we report the anti-inflammatory activity for AXT107, a non-RGD, 20-mer αvβ3 and α5β1 integr...
Article
Full-text available
Immunotherapy has shown great potential in the treatment of cancer, however, only a fraction of patients respond to treatment and many experience autoimmune‐related side effects. The pharmaceutical industry has relied on mathematical models to study the behavior of candidate drugs and more recently, complex, whole‐body, quantitative systems pharmac...
Article
Full-text available
Cancer immunotherapy has recently drawn remarkable attention as promising results in the clinic have shown its ability to improve the overall survival, and T cells are considered to be one of the primary effectors for cancer immunotherapy. Enhanced and restored T cell tumoricidal activity has shown great potential for killing cancer cells. Bispecif...
Article
Full-text available
Triple-negative breast cancer (TNBC) is a highly metastatic and aggressive disease with limited treatment options. Recently, the combination of the immune checkpoint inhibitor (ICI) atezolizumab (anti-PD-L1) with nab-paclitaxel was approved following a clinical trial that showed response rates in at least 43% of patients. While this approval marks...
Article
Full-text available
In triple-negative breast cancer (TNBC), the lack of therapeutic markers and effective targeted therapies result in an incurable metastatic disease associated with a poor prognosis. Crosstalks within the tumor microenvironment (TME), including those between cancer and stromal cells, affect the tumor heterogeneity, growth, and metastasis. Previously...
Article
Full-text available
The survival rate of patients with breast cancer has been improved by immune checkpoint blockade therapies, and the efficacy of their combinations with epigenetic modulators has shown promising results in preclinical studies. In this prospective study, we propose an ordinary differential equation (ODE)-based quantitative systems pharmacology (QSP)...
Article
Full-text available
Mathematical modeling can be used to predict the efficacy of drug therapies in liver cancer for individual patients. A team lead by Mohammad Jafarnejad at Johns Hopkins University developed a mathematical model of cellular signaling in liver cells that can predict drug interactions affecting the growth pathways in liver cells found to be responsibl...
Article
Full-text available
Macrophages respond to signals in the microenvironment by changing their functional phenotypes, a process known as polarization. Depending on the context, they acquire different patterns of transcriptional activation, cytokine expression and cellular metabolism which collectively constitute a continuous spectrum of phenotypes, of which the two extr...
Article
Full-text available
The angiopoietin-Tie signaling pathway is an important vascular signaling pathway involved in angiogenesis, vascular stability, and quiescence. Dysregulation in the pathway is linked to the impairments in vascular function associated with many diseases, including cancer, ocular diseases, systemic inflammation, and cardiovascular diseases. The prese...
Article
Full-text available
The angiopoietin-Tie signaling pathway is an important vascular signaling pathway involved in angiogenesis, vascular stability, and quiescence. Dysregulation in the pathway is linked to the impairments in vascular function associated with many diseases, including cancer, ocular diseases, systemic inflammation, and cardiovascular diseases. The prese...
Article
Full-text available
Immunotherapy and immune checkpoint blocking antibodies such as anti-PD-1 are approved and significantly improve the survival of advanced non-small cell lung cancer (NSCLC) patients, but there has been little success in identifying biomarkers capable of separating the responders from non-responders before the onset of the therapy. In this study, we...
Article
Full-text available
Over the past decade, several immunotherapies have been approved for the treatment of melanoma. The most prominent of these are the immune checkpoint inhibitors, which are antibodies that block the inhibitory effects on the immune system by checkpoint receptors, such as CTLA-4, PD-1 and PD-L1. Preclinically, blocking these receptors has led to incr...
Article
Full-text available
Leading causes of vision loss include neovascular age-related macular degeneration (NVAMD) and macular edema (ME), which both require frequent intravitreal injections for treatment. A safe, poly(lactic-co-glycolic acid) (PLGA)-based biodegradable polymeric microparticle (MP) delivery system was developed that encapsulates and protects a biomimetic...
Article
Full-text available
The low response rate of immune checkpoint blockade in breast cancer has highlighted the need for predictive biomarkers to identify responders. While a number of clinical trials are ongoing, testing all possible combinations is not feasible. In this study, a quantitative systems pharmacology model is built to integrate immune-cancer cell interactio...
Article
Full-text available
There is a critical need for new tools to investigate the spatio-temporal heterogeneity and phenotypic alterations that arise in the tumor microenvironment. However, computational investigations of emergent inter- and intra-tumor angiogenic heterogeneity necessitate 3D microvascular data from ‘whole-tumors’ as well as “ensembles” of tumors. Until r...
Article
Full-text available
Background Microcirculation is a decisive factor in tissue reperfusion inadequacy following myocardial infarction (MI). Nonetheless, experimental assessment of blood flow in microcirculation remains a bottleneck. We sought to model blood flow properties in coronary microcirculation at different time points after MI and to compare them with healthy...
Data
Data S1. Supplemental Methods. Table S1. Characteristics of the Participants in the Study. Table reproduced from Gkontra et al9 (Creative Commons license10) Figure S1. Mirroring of the original image colour‐coded with light green (7 color scale). 2D slices along x,y and z directions of the 3D resulting mirrored image that con‐tains 8 copies of th...
Article
Full-text available
The angiopoietin (Ang)/Tie2 signaling pathway is essential for maintaining vascular homeostasis, and its dysregulation is associated with several diseases. Interactions between Tie2 and α5β1 integrin have emerged as part of this control; however, the mechanism is incompletely understood. AXT107, a collagen IV-derived peptide, has strong antipermeab...
Article
Full-text available
MicroRNAs (miRs) are endogenous non-coding RNA molecules that play important roles in human health and disease by regulating gene expression and cellular processes. In recent years, with the increasing scientific knowledge and new discovery of miRs and their gene targets, as well as the plentiful experimental evidence that shows dysregulation of mi...
Article
Full-text available
Multiscale systems biology and systems pharmacology are powerful methodologies that are playing increasingly important roles in understanding the fundamental mechanisms of biological phenomena and in clinical applications. In this review, we summarize the state of the art in the applications of agent-based models (ABM) and hybrid modeling to the tu...
Article
Full-text available
Quantitative characterization of the tumor microenvironment, including its immuno-architecture, is important for developing quantitative diagnostic and predictive biomarkers, matching patients to the most appropriate treatments for precision medicine, and for providing quantitative data for building systems biology computational models able to pred...
Article
Full-text available
Purpose: Quantitative understanding of the transport of therapeutic macromolecules following intraocular injections is critical for the design of efficient strategies in treating eye diseases, such as neovascular (wet) age-related macular degeneration (AMD) and macular edema (ME). Antiangiogenic treatments, such as neutralizing antibodies against...
Article
Full-text available
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
Article
Full-text available
Background: Metastatic triple-negative breast cancer (TNBC) is a heterogeneous and incurable disease. Numerous studies have been conducted to seek molecular targets to treat TNBC effectively, but chemotherapy is still the main choice for patients with TNBC. We have previously presented evidence of the important roles of interleukin-6 (IL-6) and ch...
Article
A hallmark of breast tumors is its spatial heterogeneity that includes its distribution of cancer stem cells and progenitor cells, but also heterogeneity in the tumor microenvironment. In this study we focus on the contributions of stromal cells, specifically macrophages, fibroblasts, and endothelial cells on tumor progression. We develop a computa...
Article
Full-text available
The matricellular protein thrombospondin-1 (TSP1) is a potent inhibitor of angiogenesis. Specifically, TSP1 has been experimentally shown to inhibit signaling downstream of vascular endothelial growth factor (VEGF). The molecular mechanism of this inhibition is not entirely clear. We developed a detailed computational model of VEGF signaling to Akt...