Alejandro V Villarino

Alejandro V Villarino
University of Miami | UM · Department of Microbiology & Immunology

PhD

About

62
Publications
15,118
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,062
Citations
Introduction
Alejandro V Villarino is assistant professor in the Department of Microbiology and Immunology at the University of Miami, Miller School of Medicine. He does research in Cell Biology, Molecular Biology and Immunology.
Additional affiliations
January 2020 - present
University of Miami
Position
  • Professor (Assistant)
October 2010 - January 2020
National Institute of Arthritis and Musculoskeletal and Skin Diseases
Position
  • Research Associate
October 2005 - June 2010
University of California, San Francisco
Position
  • PostDoc Position
Education
September 1999 - September 2005
University of Pennsylvania
Field of study
  • Parasitology & Immunology
September 1995 - May 1999
Drew University
Field of study
  • Biology, Art History & Classical Studies
September 1994 - May 1995
Cheshire Academy
Field of study
  • High School

Publications

Publications (62)
Article
Full-text available
Self-reactive T cell clones that escape negative selection are either deleted or rendered functionally unresponsive (anergic), thus preventing them from propagating host tissue damage. By using an in vivo model, we investigated molecular mechanisms for T cell tolerance, finding that despite a characteristic inability to generate effector cytokine p...
Article
Full-text available
Kinases of the Jak ('Janus kinase') family and transcription factors (TFs) of the STAT ('signal transducer and activator of transcription') family constitute a rapid membrane-to-nucleus signaling module that affects every aspect of the mammalian immune system. Research on this paradigmatic pathway has experienced breakneck growth in the quarter cen...
Article
Full-text available
Innate lymphoid cells (ILCs) patrol environmental interfaces to defend against infection and protect barrier integrity. Using a genetic tuning model, we demonstrate that the signal-dependent transcription factor (TF) STAT5 is critical for accumulation of all known ILC subsets in mice and reveal a hierarchy of STAT5 dependency for populating lymphoi...
Article
Full-text available
The transcription factor STAT5 is fundamental to the mammalian immune system. However, the relationship between its two paralogs, STAT5A and STAT5B, and the extent to which they are functionally distinct, remain uncertain. Using mouse models of paralog deficiency, we demonstrate that they are not equivalent for CD4 + 'helper' T cells, the principal...
Article
Full-text available
More than two decades ago, experiments on the antiviral mechanisms of IFNs led to the discovery of JAKs and their downstream effectors, the STAT proteins. This pathway has since become a paradigm for membrane-to-nucleus signaling and explains how a broad range of soluble factors, including cytokines and hormones, mediate their diverse functions. Ja...
Article
Significance CD8 T cell exhaustion is a key underlying factor limiting immunity in chronic infections and cancer. Persistent antigen exposure antagonizes formation of functional memory CD8 T cells that provide long-term protection and, instead, drives the development of exhausted CD8 T cells (T EX ). Improving T EX persistence and function is a maj...
Article
Full-text available
Patients with activated phosphatidylinositol 3-kinase delta (PI3Kδ) syndrome (APDS) present with sinopulmonary infections, lymphadenopathy, and cytomegalvirus (CMV) and/or Epstein-Barr virus (EBV) viremia, yet why patients fail to clear certain chronic viral infections remains incompletely understood. Using patient samples and a mouse model (Pik3cd...
Article
Full-text available
Natural killer (NK) cells are innate lymphocytes with the capacity to elicit adaptive features, including clonal expansion and immunological memory. Because signal transducer and activator of transcription 5 (STAT5) is essential for NK cell development, the roles of this transcription factor and its upstream cytokines interleukin-2 (IL-2) and IL-15...
Article
Mismatch repair-deficient (dMMR) cancers generate a substantial number of immunogenic neoantigens, rendering them sensitive to immunotherapy. Yet, there is considerable variability in responses, and roughly one-half of dMMR cancers are refractory to immunotherapy. Here we study a patient with dMMR lung cancer refractory to immunotherapy. The tumor...
Article
Innate immune responses rely on rapid and precise gene regulation mediated by accessibility of regulatory regions to transcription factors (TFs). In natural killer (NK) cells and other innate lymphoid cells, competent enhancers are primed during lineage acquisition, and formation of de novo enhancers characterizes the acquisition of innate memory i...
Article
Full-text available
Hybrid Th1/Tfh cells (IFN-γ⁺IL-21⁺CXCR5⁺) predominate in response to several persistent infections. In Plasmodium chabaudi infection, IFN-γ⁺ T cells controls parasitemia, while antibody and IL-21⁺Bcl6⁺ T cells effect final clearance, suggesting an evolutionary driver for the hybrid population. We found that CD4-intrinsic Bcl6, Blimp-1 and STAT3 coo...
Article
The JAK-STAT pathway is an evolutionarily conserved signal transduction paradigm, providing mechanisms for rapid receptor-to-nucleus communication and transcription control. Discoveries in this field provided insights into primary immunodeficiencies, inherited autoimmune and autoinflammatory diseases, and hematologic and oncologic disorders, giving...
Article
Signal transducer and activator of transcription (STAT) proteins have critical roles in the development and function of immune cells. STAT signaling is often dysregulated in patients with inflammatory bowel disease (IBD), suggesting the importance of STAT regulation during the disease process. Moreover, genetic alterations in STAT3 and STAT5 (e.g.,...
Preprint
Full-text available
Cytokine-induced signaling pathways are tightly regulated and self-limiting, as their dysregulation causes immune disorders and cancer. The precise mechanisms that fine-tune these responses are incompletely understood. We show that the E3 ubiquitin ligase RNF144A is an IL-2/STAT5-induced gene in T cells and critically orchestrates the hierarchy of...
Article
Sustained T cell receptor (TCR) stimulation is required for maintaining germinal center T follicular helper (GC-T FH ) cells. Paradoxically, TCR activation induces interleukin-2 receptor (IL-2R) expression and IL-2 production, thereby initiating a feedback loop of IL-2 signaling that normally inhibits T FH cells. It is unclear how GC-T FH cells can...
Preprint
Full-text available
Hybrid Th1/Tfh cells (IFN-γ+IL-21+CXCR5+) predominate in response to persistent infections; however, molecular regulation of their function is poorly defined. In infection with Plasmodium spp, an IFN-γ+ T helper-1 (Th1) response controls initial parasitemia, while antibody and IL-21+CXCR5+ T follicular helper (Tfh) function effect final clearance....
Article
Interferon gamma (IFN-γ), critical for host defense and tumor surveillance, requires tight control of its expression. Multiple cis-regulatory elements exist around Ifng along with a non-coding transcript, Ifng-as1 (also termed NeST). Here, we describe two genetic models generated to dissect the molecular functions of this locus and its RNA product....
Article
Full-text available
Mammalian barrier surfaces are constitutively colonized by numerous microorganisms. We explored how the microbiota was sensed by the immune system and the defining properties of such responses. Here, we show that a skin commensal can induce T cell responses in a manner that is restricted to non-classical MHC class I molecules. These responses are u...
Article
Full-text available
Understanding the control of Ag restimulation-induced T cell death (RICD), especially in cancer immunotherapy, where highly proliferating T cells will encounter potentially large amounts of tumor Ags, is important now more than ever. It has been known that growth cytokines make T cells susceptible to RICD, but the precise molecular mediators that g...
Article
IL-7 regulates homeostatic mechanisms that maintain the overall size of the T cell pool throughout life. We show that, under steady-state conditions, IL-7 signaling is principally mediated by activation of signal transducers and activators of transcription 5 (STAT5). In contrast, under lymphopenic conditions, there is a modulation of STAT1 expressi...
Article
The discovery of cytokines as key drivers of immune-mediated diseases has spurred efforts to target their associated signalling pathways. Janus kinases (JAKs) are essential signalling mediators downstream of many pro-inflammatory cytokines, and small-molecule inhibitors of JAKs (jakinibs) have gained traction as safe and efficacious options for the...
Article
Commitment to the innate lymphoid cell (ILC) lineage is determined by Id2, a transcriptional regulator that antagonizes T and B cell-specific gene expression programs. Yet how Id2 expression is regulated in each ILC subset remains poorly understood. We identified a cis-regulatory element demarcated by a long non-coding RNA (lncRNA) that controls th...
Article
Full-text available
The transcriptional programs that guide lymphocyte differentiation depend on the precise expression and timing of transcription factors (TFs). The TF BACH2 is essential for T and B lymphocytes and is associated with an archetypal super-enhancer (SE). Single-nucleotide variants in the BACH2 locus are associated with several autoimmune diseases, but...
Article
Full-text available
Blimp-1 expression in T cells extinguishes the fate of T follicular helper cells, drives terminal differentiation, and limits autoimmunity. Although various factors have been described to control Blimp-1 expression in T cells, little is known about what regulates Blimp-1 expression in T helper 2 (TH2) cells and the molecular basis of its actions. W...
Article
Full-text available
![Figure][1] Insight from (left to right) Alejandro Villarino, John O’Shea, and Christopher Hunter The artist Keith Haring once wrote, “Good and evil are not complete opposites… in fact, [they] are often one and the same.” Such dualism is commonplace in the field of cytokine
Article
Full-text available
Signal Transducers and Activators of Transcription (STATs) are principal transcription factors downstream of cytokine receptors. Although STAT5A is expressed in most tissues it remains to be understood why its premier, non-redundant functions are restricted to prolactin-induced mammary gland development and function. We report that the ubiquitously...
Article
Interleukin-6 (IL-6) and IL-27 signal through a shared receptor subunit and employ the same downstream STAT transcription proteins, but yet are ascribed unique and overlapping functions. To evaluate the specificity and redundancy for these cytokines, we quantified their global transcriptomic changes and determined the relative contributions of STAT...
Article
Direct antagonism between interleukin1 (IL-1) and the vitamin A metabolite retinoic acid tips the balance between differentiation into the TH17 subset of helper T cells or into regulatory T cells by influencing the transcription factors STAT3 and STAT5.
Article
Full-text available
The Janus kinase (JAK)-signal transducer of activators of transcription (STAT) pathway is now recognized as an evolutionarily conserved signaling pathway employed by diverse cytokines, interferons, growth factors, and related molecules. This pathway provides an elegant and remarkably straightforward mechanism whereby extracellular factors control g...
Article
Full-text available
Inflammasomes are innate immune sensors that respond to pathogen- and damage-associated signals with caspase-1 activation, interleukin (IL)-1β and IL-18 secretion, and macrophage pyroptosis. The discovery that dominant gain-of-function mutations in NLRP3 cause the cryopyrin-associated periodic syndromes (CAPS) and trigger spontaneous inflammasome a...
Article
Full-text available
The discovery of the specification of CD4+ helper T cells to discrete effector ‘lineages’ represented a watershed event in conceptualizing mechanisms of host defense and immunoregulation. However, our appreciation for the actual complexity of helper T-cell subsets continues unabated. Just as the Sami language of Scandinavia has 1000 different words...
Article
Full-text available
Mutations of STAT3 underlie the autosomal dominant form of hyperimmunoglobulin E syndrome (HIES). STAT3 has critical roles in immune cells and thus, hematopoietic stem cell transplantation (HSCT), might be a reasonable therapeutic strategy in this disease. However, STAT3 also has critical functions in nonhematopoietic cells and dissecting the prote...
Article
Full-text available
A “switch” from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here th...
Article
Full-text available
Activation induces extensive changes in the gene expression program of naive CD4(+) T cells, promoting their differentiation into helper T cells that coordinate immune responses. MicroRNAs (miRNAs) play a critical role in this process, and miRNA expression also changes dramatically during T cell differentiation. Quantitative analyses revealed that...
Article
Full-text available
Interleukin (IL)-22-producing innate lymphoid cells (ILCs; ILC22) comprise a heterogeneous population of cells that are dependent on the transcription factor retinoid-related orphan γt (RORγt) and are critical for barrier function of the intestinal mucosa. A distinct ILC22 subset expresses the natural cytotoxicity receptor NKp46 (NKp46(+) ILC22); h...
Article
Full-text available
In helper T cells, IL-13 is traditionally considered a Th2-type cytokine that is coexpressed with IL-4. Using mouse models of immunization and autoimmunity, we demonstrate that IL-13 is frequently uncoupled from IL-4, and that it can be produced by both IFN-γ(+) Th1 cells and IL-17(+) Th17 cells. We report that these IL-13-producing Th1 and Th17 ce...
Chapter
There are four members of Janus Kinase family (JAK-1, -2, -3 and TYK2) and seven members of STAT family (STAT-1, -2, -3, -4, -5a, -5b and -6) in the mammalian genome, each with unique functions in immune cells. Consistent with studies in mice, genetic evidence in humans has strongly linked the JAK/STAT pathway to primary immunodeficiencies, infecti...
Article
Full-text available
The early events that determine the decision between lymphocyte tolerance and activation are not well-understood. Using a model of systemic self-antigen recognition by CD4(+) T cells, we show, using single-cell biochemical analyses, that tolerance is characterized by transient signaling events downstream of T-cell receptor engagement in the mammali...
Article
Full-text available
Given the association with autoimmune disease, there is great interest in defining cellular factors that limit overactive or misdirected Th17-type inflammation. Using in vivo and in vitro models, we investigated the molecular mechanisms for cytokine-mediated inhibition of Th17 responses, focusing on the role of STAT1 and T-bet in this process. Thes...
Article
Full-text available
The possibility that effector T cells can be converted into forkhead box P3(+) regulatory T cells (Tregs) has potential therapeutic implications. To analyze the relationship between Th1 effectors and Tregs, we have used a model of systemic autoimmunity in which both effector and Tregs arise from a single population specific for a transgene-encoded...
Article
Full-text available
Although required for many fundamental immune processes, ranging from self-tolerance to pathogen immunity, interleukin (IL)-2 production is transient, and the mechanisms underlying this brevity remain unclear. These studies reveal that helper T cell IL-2 production is limited by a classic negative feedback loop that functions autonomously or in col...
Article
Full-text available
To explore the interactions between regulatory T cells and pathogenic effector cytokines, we have developed a model of a T cell-mediated systemic autoimmune disorder resembling graft-versus-host disease. The cytokine responsible for tissue inflammation in this disorder is interleukin (IL)-17, whereas interferon (IFN)-gamma produced by Th1 cells has...
Article
Full-text available
Studies have focused on the events that influence the development of interleukin 17 (IL-17)-producing T helper cells (T(H)-17 cells) associated with autoimmunity, such as experimental autoimmune encephalitis, but relatively little is known about the cytokines that antagonize T(H)-17 cell effector responses. Here we show that IL-27 receptor-deficien...
Article
Full-text available
Although the ability of IL-27 to promote T cell responses is well documented, the anti-inflammatory properties of this cytokine remain poorly understood. The current work demonstrates that during infection with Toxoplasma gondii, IL-27R-deficient mice generate aberrant IL-2 responses that are associated with the development of a lethal inflammatory...
Article
Full-text available
Previous reports have focused on the ability of IL-27 to promote naive T cell responses but the present study reveals that surface expression of WSX-1, the ligand-specific component of the IL-27R, is low on these cells and that highest levels are found on effector and memory CD4(+) and CD8(+) T cells. Accordingly, during infection with Toxoplasma g...
Article
Full-text available
During infection, CD4(+) Th cell responses polarize to become primarily Th1 or Th2. Th1 cells, which make IFN-gamma, are crucial for immunity to many bacterial and protozoal infections, whereas Th2 cells, which make IL-4, IL-5, and IL-13, are important for resistance to helminth infections. Polarized Th1 responses are induced by dendritic cells (DC...
Article
Full-text available
Upon microbial challenge, helper T cells orchestrate complex inflammatory responses that are specific for each invading pathogen and provide lasting immunity to re-infection. Though many factors can influence helper T cells, cytokines are critical in directing their differentiation into Th1 effector cells that promote resistance to intra-cellular p...
Article
Full-text available
The recognition that CD4+ T-cell responses could be divided into at least two functional subsets either dominated by production of interferon (IFN)-gamma and associated with cell-mediated immunity (Th1) or characterized by production of interleukin (IL)-4 and IL-5 and associated with humoral immunity (Th2) provided a basis to understand the role of...
Article
Full-text available
Although previous studies have investigated the role of IL-27/WSX-1 interactions in the regulation of Th1 responses, little is known about their role in regulating Th2-type responses. Studies presented in this work identify a direct role for IL-27/WSX-1 interactions in the negative regulation of type 2 responses independent of effects on type 1 cyt...
Article
Full-text available
The recent identification of IL-27 (IL-27p28/EBV-induced gene 3) and IL-27R (WSX-1/gp130) has provided new insights for the biology of IL-6/IL-12 family cytokines. Initial studies indicated that IL-27 can directly regulate T cell functions and suggested an important role for it in promoting Th1 type responses. However, subsequent studies have revea...
Article
Full-text available
There are conflicting reports on the requirements for the IL-27-WSX-1 pathway in the development of Th type 1 responses and resistance to intracellular pathogens; although early IFN-gamma production and resistance to Leishmania major are impaired in the absence of WSX-1 signaling, WSX-1(-/-) mice generate robust IFN-gamma responses and control infe...
Article
Full-text available
IL-27 is a recently identified heterodimeric cytokine produced in response to microbial and host derived inflammatory cues. Initial studies indicated that IL-27 promotes the generation of Th1 responses required for resistance to intracellular infection and unveiled the molecular mechanisms mediating this effect. However, subsequent work uncovered a...
Article
Full-text available
Although recent studies have described IL-27 and its receptor, WSX-1, as promoters of Th1 differentiation in naive CD4+ T cells, the data presented here indicate that signaling through this receptor is involved in limiting the intensity and duration of T cell activity. When WSX-1-deficient mice are infected with the intracellular pathogen Toxoplasm...
Article
Full-text available
To define the role of NF-kappa B in the development of T cell responses required for resistance to Toxoplasma gondii, mice in which T cells are transgenic for a degradation-resistant (Delta N) form of I kappa B alpha, an inhibitor of NF-kappa B, were challenged with T. gondii and their response to infection compared with control mice. I kappa B alp...
Article
Naïve CD4(+) helper T (T(H)) cells respond to stimulation by terminally differentiating into two mature classes, T(H)1 cells, which express interferon gamma (IFN-gamma), and T(H)2 cells, which express interleukin 4 (IL-4). The transcriptional activators T-bet and Gata-3 mediate commitment to the T(H)1 and T(H)2 fates, respectively, including chroma...