Alejandro Suarez MascareñoInstituto de Astrofísica de Canarias | IAC · Department of Astrophysics Research
Alejandro Suarez Mascareño
PhD
About
192
Publications
13,171
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,989
Citations
Introduction
Doing research in exoplanet search and stellar activity analysis.
Additional affiliations
March 2020 - present
February 2019 - February 2020
November 2016 - January 2019
Education
September 2012 - September 2014
October 2004 - November 2011
Publications
Publications (192)
We report the discovery of a super-Earth orbiting at the inner edge of the habitable zone of the star GJ 625 based on the analysis of the radial-velocity (RV) time series from the HARPS-N spectrograph, consisting in 151 HARPS-N measurements taken over 3.5 yr. GJ 625 b is a planet with a minimum mass M sin $i$ of 2.82 $\pm$ 0.51 M$_{\oplus}$ with an...
We aim to confirm the presence of Proxima b using independent measurements obtained with the new ESPRESSO spectrograph, and refine the planetary parameters taking advantage of its improved precision. We analysed 63 spectroscopic ESPRESSO observations of Proxima taken during 2019. We obtained radial velocity measurements with a typical radial veloci...
We report the discovery and characterisation of two Earth-mass planets orbiting in the habitable zone of the nearby M-dwarf GJ 1002 based on the analysis of the radial-velocity (RV) time series from the ESPRESSO and CARMENES spectrographs. The host star is the quiet M5.5 V star GJ 1002 (relatively faint in the optical, V ~ 13.8 mag, but brighter in...
The number of super-Earth and mini-Neptune planet discoveries has increased significantly in the last two decades thanks to transit and radial velocity (RV) surveys. When it is possible to apply both techniques, we can characterise the internal composition of exoplanets, which in turn provides unique insights on their architecture, formation and ev...
Barnard's star is a primary target within the ESPRESSO guaranteed time observations (GTO) as it is the second closest neighbour to our Sun after the $\alpha$ Centauri stellar system. We present here a large set of 156 ESPRESSO observations of Barnard's star carried out over four years with the goal of exploring periods of shorter than 50 days, thus...
A sub-Earth-mass planet orbiting Barnard's star, designated as Barnard b, has recently been announced. At almost the same time, the first photometric data of Barnard's star by the Transit Exoplanet Survey Satellite (TESS) was released in Sector 80. We explore the possibility of emergent transits of Barnard b in TESS photometry. The detrended 2 min...
Close-by Earth analogs and super-Earths are of primary importance because they will be preferential targets for the next generation of direct imaging instruments. Bright and close-by G-to-M type stars are preferential targets in radial velocity surveys to find Earth analogs. Their brightness allows us to achieve the best precision on RV measurement...
Thanks to their short orbital periods and hot extended atmospheres, hot Jupiters are ideal candidates for atmosphere studies with high-resolution spectroscopy. New stable spectrographs help improve our understanding of the evolution and composition of those types of planets. By analyzing two nights of observations using the ESPRESSO high-resolution...
Context. ESPRESSO guaranteed time observations (GTOs) at the 8.2m VLT telescope were performed to look for Earth-like exoplanets in the habitable zone of nearby stars. Barnard’s star is a primary target within the ESPRESSO GTO as it is the second closest neighbour to our Sun after the α Centauri stellar system.
Aims. We present here a large set of...
Thanks to their short orbital periods and hot extended atmospheres, hot Jupiters are ideal candidates for atmosphere studies with high-resolution spectroscopy. New stable spectrographs help improve our understanding of the evolution and composition of those types of planets. By analyzing two nights of observations using the ESPRESSO high-resolution...
A sub-Earth-mass planet orbiting Barnard's star, designated as Barnard b, has been recently announced. At a similar time, the first photometric data of Barnard's star by the Transit Exoplanet Survey Satellite (TESS) was released in Sector 80. We explore the possibility of emergent transits of Barnard b in TESS photometry. The detrended 2 min light...
The search for life in the Universe has a significant focus on M dwarf stars, as they are the most common stellar type, and their small sizes and low masses make it easier to detect and characterize small, temperate planets. However, M dwarfs, especially those with the lowest masses, emit frequent flares for long portions of their lifetimes that ma...
Ultra hot Jupiters (gas giants, Teq>2000 K) are intriguing exoplanets due to their extreme atmospheres. Their torrid daysides can be characterised using ground-based high-resolution emission spectroscopy. We search for signatures of neutral and singly ionised iron (Fe I and Fe II) in the dayside of the ultra hot Jupiter WASP-76 b, as these species...
Chemical evolution models predict a gradual build-up of 13C in the Universe, based on empirical nuclear reaction rates and assumptions on the properties of stellar populations. However, old metal-poor stars within the Galaxy contain more 13C than is predicted, suggesting that further refinements to the models are necessary. Gas at high-redshift pro...
Context. Ultra hot Jupiters (gas giants with T eq > 2000 K) are intriguing exoplanets due to the extreme physics and chemistry present in their atmospheres. Their torrid daysides can be characterised using ground-based high-resolution emission spectroscopy.
Aims. We search for signatures of neutral and singly ionised iron (Fe I and Fe II , respecti...
Context . Understanding planet formation is important in the context of the origin of planetary systems in general and of the Solar System in particular, as well as to predict the likelihood of finding Jupiter, Neptune, and Earth analogues around other stars.
Aims . We aim to precisely determine the radii and dynamical masses of transiting planets...
Understanding planet formation is important in the context of the origin of planetary systems in general and of the Solar System in particular, as well as to predict the likelihood of finding Jupiter, Neptune, and Earth analogues around other stars. We aim to precisely determine the radii and dynamical masses of transiting planets orbiting the youn...
The first generation of ELT instruments includes an optical-infrared high-resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs ([U]BV, RIZ, YJH) providing a spectral resolution of $\sim$100,000 with a minimum simultaneous wavel...
Context . Since 2018, the ESPRESSO spectrograph at the VLT has been hunting for planets in the southern skies via the radial velocity (RV) method. One of its goals is to follow up on candidate planets from transit surveys such as the TESS mission, with a particular focus on small planets for which ESPRESSO’s RV precision is vital.
Aims . We aim to...
The Near-InfraRed Planet Searcher or NIRPS is a precision radial velocity spectrograph developed through collaborative efforts among laboratories in Switzerland, Canada, Brazil, France, Portugal and Spain. NIRPS extends to the 0.98-1.8 $\mu$m domain of the pioneering HARPS instrument at the La Silla 3.6-m telescope in Chile and it has achieved unpa...
Since 2018, the ESPRESSO spectrograph at the VLT has been hunting for planets in the Southern skies via the RV method. One of its goals is to follow up candidate planets from transit surveys such as the TESS mission, particularly small planets. We analyzed photometry from TESS and ground-based facilities, high-resolution imaging, and RVs from ESPRE...
Primordial abundances of light elements are sensitive to the physics of the early Universe and can directly constrain cosmological quantities, such as the baryon-to-photon ratio η10, the baryon density and the number of neutrino families. Deuterium is especially suited for these studies: its primordial abundance is sensitive and monotonically depen...
GJ 9827 is a bright, nearby K7V star orbited by two super-Earths and one mini-Neptune on close-in orbits. The system was first discovered using K2 data and then further characterized by other spectroscopic and photometric instruments. Previous literature studies provide several mass measurements for the three planets, however, with large variations...
The two-planet transiting system LHS 1140 has been extensively observed since its discovery in 2017, notably with Spitzer, HST, TESS, and ESPRESSO, placing strong constraints on the parameters of the M4.5 host star and its small temperate exoplanets, LHS 1140 b and c. Here, we reanalyze the ESPRESSO observations of LHS 1140 with the novel line-by-l...
Context. Observational data from space- and ground-based campaigns have revealed that the 10-30 Ma old V1298Tau star hosts a compact and massive system of four planets. Mass estimates are available for the two outer giant planets and point to unexpectedly high densities for their young ages.
Aims. We investigate the formation of these two outermost...
We followed-up with ESPRESSO the K0V star HIP 29442 (TOI-469), already known to host a validated sub-Neptune companion TOI-469.01. We aim to verify the planetary nature of TOI-469.01. We modelled radial velocity and photometric time series to measure the dynamical mass, radius, and ephemeris, and to characterise the internal structure and compositi...
Observational data from space and ground-based campaigns reveal that the 10-30 Ma old V1298 Tau star hosts a compact and massive system of four planets. Mass estimates for the two outer giant planets point to unexpectedly high densities for their young ages. We investigate the formation of these two outermost giant planets, V1298 Tau b and e, and t...
Small planets located at the lower mode of the bimodal radius distribution are generally assumed to be composed of iron and silicates in a proportion similar to that of the Earth. However, recent discoveries are revealing a new group of low-density planets that are inconsistent with that description. We intend to confirm and characterize the TESS p...
Although the number of exoplanets reported in the literature exceeds 5000 so far, only a few dozen of them are young planets ($\le$900 Myr). However, a complete characterization of these young planets is key to understanding the current properties of the entire population. Hence, it is necessary to constrain the planetary formation processes and th...
Context. Although the number of exoplanets reported in the literature exceeds 5000 so far, only a few dozen of them are young planets (≤900 Myr). However, a complete characterization of these young planets is key to understanding the current properties of the entire population. Hence, it is necessary to constrain the planetary formation processes a...
SMSS J160540.18$-$144323.1 is the carbon-enhanced metal-poor (CEMP) star with the lowest iron abundance ever measured, [Fe/H]=-6.2, which was first reported with the SkyMapper telescope. The carbon abundance is A(C)~6.1 in the low-C band, as the majority of the stars in this metallicity range. Yet, constraining the isotopic ratio of key species, su...
We report the discovery and characterisation of two Earth-mass planets orbiting in the habitable zone of the nearby M-dwarf GJ~1002 based on the analysis of the radial-velocity (RV) time series from the ESPRESSO and CARMENES spectrographs. The host star is the quiet M5.5~V star GJ~1002 (relatively faint in the optical, $V \sim 13.8$ mag, but bright...
We present radial velocity follow-up obtained with ESPRESSO of the M-type star LTT 1445A (TOI-455), for which a transiting planet b with an orbital period of~5.4 days was detected by TESS. We report the discovery of a second transiting planet (LTT 1445A c) and a third non-transiting candidate planet (LTT 1445A d) with orbital periods of 3.12 and 24...
Context. HE 0107−5240 is a hyper metal-poor star with [Fe/H] = −5.39, one of the lowest-metallicity stars known. Its stellar atmosphere is enhanced in carbon, with [C/Fe] = +4.0, without a detectable presence of neutron-capture elements. Therefore, it belongs to the carbon-enhanced metal-poor (CEMP−no) group, along with the majority of the most met...
High-resolution spectroscopy studies of ultra-hot Jupiters have been key in our understanding of exoplanet atmospheres. Observing into the atmospheres of these giant planets allows for direct constraints on their atmospheric compositions and dynamics while laying the groundwork for new research regarding their formation and evolution environments....
Context. High-resolution spectroscopy studies of ultra-hot Jupiters have been key in our understanding of exoplanet atmospheres. Observing into the atmospheres of these giant planets allows for direct constraints on their atmospheric compositions and dynamics while laying the groundwork for new research regarding their formation and evolution envir...
HE 0107$-$5240 is a hyper metal-poor star with $\rm [Fe/H]=-5.39$. We performed high-res observations with the ESPRESSO spectrograph at the VLT to constrain the kinematical properties of the binary system HE 0107$-$5240 and to probe the binarity of the sample of 8 most metal-poor stars with $\rm [Fe/H]<-4.5$. Radial velocities are obtained by using...
The recently computed ExoMol line lists for isotopologues of AlH are used to analyse the blue spectrum (4000–4500 Å) of Proxima Cen (M5.5 V). Comparison of the observed and computed spectra enables the identification of a large number of 27AlH lines of the A 1Π –X 1Σ+ band system: The spectral range covering 1-0, 0-0, and 1-1 bands are dominated by...
The recently-computed ExoMol line lists for isotopologues of AlH are used to analyse the blue spectrum (4000-4500 {\AA}) of Proxima Cen (M5.5 V). Comparison of the observed and computed spectra enables the identification of a large number of 27AlH lines of the A1{\Pi} - X1{\Sigma}+ band system: the spectral range covering 1-0, 0-0 and 1-1 bands is...
Ground-based high-resolution spectrographs are key instruments for several astrophysical domains. Unfortunately, the observed spectra are contaminated by the Earth's atmosphere. While different techniques exist to correct for telluric lines in exoplanet atmospheric studies, in radial velocity (RV) studies, telluric lines with an absorption depth of...
Atmospheric studies at high spectral resolution have shown the presence of molecules, neutral and ionised metals, and hydrogen in the transmission spectrum of ultra-hot Jupiters, and have started to probe the dynamics of their atmospheres. We analyse the transmission spectrum of MASCARA-1b, one of the densest ultra-hot Jupiters orbiting a bright (V...
Dynamical scalar fields in an effective four-dimensional field theory are naturally expected to couple to the rest of the theory’s degrees of freedom, unless some new symmetry is postulated to suppress these couplings. In particular, a coupling to the electromagnetic sector will lead to spacetime variations of the fine-structure constant, α. Astrop...
Dynamical scalar fields in an effective four-dimensional field theory are naturally expected to couple to the rest of the theory's degrees of freedom, unless some new symmetry is postulated to suppress these couplings. In particular, a coupling to the electromagnetic sector will lead to spacetime variations of the fine-structure constant, $\alpha$....
Context. The ability to detect and characterise an increasing variety of exoplanets has been made possible by the continuous development of stable, high-resolution spectrographs and the Doppler radial velocity (RV) method. The cross-correlation function (CCF) method is one of the traditional approaches used to derive RVs. More recently, template ma...
Context. Statistical analyses based on Kepler data show that most of the early-type M dwarfs host multi-planet systems consisting of Earth- to sub-Neptune-sized planets with orbital periods of up to ~250 days, and that at least one such planet is likely located within the habitable zone. M dwarfs are therefore primary targets to search for potentia...
The detection and characterization of an increasing variety of exoplanets has been in part possible thanks to the continuous development of high-resolution, stable spectrographs, and using the Doppler radial-velocity (RV) method. The Cross Correlation Function (CCF) method is one of the traditional approaches for RV extraction. More recently, templ...
We investigated the presence of planetary companions around the nearby (7.6 pc) and bright ($V=9$ mag) early-type M dwarf Gl 514, analysing 540 radial velocities collected over nearly 25 years with the HIRES, HARPS, and CARMENES spectrographs. The data are affected by time-correlated signals at the level of 2-3 ms$^{-1}$ due to stellar activity, th...
The spectrograph ESPRESSO obtained updated limits on the variation of the fine-structure constant, $\alpha$, through measurements along the line of sight of a bright quasar with unprecedented precision and accuracy. These impose new constraints on cosmological models with a varying $\alpha$. We assume such a model where the electromagnetic sector i...
We present the complete Bayesian statistical analysis of the HArps-n red Dwarf Exoplanet Survey (HADES), which monitored the radial velocities of a large sample of M dwarfs with HARPS-N at TNG, over the last 6 years. The targets were selected in a narrow range of spectral types from M0 to M3, $0.3$ M$_\odot < M_\star < 0.71$ M$_\odot$, in order to...
Proxima Centauri is the closest star to the Sun. This small, low-mass, mid M dwarf is known to host an Earth-mass exoplanet with an orbital period of 11.2 days within the habitable zone, as well as a long-period planet candidate with an orbital period of close to 5 years. We report on the analysis of a large set of observations taken with the ESPRE...
Current theories of planetary evolution predict that infant giant planets have large radii and very low densities before they slowly contract to reach their final size after about several hundred million years. These theoretical expectations remain untested so far as the detection and characterization of very young planets is extremely challenging...
Transiting planets at young ages are key targets for improving our understanding of the evolution of exo-atmospheres. We present results of a new X-ray observation of V 1298 Tau with XMM-Newton, aimed to determine more accurately the high-energy irradiation of the four planets orbiting this pre-main-sequence star, and the possible variability due t...
Context. Proxima Centauri is the closest star to the Sun. This small, low-mass, mid M dwarf is known to host an Earth-mass exoplanet with an orbital period of 11.2 days within the habitable zone, as well as a long-period planet candidate with an orbital period of close to 5 yr.
Aims. We report on the analysis of a large set of observations taken wi...
In this paper we introduce CaRM, a semi-automatic code for the retrieval of broadband transmission spectra of transiting planets through the chromatic Rossiter-McLaughlin method. We applied it to HARPS and ESPRESSO observations of two exoplanets to retrieve the transmission spectrum and we analyze its fitting transmission models. We used the strong...
Atmospheric studies at high spectral resolution have shown the presence of molecules, neutral and ionised metals, and hydrogen in the transmission spectrum of ultra-hot Jupiters, and have started to probe the dynamics of their atmospheres. We analyse the transmission spectrum of MASCARA-1b, one of the densest ultra-hot Jupiters orbiting a bright (V...
The strong intervening absorption system at redshift 1.15 towards the very bright quasar HE 0515$-$4414 is the most studied absorber for measuring possible cosmological variations in the fine-structure constant, $\alpha$. We observed HE 0515$-$4414 for 16.1$\,$h with the Very Large Telescope and present here the first constraint on relative variati...
Transiting planets at young ages are key targets for improving our understanding of the evolution of exo-atmospheres. We present results of a new X-ray observation of V1298 Tau with XMM-Newton, aimed to determine more accurately the high-energy irradiation of the four planets orbiting this pre-main-sequence star, and the possible variability due to...
Current theories of planetary evolution predict that infant giant planets have large radii and very low densities before they slowly contract to reach their final size after about several hundred million years. These theoretical expectations remain untested to date, despite the increasing number of exoplanetary discoveries, as the detection and cha...
Comparisons of the alignment of exoplanets with a common host star can be used to distinguish among concurrent evolution scenarios. However, multi-planet systems usually host mini-Neptunes and super-Earths, whose size make orbital architecture measurements challenging. We introduce the Rossiter-McLaughlin effect Revolutions technique, which can acc...
Multiband photometric transit observations or low-resolution spectroscopy (spectro-photometry) are normally used to retrieve the broadband transmission spectra of transiting exoplanets in order to assess the chemical composition of their atmospheres. In this paper, we present an alternative approach for recovering the broadband transmission spectra...
Context. The ESPRESSO spectrograph is a new powerful tool developed to detect and characterize extrasolar planets. Its design allows an unprecedented radial velocity precision (down to a few tens of cm s ⁻¹ ) and long-term thermomechanical stability.
Aims. We present the first stand-alone detection of an extrasolar planet by blind radial velocity s...
The ESPRESSO spectrograph is a new powerful tool to detect and characterize extrasolar planets. Its design allows unprecedented radial velocity precision (down to a few tens of cm/s) and long-term thermo-mechanical stability. We present the first standalone detection of an extrasolar planet by blind radial velocity search using ESPRESSO and aim at...
In recent years, the advent of a new generation of radial velocity instruments has allowed us to detect planets with increasingly lower mass and to break the one Earth-mass barrier. Here we report a new milestone in this context by announcing the detection of the lowest-mass planet measured so far using radial velocities: L 98-59 b, a rocky planet...
We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf (d = 22 pc, M⋆ = 0.39 M⊙, R⋆ = 0.38 R⊙), which hosts three transiting planets that were recently discovered using data from the Transiting Exoplanet Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4...
The advent of a new generation of radial velocity instruments has allowed us to break the one Earth-mass barrier. We report a new milestone in this context with the detection of the lowest-mass planet measured so far using radial velocities: L 98-59 b, a rocky planet with half the mass of Venus. It is part of a system composed of three known transi...
Context. It is now well-established that small, rocky planets are common around low-mass stars. However, the detection of such planets is challenged by the short-term activity of the host stars. Aims. The HArps-N red Dwarf Exoplanet Survey (HADES) program is a long-term project at the Telescopio Nazionale Galileo aimed at the monitoring of nearby,...
Current theories of planetary evolution predict that infant giant planets have large radii and very low densities before they slowly contract to reach their final size after about several hundred million years 1, 2. These theoretical expectations remain untested to date, despite the increasing number of exoplanetary discoveries, as the detection an...
Context. Transiting sub-Neptune-type planets, with radii approximately between 2 and 4 R⊕, are of particular interest as their study allows us to gain insight into the formation and evolution of a class of planets that are not found in our Solar System. Aims. We exploit the extreme radial velocity (RV) precision of the ultra-stable echelle spectrog...
Context. The high number of super-Earth and Earth-like planets in the habitable zone (HZ) detected around M-dwarf stars in the last years has revealed these stellar objects to be the key for planetary radial velocity (RV) searches. Aims. Using the HARPS-N spectrograph within The HArps-n red Dwarf Exoplanet Survey (HADES) we reach the precision need...
Context. M-dwarfs have proven to be ideal targets for planetary radial velocity (RV) searches due to their higher planet-star mass contrast, which favors the detection of low-mass planets. The abundance of super-Earth and Earth-like planets detected around this type of star motivates further such research on hosts without reported planetary compani...
M-dwarfs have proven to be ideal targets for planetary radial velocity (RV) searches due to their higher planet-star mass contrast. The HADES and CARMENES programs aim to carry out extensive searches of exoplanetary systems around this type of stars in the northern hemisphere, allowing us to address statistically the properties of the planets orbit...
[Abridged] We exploit the extreme radial velocity (RV) precision of the ultra-stable echelle spectrograph ESPRESSO on the VLT to unveil the physical properties of the transiting sub-Neptune TOI-130 b, uncovered by TESS orbiting the nearby, bright, late F-type star HD 5278 (TOI-130) with a period $P_{\rm b}=14.3$. We use 43 ESPRESSO high-resolution...
Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent p...