
Alejandro Suarez MascareñoInstituto de Astrofísica de Canarias | IAC · Department of Astrophysics Research
Alejandro Suarez Mascareño
PhD
About
155
Publications
10,925
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,195
Citations
Introduction
Doing research in exoplanet search and stellar activity analysis.
Additional affiliations
March 2020 - present
February 2019 - February 2020
November 2016 - January 2019
Education
September 2012 - September 2014
October 2004 - November 2011
Publications
Publications (155)
We investigate the activity induced signals related to rotation and magnetic cycles in late type stars (FGKM). We analyse the Ca II H&K, the H α and the radial velocity time-series of 55 stars using the spectra from the HARPS public database and the light-curves provided by the ASAS survey. We search for short term and long term periodic signals in...
We report the discovery of a super-Earth orbiting at the inner edge of the habitable zone of the star GJ 625 based on the analysis of the radial-velocity (RV) time series from the HARPS-N spectrograph, consisting in 151 HARPS-N measurements taken over 3.5 yr. GJ 625 b is a planet with a minimum mass M sin $i$ of 2.82 $\pm$ 0.51 M$_{\oplus}$ with an...
We report the discovery of a system of two super-Earths orbiting the moderately active K-dwarf HD 176986. This work is part of the RoPES RV program of G- and K-type stars, which combines radial velocities (RVs) from the HARPS and HARPS-N spectrographs to search for short-period terrestrial planets. HD 176986 b and c are super-Earth planets with mas...
We aim to confirm the presence of Proxima b using independent measurements obtained with the new ESPRESSO spectrograph, and refine the planetary parameters taking advantage of its improved precision. We analysed 63 spectroscopic ESPRESSO observations of Proxima taken during 2019. We obtained radial velocity measurements with a typical radial veloci...
Current theories of planetary evolution predict that infant giant planets have large radii and very low densities before they slowly contract to reach their final size after about several hundred million years. These theoretical expectations remain untested so far as the detection and characterization of very young planets is extremely challenging...
Context. Observational data from space- and ground-based campaigns have revealed that the 10-30 Ma old V1298Tau star hosts a compact and massive system of four planets. Mass estimates are available for the two outer giant planets and point to unexpectedly high densities for their young ages.
Aims. We investigate the formation of these two outermost...
We followed-up with ESPRESSO the K0V star HIP 29442 (TOI-469), already known to host a validated sub-Neptune companion TOI-469.01. We aim to verify the planetary nature of TOI-469.01. We modelled radial velocity and photometric time series to measure the dynamical mass, radius, and ephemeris, and to characterise the internal structure and compositi...
Observational data from space and ground-based campaigns reveal that the 10-30 Ma old V1298 Tau star hosts a compact and massive system of four planets. Mass estimates for the two outer giant planets point to unexpectedly high densities for their young ages. We investigate the formation of these two outermost giant planets, V1298 Tau b and e, and t...
Small planets located at the lower mode of the bimodal radius distribution are generally assumed to be composed of iron and silicates in a proportion similar to that of the Earth. However, recent discoveries are revealing a new group of low-density planets that are inconsistent with that description. We intend to confirm and characterize the TESS p...
Although the number of exoplanets reported in the literature exceeds 5000 so far, only a few dozen of them are young planets ($\le$900 Myr). However, a complete characterization of these young planets is key to understanding the current properties of the entire population. Hence, it is necessary to constrain the planetary formation processes and th...
Context. Although the number of exoplanets reported in the literature exceeds 5000 so far, only a few dozen of them are young planets (≤900 Myr). However, a complete characterization of these young planets is key to understanding the current properties of the entire population. Hence, it is necessary to constrain the planetary formation processes a...
SMSS J160540.18$-$144323.1 is the carbon-enhanced metal-poor (CEMP) star with the lowest iron abundance ever measured, [Fe/H]=-6.2, which was first reported with the SkyMapper telescope. The carbon abundance is A(C)~6.1 in the low-C band, as the majority of the stars in this metallicity range. Yet, constraining the isotopic ratio of key species, su...
We report the discovery and characterisation of two Earth-mass planets orbiting in the habitable zone of the nearby M-dwarf GJ~1002 based on the analysis of the radial-velocity (RV) time series from the ESPRESSO and CARMENES spectrographs. The host star is the quiet M5.5~V star GJ~1002 (relatively faint in the optical, $V \sim 13.8$ mag, but bright...
We report the discovery and characterisation of two Earth-mass planets orbiting in the habitable zone of the nearby M-dwarf GJ 1002 based on the analysis of the radial-velocity (RV) time series from the ESPRESSO and CARMENES spectrographs. The host star is the quiet M5.5 V star GJ 1002 (relatively faint in the optical, V ~ 13.8 mag, but brighter in...
We present radial velocity follow-up obtained with ESPRESSO of the M-type star LTT 1445A (TOI-455), for which a transiting planet b with an orbital period of~5.4 days was detected by TESS. We report the discovery of a second transiting planet (LTT 1445A c) and a third non-transiting candidate planet (LTT 1445A d) with orbital periods of 3.12 and 24...
Context. HE 0107−5240 is a hyper metal-poor star with [Fe/H] = −5.39, one of the lowest-metallicity stars known. Its stellar atmosphere is enhanced in carbon, with [C/Fe] = +4.0, without a detectable presence of neutron-capture elements. Therefore, it belongs to the carbon-enhanced metal-poor (CEMP−no) group, along with the majority of the most met...
High-resolution spectroscopy studies of ultra-hot Jupiters have been key in our understanding of exoplanet atmospheres. Observing into the atmospheres of these giant planets allows for direct constraints on their atmospheric compositions and dynamics while laying the groundwork for new research regarding their formation and evolution environments....
Context. High-resolution spectroscopy studies of ultra-hot Jupiters have been key in our understanding of exoplanet atmospheres. Observing into the atmospheres of these giant planets allows for direct constraints on their atmospheric compositions and dynamics while laying the groundwork for new research regarding their formation and evolution envir...
HE 0107$-$5240 is a hyper metal-poor star with $\rm [Fe/H]=-5.39$. We performed high-res observations with the ESPRESSO spectrograph at the VLT to constrain the kinematical properties of the binary system HE 0107$-$5240 and to probe the binarity of the sample of 8 most metal-poor stars with $\rm [Fe/H]<-4.5$. Radial velocities are obtained by using...
The recently computed ExoMol line lists for isotopologues of AlH are used to analyse the blue spectrum (4000–4500 Å) of Proxima Cen (M5.5 V). Comparison of the observed and computed spectra enables the identification of a large number of 27AlH lines of the A 1Π –X 1Σ+ band system: The spectral range covering 1-0, 0-0, and 1-1 bands are dominated by...
The recently-computed ExoMol line lists for isotopologues of AlH are used to analyse the blue spectrum (4000-4500 {\AA}) of Proxima Cen (M5.5 V). Comparison of the observed and computed spectra enables the identification of a large number of 27AlH lines of the A1{\Pi} - X1{\Sigma}+ band system: the spectral range covering 1-0, 0-0 and 1-1 bands is...
Ground-based high-resolution spectrographs are key instruments for several astrophysical domains. Unfortunately, the observed spectra are contaminated by the Earth's atmosphere. While different techniques exist to correct for telluric lines in exoplanet atmospheric studies, in radial velocity (RV) studies, telluric lines with an absorption depth of...
Atmospheric studies at high spectral resolution have shown the presence of molecules, neutral and ionised metals, and hydrogen in the transmission spectrum of ultra-hot Jupiters, and have started to probe the dynamics of their atmospheres. We analyse the transmission spectrum of MASCARA-1b, one of the densest ultra-hot Jupiters orbiting a bright (V...
Dynamical scalar fields in an effective four-dimensional field theory are naturally expected to couple to the rest of the theory’s degrees of freedom, unless some new symmetry is postulated to suppress these couplings. In particular, a coupling to the electromagnetic sector will lead to spacetime variations of the fine-structure constant, α. Astrop...
Dynamical scalar fields in an effective four-dimensional field theory are naturally expected to couple to the rest of the theory's degrees of freedom, unless some new symmetry is postulated to suppress these couplings. In particular, a coupling to the electromagnetic sector will lead to spacetime variations of the fine-structure constant, $\alpha$....
Context. The ability to detect and characterise an increasing variety of exoplanets has been made possible by the continuous development of stable, high-resolution spectrographs and the Doppler radial velocity (RV) method. The cross-correlation function (CCF) method is one of the traditional approaches used to derive RVs. More recently, template ma...
Context. Statistical analyses based on Kepler data show that most of the early-type M dwarfs host multi-planet systems consisting of Earth- to sub-Neptune-sized planets with orbital periods of up to ~250 days, and that at least one such planet is likely located within the habitable zone. M dwarfs are therefore primary targets to search for potentia...
The detection and characterization of an increasing variety of exoplanets has been in part possible thanks to the continuous development of high-resolution, stable spectrographs, and using the Doppler radial-velocity (RV) method. The Cross Correlation Function (CCF) method is one of the traditional approaches for RV extraction. More recently, templ...
We investigated the presence of planetary companions around the nearby (7.6 pc) and bright ($V=9$ mag) early-type M dwarf Gl 514, analysing 540 radial velocities collected over nearly 25 years with the HIRES, HARPS, and CARMENES spectrographs. The data are affected by time-correlated signals at the level of 2-3 ms$^{-1}$ due to stellar activity, th...
The spectrograph ESPRESSO obtained updated limits on the variation of the fine-structure constant, $\alpha$, through measurements along the line of sight of a bright quasar with unprecedented precision and accuracy. These impose new constraints on cosmological models with a varying $\alpha$. We assume such a model where the electromagnetic sector i...
We present the complete Bayesian statistical analysis of the HArps-n red Dwarf Exoplanet Survey (HADES), which monitored the radial velocities of a large sample of M dwarfs with HARPS-N at TNG, over the last 6 years. The targets were selected in a narrow range of spectral types from M0 to M3, $0.3$ M$_\odot < M_\star < 0.71$ M$_\odot$, in order to...
Proxima Centauri is the closest star to the Sun. This small, low-mass, mid M dwarf is known to host an Earth-mass exoplanet with an orbital period of 11.2 days within the habitable zone, as well as a long-period planet candidate with an orbital period of close to 5 years. We report on the analysis of a large set of observations taken with the ESPRE...
Transiting planets at young ages are key targets for improving our understanding of the evolution of exo-atmospheres. We present results of a new X-ray observation of V 1298 Tau with XMM-Newton, aimed to determine more accurately the high-energy irradiation of the four planets orbiting this pre-main-sequence star, and the possible variability due t...
Context. Proxima Centauri is the closest star to the Sun. This small, low-mass, mid M dwarf is known to host an Earth-mass exoplanet with an orbital period of 11.2 days within the habitable zone, as well as a long-period planet candidate with an orbital period of close to 5 yr.
Aims. We report on the analysis of a large set of observations taken wi...
In this paper we introduce CaRM, a semi-automatic code for the retrieval of broadband transmission spectra of transiting planets through the chromatic Rossiter-McLaughlin method. We applied it to HARPS and ESPRESSO observations of two exoplanets to retrieve the transmission spectrum and we analyze its fitting transmission models. We used the strong...
Atmospheric studies at high spectral resolution have shown the presence of molecules, neutral and ionised metals, and hydrogen in the transmission spectrum of ultra-hot Jupiters, and have started to probe the dynamics of their atmospheres. We analyse the transmission spectrum of MASCARA-1b, one of the densest ultra-hot Jupiters orbiting a bright (V...
The strong intervening absorption system at redshift 1.15 towards the very bright quasar HE 0515$-$4414 is the most studied absorber for measuring possible cosmological variations in the fine-structure constant, $\alpha$. We observed HE 0515$-$4414 for 16.1$\,$h with the Very Large Telescope and present here the first constraint on relative variati...
Transiting planets at young ages are key targets for improving our understanding of the evolution of exo-atmospheres. We present results of a new X-ray observation of V1298 Tau with XMM-Newton, aimed to determine more accurately the high-energy irradiation of the four planets orbiting this pre-main-sequence star, and the possible variability due to...
Current theories of planetary evolution predict that infant giant planets have large radii and very low densities before they slowly contract to reach their final size after about several hundred million years. These theoretical expectations remain untested to date, despite the increasing number of exoplanetary discoveries, as the detection and cha...
Comparisons of the alignment of exoplanets with a common host star can be used to distinguish among concurrent evolution scenarios. However, multi-planet systems usually host mini-Neptunes and super-Earths, whose size make orbital architecture measurements challenging. We introduce the Rossiter-McLaughlin effect Revolutions technique, which can acc...
Multiband photometric transit observations or low-resolution spectroscopy (spectro-photometry) are normally used to retrieve the broadband transmission spectra of transiting exoplanets in order to assess the chemical composition of their atmospheres. In this paper, we present an alternative approach for recovering the broadband transmission spectra...
Context. The ESPRESSO spectrograph is a new powerful tool developed to detect and characterize extrasolar planets. Its design allows an unprecedented radial velocity precision (down to a few tens of cm s ⁻¹ ) and long-term thermomechanical stability.
Aims. We present the first stand-alone detection of an extrasolar planet by blind radial velocity s...
The ESPRESSO spectrograph is a new powerful tool to detect and characterize extrasolar planets. Its design allows unprecedented radial velocity precision (down to a few tens of cm/s) and long-term thermo-mechanical stability. We present the first standalone detection of an extrasolar planet by blind radial velocity search using ESPRESSO and aim at...
In recent years, the advent of a new generation of radial velocity instruments has allowed us to detect planets with increasingly lower mass and to break the one Earth-mass barrier. Here we report a new milestone in this context by announcing the detection of the lowest-mass planet measured so far using radial velocities: L 98-59 b, a rocky planet...
We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf (d = 22 pc, M⋆ = 0.39 M⊙, R⋆ = 0.38 R⊙), which hosts three transiting planets that were recently discovered using data from the Transiting Exoplanet Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4...
The advent of a new generation of radial velocity instruments has allowed us to break the one Earth-mass barrier. We report a new milestone in this context with the detection of the lowest-mass planet measured so far using radial velocities: L 98-59 b, a rocky planet with half the mass of Venus. It is part of a system composed of three known transi...
Context. It is now well-established that small, rocky planets are common around low-mass stars. However, the detection of such planets is challenged by the short-term activity of the host stars. Aims. The HArps-N red Dwarf Exoplanet Survey (HADES) program is a long-term project at the Telescopio Nazionale Galileo aimed at the monitoring of nearby,...
Current theories of planetary evolution predict that infant giant planets have large radii and very low densities before they slowly contract to reach their final size after about several hundred million years 1, 2. These theoretical expectations remain untested to date, despite the increasing number of exoplanetary discoveries, as the detection an...
Context. Transiting sub-Neptune-type planets, with radii approximately between 2 and 4 R⊕, are of particular interest as their study allows us to gain insight into the formation and evolution of a class of planets that are not found in our Solar System. Aims. We exploit the extreme radial velocity (RV) precision of the ultra-stable echelle spectrog...
Context. The high number of super-Earth and Earth-like planets in the habitable zone (HZ) detected around M-dwarf stars in the last years has revealed these stellar objects to be the key for planetary radial velocity (RV) searches. Aims. Using the HARPS-N spectrograph within The HArps-n red Dwarf Exoplanet Survey (HADES) we reach the precision need...
Context. M-dwarfs have proven to be ideal targets for planetary radial velocity (RV) searches due to their higher planet-star mass contrast, which favors the detection of low-mass planets. The abundance of super-Earth and Earth-like planets detected around this type of star motivates further such research on hosts without reported planetary compani...
M-dwarfs have proven to be ideal targets for planetary radial velocity (RV) searches due to their higher planet-star mass contrast. The HADES and CARMENES programs aim to carry out extensive searches of exoplanetary systems around this type of stars in the northern hemisphere, allowing us to address statistically the properties of the planets orbit...
[Abridged] We exploit the extreme radial velocity (RV) precision of the ultra-stable echelle spectrograph ESPRESSO on the VLT to unveil the physical properties of the transiting sub-Neptune TOI-130 b, uncovered by TESS orbiting the nearby, bright, late F-type star HD 5278 (TOI-130) with a period $P_{\rm b}=14.3$. We use 43 ESPRESSO high-resolution...
Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent p...
We observed two transits of the iconic gas giant HD 209458b between 380 and 780 nm, using the high-resolution ESPRESSO spectrograph. The derived planetary transmission spectrum exhibits features at all wavelengths where the parent star shows strong absorption lines, for example, NaI, MgI, FeI, FeII, CaI, VI, H$\alpha$, and KI. We interpreted these...
We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf ($d=22$ pc, $M_\star = 0.39$ M$_\odot$, $R_\star = 0.38$ R$_\odot$), which hosts three transiting planets that were recently discovered using data from the Transiting Exoplanet Survey Satellite (TESS). The three planets are 1.1, 2.3, and 2.0 times the size of Earth and...
Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent p...
Context. Most of our current knowledge on planet formation is still based on the analysis of main sequence, solar-type stars. Conversely, detailed chemical studies of large samples of M dwarfs hosting planets are still missing.
Aims. Correlations exist between the presence of different types of planets around FGK stars and metallicity, individual c...
Context. The detection and characterization of exoplanet atmospheres is currently one of the main drivers pushing the development of new observing facilities. In this context, high-resolution spectrographs are proving their potential and showing that high-resolution spectroscopy will be paramount in this field.
Aims. We aim to make use of ESPRESSO...
Observations of metal absorption systems in the spectra of distant quasars allow to constrain a possible variation of the fine-structure constant throughout the history of the Universe. Such a test poses utmost demands on the wavelength accuracy and previous studies were limited by systematics in the spectrograph wavelength calibration. A substanti...
Aims. We report on ESPRESSO high-resolution transmission spectroscopic observations of two primary transits of the highly-irradiated, ultra-hot Jupiter-size planet WASP-76b. We investigate the presence of several key atomic and molecular features of interest that may reveal the atmospheric properties of the planet. Methods. We extracted two transmi...
Context. The study of exoplanet atmospheres is essential for understanding the formation, evolution, and composition of exoplanets. The transmission spectroscopy technique is playing a significant role in this domain. In particular, the combination of state-of-the-art spectrographs at low- and high-spectral resolution is key to our understanding of...
Aims. We study the 2D spectral line profile of the High Accuracy Radial Velocity Planet Searcher (HARPS), measuring its variation with position across the detector and with changing line intensity. The characterization of the line profile and its variations are important for achieving the precision of the wavelength scales of 10 ⁻¹⁰ or 3.0 cm s ⁻¹...
The detection and characterization of exoplanet atmospheres is currently one of the main drivers pushing the development of new observing facilities. In this context, high-resolution spectrographs are {proving} their potential and showing that high-resolution spectroscopy will be paramount in this field. We aim to make use of ESPRESSO high-resoluti...
Aims. We study the 2D spectral line profile of HARPS (High Accuracy Radial Velocity Planet Searcher), measuring its variation with position across the detector and with changing line intensity. The characterization of the line profile and its variations are important for achieving the precision of the wavelength scales of 10^{-10} or 3.0 cm/s neces...
This paper reports on the detailed characterization of the K2-111 planetary system with K2, WASP, and ASAS-SN photometry, as well as high-resolution spectroscopic data from HARPS-N and ESPRESSO. The host, K2-111, is confirmed to be a mildly evolved (log g = 4.17), iron-poor ([Fe/H] = −0.46), but alpha-enhanced ([α/Fe]=0.27), chromospherically quiet...
WASP-121b is one of the most studied Ultra-hot Jupiters: many recent analyses of its atmosphere report interesting features at different wavelength ranges. In this paper we analyze one transit of WASP-121b acquired with the high-resolution spectrograph ESPRESSO at VLT in 1-telescope mode, and one partial transit taken during the commissioning of th...
Context. The general theory of relativity predicts the redshift of spectral lines in the solar photosphere as a consequence of the gravitational potential of the Sun. This effect can be measured from a solar disk-integrated flux spectrum of the Sun’s reflected light on Solar System bodies.
Aims. The laser frequency comb (LFC) calibration system att...
Most of our current knowledge on planet formation is still based on the analysis of main-sequence, solar-type stars. Conversely, detailed chemical studies of large samples of M-dwarf planet hosts are still missing. We develop for the first time a methodology to determine stellar abundances of elements others than iron for M dwarf stars from high-re...
The study of exoplanet atmospheres is essential to understand the formation, evolution and composition of exoplanets. The transmission spectroscopy technique is playing a significant role in this domain. In particular, the combination of state-of-the-art spectrographs at low- and high-spectral resolution is key to our understanding of atmospheric s...
This paper reports on the detailed characterisation of the K2-111 planetary system with K2, WASP, and ASAS-SN photometry as well as high-resolution spectroscopic data from HARPS-N and ESPRESSO. The host, K2-111, is confirmed to be a mildly evolved ($\log g=4.17$), iron-poor ([Fe/H]$=-0.46$), but alpha-enhanced ([$\alpha$/Fe]$=0.27$), chromospherica...