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Abstract. Wetlands are artificial basins that exploit the capabilities of
some species of plants to purify water from pollutants. The design process
is currently long and laborious: such vegetated areas are inserted within
the basin by trial and error, since there is no automatic system able to
maximize the efficiency in terms of filtering. Only at the end of several
attempts, experts are able to determine which is the most convenient
configuration and choose up a layout. This paper proposes the use of an
evolutionary algorithm to automate both the placement and the sizing
of vegetated areas within a basin. The process begins from a random
population of solutions and, evaluating their efficiency with an state-of-
the-art fluid-dynamics simulation framework, the evolutionary algorithm
is able to automatically find optimized solution whose performance are
comparable with those achieved by human experts.
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1 Introduction

Nowadays, more and more specialists are becoming involved in pollution control,
one of the biggest problem of our time. Ecosystems are stressed by pollution.
And organic chemicals, while contributing to their destruction, can also make
the water not usable by animals and humans. To bring down the quantity of
chemical dissolved in water in the latter case, researchers proposed a new ap-
proach, based on bio-geochemical processes naturally present in the environment,
adopting free surface constructed wetlands. A wetland consist of a small artifi-
cial basin, partially flooded with water and containing many vegetated areas, in
which the water flows and undergoes a natural filtering process from pollutants
due to particular plant species, which are able to use these waste products to sup-
port its vital functions (e.g., Phragmites Australis, Typha Latifolia); vegetated
areas have to be distributed over the wetland in order to increase the filtering
performance.In the last half century a great effort in wastewater treatment has
been performed with special plants able to process polluted water. It as been



demonstrated that this approach is more useful with point sources, characterized
by little quantities of fluid polluted by high concentrations of chemicals, rather
than diffused sources, characterized by big quantities of fluid polluted by low
concentrations of chemicals.

To design a wetland, experts create several configurations which are then
processed by a tool to simulate the flow of water and to calculate the efficiency
in terms of filtering of the configuration sets. The classic trial and error approach
is the only viable one, since it is not possible to implement an inverse function
able to identify with precision positions and characteristics of each vegetated area
to be inserted in the basin, in order to obtain an optimum filtering capability.

The proposed idea is to evolve a population of individuals, each one repre-
senting a complete configuration of vegetated area. The evolutionary approach is
autonomously able to optimize the performance of the wetland, while an appro-
priate set of constraints enforces realistic configurations. The preliminary study
of a system able to automatically calculate solutions for the problem was ver-
ified in [6]. Here, the goal it to tackle a realistic problem by include different
constraints.

2 Background

2.1 Wetlands

Cowardin [5] defines a wetland as an ecosystem transitional between aquatic and
terrestrial ecosystems, in which the water table is usually at or near the surface
or the land is covered by shallow water [4]. Before the extensive land reclamation
through the last century, wetlands were common along the coasts, where they
functioned as a natural buffer between inner agricultural zones and coastal areas.
Today there is a pressing necessity to restore these areas and their role, defining
optimal design criteria to obtain, at reasonable costs, the best removal efficiency.

The removal efficiency of natural and constructed free-surface wetlands is
controlled by the time spent by contaminants into vegetated zones [18]. The
role of vegetation in wetlands is important for two main reasons: water passing
through vegetated zones decreases its local velocity, favoring the sedimentation
of suspended solids; and biochemical processes determine a transformation of
the dissolved substances. In combination with bathymetry, distribution of veg-
etation can produce preferential pathways of water (hydraulic shortcuts) that
can substantially decrease the overall efficiency of a wetland. Removal efficiency
is also affected by other hydrodynamic characteristics, as water depth and dis-
charge, both dependent on vegetation distribution and density [1] [14]. Wetlands
constructed for waste water treatment are often designed considering an aver-
age water residence time [14], even though these methods cannot adequately
describe spatial configurations of vegetation in real wetlands [15]. These models,
usually called zero-dimensional, are often used because they require few data and
are easy to manage. Nevertheless, zero-dimensional models produce significant
inaccuracies in the prediction of the efficiency of contaminant removal. Other



one-dimensional models with transient storage were recently used [17] to assess
the contaminant removal in a constructed wetland, giving in most cases a good
approximation of breakthrough curves.

These models, however, fail to describe different flow paths across the veg-
etation and through main channels. The evidence of different flow pathways
results in a clear bimodality of the solute breakthrough curves, that account
for the different characteristic time scales of water residence time. Since spatial
heterogeneity of the variables assumes a prominent role in determining the re-
moval efficiency, the use of a more detailed two-dimensional approach becomes
necessary to obtain reliable predictions.

2.2 Evolutionary Algorithms

Natural evolution is not a random process: while it is based upon random vari-
ations, their preservation or dismissal is determined by objective evaluations.
Darwinian natural selection is the process where only changes that are bene-
ficial to the individuals are likely to spread into subsequent generations, and
sometimes it strikingly resembles an optimization process. Unlike most opti-
mization processes, however, it does not require the ability to design intelligent
modifications, but only the assessment of the effect of random modifications.

Several researchers, independently, tried to replicate such a characteristic to
solve difficult problems more efficiently. Evolutionary computation does not have
a single recognizable origin, but most scholars agree on identifying four macro ar-
eas: genetic algorithms [13], evolution strategies [20], evolutionary programming
[9], and genetic programming [16].

The different paradigms share some key concepts, and can be cumulatively
called evolutionary algorithms. An EA starts by generating an initial set of usu-
ally random candidate solutions for the given problem. These solutions, called
individuals, are evaluated using problem-dependent metrics. The result of the
evaluation, that is, the goodness of the solution, is termed fitness. The set of
candidate solutions, also known as population, is then sorted on its fitness val-
ues. Subsequently, offspring is produced by altering the existing solutions: often
the best solutions have a higher probability of being selected for reproduction.
Offspring might be added to the existing population, or replace it entirely; in
any case, some of the worst solutions are deleted before iterating the process,
starting from reproduction. When a given stop condition is met, the iterations
end and the best solutions are returned to the user.

Being based on a population, EAs are more robust than pure hill climbing.
Both small and large modifications are possible, but with different probabili-
ties. Sexual recombination makes it possible to merge useful characteristics from
different solutions, exploring efficiently the search space. Furthermore, EAs are
quite simple to set up, and require no human intervention when running. They
are inherently parallel, and a nearly-linear speed-up may be easily achieved on
multiple instruction/multiple data (MIMD) architectures. Finally, it’s easy to
trade-off between computational resources and quality of the results.



3 Proposed Approach

In the proposed approach the design of a wetland is fully automated exploit-
ing an evolutionary algorithm. Each individual of the population represents a
complete configuration of the wetland, expressed as a set of patches of vegeta-
tion arranged within the area of the basin; each vegetated area is defined by
its position and diameter. The evolutionary algorithm handles the creation and
evolution of individuals, while the actual evaluation is performed by a tool able
to simulate the flow of water within the wetland and calculate the filtering capac-
ity. Differently from the feasibility study, candidate solutions has been provided
more stringent constraints in order to evolve towards optimized solutions close
to a real ones. This constraint has been applied to the maximum area that can
be covered by vegetation patches; the limit was set at 60%, in order to push
the evolution towards the realization of optimized individuals describing more
closely a configuration similar to those that are actually made.

3.1 Mathematical Models

A wetland is modeled using a two-dimensional depth averaged model that solves
hydrodynamics, coupled with a two-dimensional solute transport equation with a
first order decay term. Under the assumption of hydrostatic pressure, stationary
flow, and negligible wind and Coriolis forces, the depth-averaged velocity field
and water depth can be described by the following equations [23]:
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The quantities U and V represent the depth-averaged velocities [ms−1] along
the x and y direction, respectively, h is the water depth [m], zs is the water
surface elevation [m], and ρ the water density [kgm−3]. The bed shear stresses
τbx and τby [Nm−2] in the x and y direction respectively are calculated using
the following relationships:

τbx = ρcfmbU
√
U2 + V 2 (4)

τby = ρcfmbV
√
U2 + V 2 (5)

In the case modeled here, the bed slope is set to zero and the investigated ve-
locity range makes it possible to consider the friction coefficient as a constant.
This assumption generally holds where the velocity is sufficiently fast to assume
turbulent flow. For a flat bathymetry, the bed slope coefficient mb is unitary
and the coefficient of friction cf can be rewritten using Manning equation as



cf = gn2h−1/3. The effect of different vegetation densities is modeled here us-
ing different values of Manning roughness coefficient. This choice is confirmed
by many studies that relate vegetation density, stem diameter and flow con-
ditions to an equivalent roughness coefficient [3] [11] [21]. Fluid shear stresses
Tij(i, j = x, y) associated to viscous and turbulent effects, are determined using
the Boussinesq assumption:
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where ν, νt, are the kinematic and eddy viscosities [m2 s−1]. Since the kinematic
viscosity has a lower value than the eddy viscosity, it can be neglected in most
cases. For a turbulent flow regime, as it was assumed in this preliminary study, νt
can be expressed using Elder depth-averaged parabolic model [7] as νt = αU∗h,
where the term α is an empirical coefficient [−] and U∗ is the shear velocity
[ms−1]. For longitudinal dispersion Elder proposed a value of the coefficient α
of about 5.9 [7], for transverse dispersion, Fischer found that α varies between
0.3-1.0 in irregular waterways with weak meanders [8]. In accordance with [2] [23]
a value of 6.0 and 0.6 was chosen for the longitudinal and transversal dispersion
coefficients respectively.

Solute transport of a reactive tracer through the wetland is simulated with
a depth-averaged solute transport model accounting for the effect of advection,
turbulent diffusion, dispersion and decay. In the simulations, the tracer is as-
sumed to interact with vegetation and the chemical breakdown due to the per-
manence in the vegetated zones is modeled with a first order decay relationship.
The equation governing the transport of a reactive tracer in the wetland can be
modeled as:
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where C is the depth-averaged solute concentration [kgm−3], U , V are the ver-
tically integrated velocity components under steady flow conditions [ms−1] in
the x, y directions respectively. Coefficient Ex, Ex [m2 s−1], account for both
turbulent diffusion and dispersion. A constant homogeneous value of Ex, Ey is
chosen (10−5m2 s−1) throughout the entire domain.

3.2 Evolutionary Core

The EA used is µGP[19], is a versatile toolkit developed at Politecnico di Torino
in the early 2000s and available under the GNU Public License from Source-
forge4. µGP original use was to assist microprocessors’ designers in the gener-
ation of programs for test and verification, hence, the Greek letter mu in its

4 http://ugp3.sourceforge.net/



name. But over the years has been used as optimizer in a much wider spectrum
of problems, including numerical optimizations.

The algorithm initially creates a set of random candidate solutions to the
given problem, that are then evaluated, and sorted by their fitness value (see
Subsection 3.3). Offspring is then created favoring the fittest individuals and
also trying to favor diversity among the population. New candidate solutions are
then evaluated and added to the initial population. Solutions are again sorted,
and the worst ones are removed until the population returns to its original size.
The process is then iterated, starting from offspring generation, until a stop
condition is reached.

Two categories of genetic operators are used to generate the offspring: mu-
tations, or single-parent operators, and crossovers, or recombination operators.
Mutation operators create new candidate solutions by altering one single par-
ent solution; crossover operators mix the information contained in two or more
parents solutions to create offspring. The most common operators are available
inside µGP, but the toolkit also implements differential evolution, and other
operators specially calibrated for real parameters.

Individuals are internally represented as a multigraph, µGP relies on a exter-
nal configuration file constraints the multigraphs to sensible structure, and maps
the internal individuals to valid solutions of the problem. In the specific context,
each individual encodes a candidate configurations of the wetland, that is, it
details the features of the several patches of vegetation, with variable number of
occurrences from 20 to 35, that are going to be placed in the water; the order in
which the patches are described within the individual is irrelevant. All islands
are assumed to be of circular shape. Since they can overlap, however, they can
create more complex shapes. An island is characterized by its position (x, y coor-
dinates expressed in real values) in the wetland and its radius; in this simplified
approach friction value is always the same. An island’s position is constrained
by the size of the wetland; its radius is constrained following the minimum and
maximum size of actual islands of vegetation used in real wetlands.

3.3 Fitness Function

The definition of an appropriate fitness function is a key aspect in the use of
an EA. The process of evolution is based on differential survival, that is, differ-
ent individuals must have a different chance to spread their offspring in future
generations. In the artificial environment modeled by an EA, it is essential that
different individual get different fitness values. It is a common practice to include
in the fitness some heuristic knowledge, in order to help the EA explore the most
promising regions of the search space.

In µGP, the fitness is not a single value but a vector of positive coefficients.
The individual A is considered to be fitter than the individual B if the first j
elements of the two fitness vectors are equals, and the (j + 1) − th element of
the A’s fitness is greater than the (j + 1) − th element of the B’s fitness. In the
context of wetland optimization, three values have been used.



In order to evaluate the goodness of a candidate wetland layout, a simulation
of the hydrodynamic field is performed extracting computed values of discharge
Q [m3 s−1] and water depth h at the inlet and at the outlet sections of the
wetland. During the simulation, a reactive tracer with a known concentration is
injected at the inlet. Thanks to the presence of vegetation the tracer is gradually
degraded and reaches the outlet section. Mass flux M̂ [kgs−1] passing through
these sections is measured, and the difference between the two values repre-
sent the first parameter of the fitness function. In order to obtain the optimal
vegetation distribution, this difference must be maximized.

On the other hand, a candidate layout must still let the water flow, avoiding
configurations where the vegetation is so dense to make the flow impossible.
The energy requested by the water to flow can be represented by the difference
between the water depth at the inlet and outlet section. This difference represents
the second parameter of the fitness function. This parameter is minimized by
the algorithm: solutions that completely block the water flow are then heavily
penalized.

The third and last fitness parameter measures the difference of discharge
between the inlet and the outlet sections of the wetland. This value assures that
the stationary flow conditions are reached and that the mass fluxes are finely
computed. This discharge difference is strongly minimized.

Fig. 1. Individual B: Representation of the phenotype of an individual extracted from
the first generation of evolution; dark areas show the distribution of vegetation over
the wetland surface.



Fig. 2. Individual 7: Individual with percentage of vegetation next to the maximum
limit but without good filtering performance, due to the distribution not optimized
within the basin.

4 Experimental Evaluation

4.1 Setup

The artificial basin take into consideration in this work has a rectangular shape
with dimensions 200m-long-by-100m-wide, with a water depth considered con-
stant over the entire surface and equal to 0.5m. The inlet and outlet sections
are located at the centre of the shorter sides of the wetland and have 10 m of
size amplitude. In this way can be reached two important objectives: the first,
related to the proportions of the area, concerns the total spread of the incoming
water flow over the entire section of the basin; the second, due to the constant
depth, makes this basin more similar to the natural ones and also makes it pos-
sible to simplify the system, which will not consider any slopes of the basin’s
bed [22] [23]. In addition, a constant discharge of 0.2m3s−1 is imposed at the
inlet section. The rest of the wetland was considered impermeable and laws of
friction have not been applied at the side walls. In order to monitor the filtering
process of the wetland, within the inlet section is injected a reactive solute with
a constant concentration of 1kgm−3; in this way it is possible to extract the
fitness value (which indicates the filtering capability of the basin) by calculating
the average value of the concentration of this reagent in outlet area.

In order to simulate the hydrodynamic flow within the basin and the cor-
rect values of decay related to pollutants, it has been necessary to set some
parameters into the simulation tool. The basin was defined through an adaptive
triangular mesh, so as to ensure a sufficient numerical stability and the required
resolution in case of steep gradients of the hydrodynamic and solute transport
solutions. In addition, was applied to each node a value of the Manning rough-
ness coefficient and a decay value, depending on the structure of each individual.



Fig. 3. Individual AAU: Representation of the individual that reached the best op-
timization level. The percentage of vegetation is close to the imposed limit to 60%
but, thanks to the best arrangement of vegetation patches, its filtering performance is
optimal.

In the particular configuration of this experiment, in which we impose the con-
straints that cannot exist individuals with vegetated area greater than 60 %
related to the total area of wetland, it has been chosen to simplify the decay
coefficients, and the the structure of the vegetated patches. In conclusion, it was
chosen to apply a single law of decay to a node of the mesh in which there is an
island, or a zero coefficient otherwise; it was chosen a decay coefficient equal to
5−6 s−1. In the same way, Manning roughness coefficients are set to 0.20sm− 1

3

to nodes with vegetation, and 0.02sm− 1
3 otherwise.

As previously introduced, to achieve this automatic optimization system were
used two different tools, both open-source and freely available on internet. The
tool used for evolutionary algorithm is µGP version 3.2.0 (revision 198). To
simulate and evaluate each individual instead was used a tool called TELE-
MAC2D, part of the wider set of programs openTELEMAC [10] [12]. The code of
the latter has been specifically modified in order to extract information relating
to fitness in the format required by the µGP tool.

Each individual evolved by the evolutionary tool is converted to the TELE-
MAC2D format, that consists of a map of basin’s nodes, and each of these nodes
can be covered or not by a vegetation patch. For this reason, each individual
undergoes a sort of pre-processing that inserts in the nodes of the map values
associated with vegetated areas. The process has been elaborated on a single
machine, equipped equipped with an Intel Core i7-950 CPU running at 3.06
GHz, and the whole system was setting in order to process up to 4 individu-
als simultaneously, with an average computation time of 90 minutes for each
individual.



4.2 EA Configuration and Result Discussion

In order to obtain the results described in this paper, the EA has been configured
in such a way to create a random initial population of 20 individuals (µ =
20), on which they are applied, at each generation of the evolution, 12 genetic
operators (λ = 12) chosen among the 20 available in µGP tool. The entire process
evolved for 90 generations, for a total of 1070 individuals generated. During
the conversion of individuals to the format compatible with TELEMAC2D, a
certain percentage of them was discarded because it was violating the introduced
constraint about maximum area that vegetation patches can cover.

Starting from a random population, the evolution has shown several interest-
ing features, which show the actual goodness of this approach. Among individ-
uals of first generations, its possible to find some as the individual B which are
formed by a low number of vegetated areas clearly separated between them, con-
figuration that shown a low filtration capacity; in particular, the configuration
shown in Figure 1 ensures a performance of pollutant reduction of 21% respect to
the inlet concentration. As evolution proceeds, grows the trend of evolutionary
algorithm to generate individuals which respect the constraint of the maximum
coverage and, using the maximum available number of islands, the EA is able
to combine them to create complex shapes able to modify the water flow and to
optimize the filtering performance.

The figure Figure 2 and Figure 3 compares the two individuals 7 and AUU ,
both characterized by a vegetated coverage very close to the imposed limit of
60%, but with different fitness. Individual 7 belongs to the third generation,
in which evolution is still very close to the starting stage and, despite the use
of maximum coverage allowed, performances in terms of filtering amount to
27%. Individual AUU instead represents the best configuration achieved in this
experiment, comparable to previous in terms of vegetated area; in this case the
filtering capacity has been optimized to achieve performances of 33.2%.



5 Conclusions

Wetlands are artificial ponds, and nowadays are extensively used to filtrate and
purify water. Optimizing their design is an extremely complex task, and it is
currently carried on by experts usinf a trial-and-aerror approach on the basis
of fluid-dynamics simulations. In this paper, an evolutionary algorithm is ap-
plied to the wetlands design problem. Each candidate solution is evaluated by
a state-of-the-art fluid-dynamics simulator, on the basis of several relevant met-
rics. Experimental results on the best solution provided by the algorithm show
a performance comparable with human-devised designs, despite the absence of
human intervention during the optimization process.

Future works will include a more complex individual representation, with
patches of several different shapes and a more refined management of friction val-
ues. Managing larger populations, or different sub-population, might also prove
beneficial to the quality of the final solutions: nevertheless, the computational-
intensive simulations needed to evaluate a single candidate represent a severe
bottleneck. For this reason, further developments will probably exploit the par-
allelism innate in evolutionary algorithms, using clusters or grids to speed up
the process. Finally, the choice of decay coefficients has a predominant role in
determination of the final breakdown efficiency: a more detailed analysis on a
real case should be used to demonstrate the potential of the proposed approach,
that shows promising results in this first experience.
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