
An Efficient Distance Metric
for Linear Genetic Programming

Marco Gaudesi
Politecnico di Torino

Corso Duca degli Abruzzi, 24
10129 Torino, Italy

marco.gaudesi@polito.it

Giovanni Squillero
Politecnico di Torino

Corso Duca degli Abruzzi, 24
10129 Torino, Italy

giovanni.squillero@polito.it

Alberto Tonda
INRA UMR 782, MALICES

1 Avenue Lucien Brétignères
78850 Thiverval-Grignon,

France
alberto.tonda@grignon.inra.fr

ABSTRACT
Defining a distance measure over the individuals in the pop-
ulation of an Evolutionary Algorithm can be exploited for
several applications, ranging from diversity preservation to
balancing exploration and exploitation. When individuals
are encoded as strings of bits or sets of real values, com-
puting the distance between any two can be a straightfor-
ward process; when individuals are represented as trees or
linear graphs, however, quite often the user must resort to
phenotype-level problem-specific distance metrics. This pa-
per presents a generic genotype-level distance metric for Lin-
ear Genetic Programming: the information contained by
an individual is represented as a set of symbols, using n-
grams to capture significant recurring structures inside the
genome. The difference in information between two individ-
uals is evaluated resorting to a symmetric difference. Ex-
perimental evaluations show that the proposed metric has a
strong correlation with phenotype-level problem-specific dis-
tance measures in two problems where individuals represent
string of bits and Assembly-language programs, respectively.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Algorithms; Measurements; Linear Genetic Programming;
Diversity Preservation; Distance Metric; Fitness Sharing;
Experimental Analysis; Individual Encoding; Assembly; NK-
Landscapes

1. INTRODUCTION
Defining a distance metric in an Evolutionary Algorithm

(EA) is both theoretically sound and practically challenging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

– and ultimately useful. Being able to quantify the similar-
ity of two individuals can be used to promote diversity inside
the population’s gene pool, to avoid the over-exploitation of
niches in the fitness landscape, to balance exploration and
exploitation, and ultimately to ease the premature conver-
gence problem. Not surprisingly, the topic has been actively
investigated by the evolutionary community for many years.

From the theoretical point of view, two different aspects
must be examined when a distance is defined: the level at
which it is calculated; and the purpose for calculating it. On
the other hand, for the practitioner the complexity involved
in the calculation is the key point.

The level at which a distance is defined may be: geno-
type, phenotype, or fitness. The first and the last are prob-
ably the most easily definable: the genotype corresponds to
the internal representation of the candidate solution; the fit-
ness is ultimately the number, or numbers, returned by its
evaluation. In biology, the phenotype is the sum of all the
observable characteristics of an organism that result from
the interaction of its genotype with the environment. It is
hard to translate the concept in Evolutionary Computation
since the environment is missing, being indirectly defined
by its effects through the fitness function. Yet, in several
classical problems – where an individual is a fixed-length bit
string, for instance – the need to distinguish between geno-
type and phenotype is reduced. As a consequence, several
works assimilate the fitness to the phenotype.

In many other cases identifying phenotype and fitness is
not an option. The fitness is a synthetic information, and
may not be able to convey the necessary data to separate
individuals. Even in the simplistic one-max problem two
solutions may have the same fitness without sharing a sin-
gle gene (e.g., ”0011” and ”1100”). Moreover, the very same
solution can be encoded in different ways. If the individ-
ual is the movement of a robot, for instance, a single 90◦

turn could also be represented as two consecutive 45◦ ones.
More generally, whenever the genotype cannot be evaluated
directly by the fitness function, but needs to be transformed
into something else, fitness and genotype should be distin-
guished. In such scenarios, the phenotype could be easily
defined as the ”something else” in which the genotype needs
to be transformed into.

The final goal for measuring the distance between individ-
uals plays an important role. If the distance metric is used
to avoid that a region of the search space becomes overly
populous, then it should be defined at the level of pheno-
type. However, phenotype-level distances are often difficult

to define or practically impossible to calculate. Remark-
ably, NSGA-II, the widely used multi-objective evolution-
ary optimizer, adopts a sharp and computationally efficient
mechanism called crowding distance to scatter individuals
[6]. Here, the crowding distance may rely exclusively on in-
formation from the fitness because the genotypes are fixed-
length arrays of real numbers, requiring no transformation;
and the fitness is composed of several different values, re-
ducing the loss of information.

Conversely, if the distance metric is used to promote di-
versity in the gene pool, balancing exploration and exploita-
tion, it could be based on the genotype. For example, in
[13] solutions are encoded as fixed-length bit strings and a
metric based on the hamming distance is used to assess the
global diversity inside the population. When the phenotypes
are sets of real values of fixed size, computing the distance
between them is relatively straightforward, albeit not triv-
ial [5]. However, phenotypes in Genetic Programming (GP)
[11], Linear Genetic Programming (LGP) [3] and other com-
plex EAs pose a harder challenge: calculating the similarity
between two binary trees, linear graphs, or generic com-
pound structures is an open problem.

This paper proposes a new distance metric easily usable
in different types of LGPs. The distance is calculated quite
efficiently at the level of genotype, yet it is able to con-
vey a considerable amount of information about the individ-
ual. Thus, it may be used to reduce crowding in place of a
phenotype-level distance. The proposed approach computes
the symmetric difference [1] between the global information
contained in two individuals; while the global information
itself is evaluated resorting to the concept of n-grams [18].

Experimental results demonstrate that the proposed dis-
tance is highly correlated with other phenotype-level problem-
specific distance measures, both where individuals are string
of bits and Assembly language programs. Further experi-
ments show that exploiting the proposed metric to perform
fitness sharing in a sample problem produces results compa-
rable to using a phenotype-level metric.

2. BACKGROUND

2.1 Linear Genetic Programming
LGP is a variant of GP that evolves computer programs

as sequences of instructions. It was introduced by Markus
Brameier and Wolfgang Banzhaf between the late 90s and
the early 2000s [2] [3], after the seminal work of Friedberg [7].
A traditional, Koza-style GP encodes individuals as trees.
Such tree GPs – or TGPs, as they are sometimes called – are
commonly used to evolve mathematical expressions: leaves
correspond to terminals, such as input values, constants or
variables; inner nodes represent functions. Quite differently,
LGP evolves a simplified list structure that represents a se-
quence of instructions in an imperative programming lan-
guage. The resulting individuals represent real programs,
although in a simplified language, that can grow to a signif-
icant complexity. Since their appearance, LGPs have been
widely used to solve both practical problems and perform
theoretical studies.

In LGP the difference between genotype and phenotype
becomes fully apparent. The genotype is the internal, list-
based representation; the phenotype is the actual program
resulting from the interpretation of the genotype; the fitness

P
H

EN
O

TY
P

E

G
EN

O
TY

P
E

ADD
AX, BX

SUB
55, CX

JNZ

label1: ADD AX, BX
 SUB 55, CX
 JNZ label1

individualA.s

FI
TN

ES
S

V
A

LU
E

individualA.s

individualA.exe

Execution

Figure 1: Distinction between genotype, phenotype
and fitness value in an example with LGP used for
Assembly language generation.

is the final result of the evaluation of the program (Figure
1).

2.2 Symmetric Difference
In set theory, the symmetric difference [1] of two sets A

and B is defined as

A4B = A ∪B −A ∩B (1)

In practice, the symmetric difference contains all elements
which are in either of the sets and not in their intersection.
The Venn diagram of the symmetric difference is reported
in Figure 2.

Figure 2: Venn diagram of the symmetric difference.
The area corresponding to A4B is depicted in grey.

Considering the set as the information carried by an indi-
vidual, the symmetric difference appears a plausible formal-
ization of the intuitive idea of distance: when two sets are
almost completely overlapping, their symmetric difference is
very small; when they are completely separated, it is big.

Moreover, the symmetric difference exhibits useful prop-
erties for a distance: it is commutative (A4 B = B 4 A);
and the empty set is neutral (A4 ∅ = A and A4 A = ∅).
The symmetric distance is also associative, but this fact is
negligible in this application.

2.3 Fitness Sharing
When a reliable distance metric is defined, one useful ap-

plication is to exploit it for fitness sharing, one of many
methods to enforce diversity inside the population of an EA
[16] [14].

The general idea of fitness sharing is to artificially decrease
the fitness of individuals in crowded areas of the search
space. The fitness fi of an individual Ii is modified in a
fitness f ′i = f/mi, where mi is dependent upon the number
of individuals in a given radius σs from individual Ii, and
their distance from the individual itself. In particular,

mi =

N∑
j=0

sh(Ii, Ij) (2)

where N is the number of individuals in the population,
and sh(Ii, Ij) is defined as

sh(Ii, Ij) =

{
1− (

d(Ii,Ij)

σs
)α d(Ii, Ij) < σs

0 d(Ii, Ij) ≥ σs
(3)

where σs is once again a user-defined radius, and d(Ii, Ij)
is a distance measure applicable to the individuals’ represen-
tation. α is a constant parameter that regulates the shape
of the sharing function. In many practical cases α = 1, with
the resulting sharing function referred to as the triangular
sharing function [8].

3. PROPOSED APPROACH
In LGP, Shannon entropy can be effectively used as a met-

ric to assess the diversity in a population at a given genera-
tion [4]. The entire population is considered a message, and
each allele appearing in an individual is a symbol: entropy
is then computed on the basis of the number of different
symbols and their occurrences.

In a preliminary work [17], a variant of this approach is
sketched. Instead of considering just the alleles of each gene,
their disposition inside the individual is also taken into ac-
count. A symbol is no longer considered equivalent to a
single allele, but to the allele and its position inside the
individual instead. Following the idea that recurring struc-
tures might possess meaning, n-grams of nodes are also re-
garded as symbols. An n-gram is a group of n items from
a longer sequence. For example, a b, b c and c d are all
2-grams from the sequence a b c d, while a b c and b c d

are 3-grams. Very often n-grams are used for the purpose
of modelling the statistical properties of sequences, particu-
larly natural language [18].

Building on the same principles, a generic genotypic Uni-
versal Information Distance (UID) for individuals in LGP
is proposed. Considering two individuals Ii and Ij , the UID
is defined as

UID(Ii, Ij) = |S(Ii)4 S(Ij)| (4)

where S(I) represents the set of symbols in individual I, 4
is the symmetric difference as defined in Equation 1, and the
operator |S| denotes the cardinality of set S.

In other words, the UID between two individuals is the
number of distinct symbols they do not have in common.
Intuitively, when two individuals share many common sym-
bols, the UID will be small; on the contrary, if they have no
symbols in common, their UID will be high. An example is
reported in Figure 3.

When used in practice, symbols for each individual are
computed resorting to a hash function of the n-grams and
alleles. It is interesting to notice how the proposed UID,
that acts at genotype level and is quite straightforward to

compute, could provide the same information of more com-
putationally intensive distance metrics that are evaluated at
phenotype level: thus, UID could be used for fitness sharing,
delivering the same results as problem-specific metrics.

4. EXPERIMENTAL EVALUATION
The correlation between the proposed UID and two phe-

notypic distance metrics is examined, in two problems where
individuals are encoded as strings of bits, and as Assembly
language programs, respectively. Experiments with an evo-
lutionary toolkit that supports LGP [15] are then performed
for the two problems, and the effectiveness of UID for fitness
sharing is compared to the previously considered phenotypic
distance metrics.

In the all the experiments, the computation of UID is
limited to n-grams of order 2 and 3, as a trade-off between
computational efficiency and thoroughness of the approach.
Symbols are computed resorting to the DJB1 hash function.

4.1 Considered Problems
The proposed approach is tested on two benchmarks: NK-

landscapes, a NP-complete problem where individuals are
represented a strings of bits, and a simple Assembly-language
generation task.

4.1.1 NK-Landscapes
In the NK-landscapes problem [10], the individual is a

string of bits of fixed length: both the overall size of the
fitness landscape and the number of its local optima can be
adjusted by tuning the two parameters, N and K. Gener-
ally speaking, values of K close to N create more irregular
landscapes. Albeit simple, this benchmark is widely studied
in the optimization community, because it is proven to be
NP-complete [19]. In the following experiments, values of
N and K are very close, in order to obtain a fairly rugged
fitness landscape.

4.1.2 Assembly Language Generation
This second set of experiments targets a simple Assembly

language generation problem: the fitness of a program is
the number of bits set to 1 in registry %eax at the end of its
execution.

During the Assembly-generation problem, the minimum
length of the variable part of a program is set to 1 instruc-
tion, the while the maximum length is set to 1500 instruc-
tions. For the initial population, individuals are generated
in order to possess an average of 70 instructions, with a
large standard deviation of 60 in order to efficiently sample
the search space. Table 1 recapitulates the possible genes
(instructions) appearing in the individuals.

The fitness function used for this experiment is based on
both the result of a candidate program’s execution and the
length of its code, and it is defined as

f(I) = 104 · (
N=31∑
i=0

%eax[i]) +max(0, 104 − length(I)) (5)

where %eax[i] is the value of the ith bit of register %eax,
while length(I) represents the number of instructions of can-
didate program I. Thus, the most important objective is to

1http://cr.yp.to/djb.html

A

B

C

D

E

0

1

2

3

4

A

B

C

D

E

0

1

2

3

4

α

β

γ

δ

ε

ζ

η

θ

ι

κ

λ

μ

Individual Ia

B

C

D

F

E

0

1

2

3

4

B

C

D

F

E

0

1

2

3

4

ν

ξ

ο

π

ε

η

θ

ρ

σ

λ

ς

τ

Individual Ib

α

β

γ

δ

ε
ζ

η

θ

ι

κ λ

μ

ν
ξ

ο

ε

ρ

ς

σ

τ

Individual Ia

Individual Ib

Figure 3: Example of symbols computed for alleles and (2, 3)-grams for two individuals. Symbols are repre-
sented as Greek letters inside hexagons, alleles as Roman letters inside circles, while their position in the
individual is reported in a square. The symbols common to the two individuals are ε (corresponding to allele
E in position 4), η (2-gram B − C), θ (2-gram C −D) and λ (3-gram B − C −D). The UID between the two
individuals is thus |S(A)4 S(B)| = |S(A) ∪ S(B)− S(A) ∩ S(B)| = 16

Gene Parameters Prob.
<ins> <sreg>, <dreg> ins={addl, subl,

movl, andl, orl, xorl,
compl}, sreg={%eax,
%ebx, %ecx, %edx},
dreg={%eax, %ebx,
%ecx, %edx}

0.33

<ins> <scon>,<dreg> ins={addl, subl, movl,
andl, orl, xorl, compl},
scon={integer in
(0,255)}, dreg={%eax,
%ebx, %ecx, %edx}

0.33

<ins> <reg> ins={incl, decl, notl},
reg={%eax, %ebx,
%ecx, %edx}

0.33

Table 1: Possible genes appearing inside the individ-
uals during the Assembly generation problem. For
each gene, all variables and corresponding values are
listed, as well as the probability of occurrence.

set to 1 bits in register %eax, while a small bonus is as-
signed to individuals that perform the task with a moderate
number of instructions.

4.2 Correlation
An important result that it is possible to immediately es-

teem looking at the figures is how much the proposed UID
distance is well correlated with problem-specific phenotype-
level distances. Figure 4 plots the UID against the standard
Hamming distance for 500 random 50-bit individuals2. The
cloud of points does not stretch down to the origin, nor up
to the maximum because it is quite unlikely to find two iden-
tical strings, or two completely different ones, in a random
pool.

Figure 5, on the other hand, plots the same data for all

2Several values are overlapping.

Figure 4: Correlation between the proposed UID
distance and hamming distance in the standard One-
Max problem (50 bits)– Sample of 500 random in-
dividuals.

individuals generated during a run, until the optimal solu-
tion is reached. Since there is a strong similarity between all
individuals in the same parental group, the cloud stretches
down to distance zero. The correlation is even more evident
than in the preceding example.

Figure 6 plots the proposed distance against the Leven-
shtein, or edit, distance for 500 random programs on the As-
sembly OneMax problem. Here, differences are more subtle
and the number of overlapping values is reduced compared
to the previous case. The triangular shape of the cloud is
indicative: the two distances are better correlated for low
values – that is, exactly when they are more useful: distin-
guishing between closely related individuals is in fact quite
harder than discriminating between very different ones. The
Levenshtein distance is a computationally-expensive metric
that can be computed only at the level of phenotype. The
proposed UID, on the contrary, can be efficiently calculated
at the level of genotype and it is effective in estimating the
distance between similar individuals.

Figure 5: Correlation between the proposed UID
distance and hamming distance in the standard One-
Max problem (50 bits) – Individuals generated dur-
ing a run.

Figure 6: Correlation between the proposed UID
distance and the Levenshtein distance in the As-
sembly OneMax problem (32 bits) – Sample of 500
random individuals.

4.3 Fitness Sharing
Since the proposed metric shows a heavy correlation with

phenotypic distance metrics, its effectiveness can now be
tested in multi-modal problems where a fitness sharing might
help to spread the individuals over the search space. The
aim of the following experiments is to show how using the
proposed UID for fitness sharing delivers the same results as
employing more rigorous problem-specific distance metrics,
that are also more computationally expensive.

The first experiments are performed on the NK-landscapes
(or NK-model) benchmark, tuned to obtain a rugged fitness
landscape: the UID is compared to a classical Hamming dis-
tance [9]. A second set of experiments is then executed on
a simple Assembly-language generation problem, where the
objective is to obtain a program able to set all bits of register
%eax to 1. In this latter tests, the UID is weighted against
the Levenshtein distance [12].

In the LGP tool used for the experiments [15], µ is the
population size; λ represents the number of genetic operators
applied at each generation, rather than the offspring size;
and σ is the strength of the mutation operators. Each time
a mutation operator is applied to an individual, a random
number r in the interval (0, 1) is generated: if r < σ, the

operator creates another mutation in the same individual,
and a new r is generated.

It is important to notice that the parameters of the tool
used in the trials have not been tuned to optimality, since the
main objective of this experimental evaluation is to assess
whether the fitness sharing mechanism behaves comparably
when different distance metrics are applied with an equiva-
lent radius, even with sub-optimal settings.

4.3.1 NK-landscapes
Parameters of the LGP tool used in the experiments are

reported in Table 2. The mutation operator in this case
simply changes the value of a random gene, while the one-
point crossover selects a random cut point.

Parameter Value Parameter Value
µ 32 P(one-point crossover) 0.5
λ 32 P(mutation) 0.5
σ 0.5 Max generations 50

Table 2: Parameters used during the experiments
with fitness sharing in the NK-landscapes bench-
mark.

For each landscape, 10 experiments are run with the Ham-
ming distance, and 10 with the UID, respectively, using
equivalent radius measures derived from the correlation de-
scribed in Subsection 4.2. At the end of the evolution, the
fitness of the best individual (online fitness) and the average
fitness of the final population (offline fitness) are compared.

From results in Table 3 it is noticeable how, for the same
NK-landscape, the final online and offline fitness values are
very close, as well as the average distance value between in-
dividuals in the population. In fact, running a two-sample
Kolmogorov-Smirnov test on corresponding distributions for
an equivalent radius reveals that the distributions are undis-
tinguishable with p < 0.01.

4.3.2 Assembly OneMax
This second set of experiments targets a simple Assembly

language generation problem: the fitness of a program is
the number of bits set to 1 in registry %eax at the end of its
execution. Table 4 summarizes the parameters used for the
LGP tool in this experiment.

Parameter Value Parameter Value
µ 10 P(crossover) 0.25
λ 7 P(mutation) 0.75
σ 0.7 Max generations 10

Table 4: Parameters used during the experiments
with fitness sharing in the Assembly language gen-
eration problem.

The mutation operator, in this case, can add a random
instruction; remove a random instruction; or change one or
more parameters inside a random instruction, with equal
probability. The crossover can operate on one or two cut
points, with equal probability.

Table 5 shows the results over 10 experiments with each
parameter configuration. At the end of the evolution, the
fitness of the best individual (online fitness) and the average
fitness of the final population (offline fitness) are compared.

Fitness sharing with Hamming distance Fitness sharing with UID
Radius
(Ham-
ming)

Online
fitness
(avg)

StDev Offline
fitness
(avg)

StDev Radius
(UID)

Online
fitness
(avg)

StDev Offline
fitness
(avg)

StDev

N=16, K=14, seed=1234567890
5 0.6710 0.0167 0.3655 0.0256 10 0.6739 0.0326 0.3798 0.0391

N=16, K=14, seed=4242424242
5 0.6774 0.0318 0.4094 0.0142 10 0.6948 0.0304 0.4099 0.0235

N=16, K=15, seed=1234567890
5 0.6543 0.0228 0.3819 0.0124 10 0.6468 0.0109 0.3901 0.0137

N=16, K=15, seed=4242424242
5 0.6770 0.0209 0.3912 0.0352 10 0.6671 0.0256 0.4067 0.0316

Table 3: Results for the set of experiments on the NK-landscapes benchmark. Experiments with fitness
sharing with the Hamming distance (left) and the UID (right); experiments with a corresponding radius are
reported on the same line.

Fitness sharing with Levenshtein distance Fitness sharing with UID
Radius
(Leven-
shtein)

Online
fitness
(avg)

StDev Offline
fitness
(avg)

StDev Radius
(UID)

Online
fitness
(avg)

StDev Offline
fitness
(avg)

StDev

3 325,927 7,205.14 312,903 19,800.8 2 320,919 12,608.4 297,899 32,800.8
5 324,939 7,992.28 309,902 27,989.6 3 324,949 8,008.23 315,909 17,616.6
10 318,909 11,422.8 292,901 20,998.7 5 314,930 15,015.5 285,923 32014.3

Table 5: Results for the set of experiments on the Assembly-language generation benchmark. Experiments
using fitness sharing with the Levenshtein distance (left) and the UID (right); experiments with a corre-
sponding radius are reported on the same line.

Again, the results for an equivalent radius are indistin-
guishable through a two-sample Kolmogorov-Smirnov test
with p < 0.01.

5. CONCLUSIONS
This paper presents a new distance metric for Linear Ge-

netic Programming, based on the symmetric difference be-
tween the information contained in the genome, represented
as symbols based upon n-grams and alleles. Experiments
show a prominent correlation between the proposed method
and phenotypic problem-specific distance measurements in
two samples where individuals are radically different, NK-
landscapes and Assembly language generation. The method-
ology is then successfully applied to two experiments with
fitness sharing, showing again results comparable to more
complex and computationally more demanding phenotypic
fitness metrics.

Following the same general principles, a similar distance
metric could also be defined for classical Genetic Program-
ming, using for example a node and its children in place of
n-grams. However, further studies are needed to assess the
general validity of the proposed approach. Variations of the
methodology need to be conceived in order to tackle indi-
viduals composed of both real values and constants, or indi-
viduals in combinatorial problems. Also, since the proposed
approach relies upon the number of symbols encoded in each
individual, its use for diversity preservation might implicitly
benefit larger individuals, thus possibly contributing to the
known issue of bloating.

6. ACKNOWLEDGEMENTS
The authors would like to thank Davide Barbieri (École

des Hautes Études en Sciences Sociales, France) for his in-
valuable advice and stimulating conversation.

7. REFERENCES
[1] Symmetric difference. In E. J. Borowski and J. M.

Borwein, editors, The HarperCollins Dictionary of
Mathematics. HarperCollins, 1991.

[2] W. Banzhaf, P. Nordin, R. E. Keller, and F. D.
Francone. Genetic programming: An introduction: On
the automatic evolution of computer programs and its
applications (the morgan kaufmann series in artificial
intelligence). 1997.

[3] M. Brameier and W. Banzhaf. Linear Genetic
Programming, volume 117. Springer, 2007.

[4] F. Corno, E. Sánchez, and G. Squillero. Evolving
assembly programs: how games help microprocessor
validation. Evolutionary Computation, IEEE
Transactions on, 9(6):695–706, 2005.

[5] G. Corriveau, R. Guilbault, A. Tahan, and
R. Sabourin. Review and Study of Genotypic
Diversity Measures for Real-Coded Representations.
IEEE Transactions on Evolutionary Computation,
16(5):695–710, Oct. 2012.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
Nsga-ii. Evolutionary Computation, IEEE
Transactions on, 6(2):182 –197, apr 2002.

[7] R. M. Friedberg. A learning machine: Part i. IBM
Journal of Research and Development, 2(1):2–13, 1958.

[8] D. Goldberg. Genetic algorithms in search,
optimization, and machine learning. 1989.

[9] R. Hamming. Error detecting and error correcting
codes. Bell System technical journal, 29(2):147–160,
1950.

[10] S. Kauffman and E. Weinberger. The nk model of
rugged fitness landscapes and its application to
maturation of the immune response. Journal of
theoretical biology, 141(2):211–245, 1989.

[11] J. R. Koza. Genetic Programming, On the
Programming of Computers by Means of Natural
Selection. A Bradford Book. MIT Press, Cambridge,
MA, USA, 1992.

[12] V. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet
Physics-Doklady, volume 10, 1966.

[13] M. Mauldin. Maintaining diversity in genetic search.
In Proceedings of the national conference on artificial
intelligence (AAAI conference on artificial
intelligence), volume 247, page 250, 1984.

[14] C. D. Rosin and R. K. Belew. New methods for
competitive coevolution. Evolutionary Computation,
5(1):1–29, 1997.

[15] E. Sanchez, M. Schillaci, and G. Squillero.
Evolutionary Optimization: the µGP toolkit. Springer,
2011.

[16] B. Sareni and L. Krahenbuhl. Fitness sharing and
niching methods revisited. Evolutionary Computation,
IEEE Transactions on, 2(3):97–106, 1998.

[17] G. Squillero and A. Tonda. A novel methodology for
diversity preservation in evolutionary algorithms. In
Proceedings of the 2008 GECCO conference
companion on Genetic and evolutionary computation,
pages 2223–2226. ACM, 2008.

[18] C. Suen. N-gram statistics for natural language
understanding and text processing. Pattern Analysis
and Machine Intelligence, IEEE Transactions on,
(2):164–172, 1979.

[19] E. Weinberger. NP completeness of Kauffman nk
model, a tuneably rugged fitness landscape. Santa Fe
Institute Technical Reports, 1996.

