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Abstract—Network resilience strategies aim to maintain ac-
ceptable levels of network operation in the face of challenges, such
as malicious attacks, operational overload or equipment failures.
Often the nature of these challenges requires resilience strategies
comprising mechanisms across multiple protocol layers and in
disparate locations of the network. In this paper, we address
the problem of resilience management and advocate that a new
approach is needed for the design and evaluation of resilience
strategies. To support the realisation of this approach we propose
a framework that enables (1) the offline evaluation of resilience
strategies to combat several types of challenges, (2) the generalisa-
tion of successful solutions into reusable patterns of mechanisms,
and (3) the rapid deployment of appropriate patterns when
challenges are observed at run-time. The evaluation platform
permits the simulation of a range of challenge scenarios and the
resilience strategies used to combat these challenges. Strategies
that can successfully address a particular type of challenge can
be promoted to become resilience patterns. Patterns can thus be
used to rapidly deploy resilience configurations of mechanisms
when similar challenges are detected in the live network.

I. INTRODUCTION

Computer and communication networks are increasingly
critical in supporting business, leisure and daily life in general.
There is also an evident increase in cyber attacks on networked
systems. Thus, there is a compelling need for resilience to be
a key property of networks. Resilience is the ability of the
network to maintain acceptable levels of operation in the face
of challenges, such as malicious attacks, operational overload,
mis-configurations, or equipment failures [1]. This paper de-
scribes a framework and a process for providing resilience
management, which encompasses and perhaps supplants some
elements of the traditional FCAPS (fault, configuration, ac-
counting, performance, and security) functionalities. The na-
ture of the challenges typically requires the use of mechanisms
across multiple layers of the protocol stack and in disparate
locations of the network. Therefore, ensuring the resilience
of a network requires the systematic design and evaluation
of resilience strategies, the careful coordination of various
monitoring and control mechanisms, and also the capture of
best practices and the experience of network operators into
reusable resilience configurations.

Network resilience is considered in the context of a general

two-phase high-level strategy, called D2R2 + DR: Defend,
Detect, Remediate, Recover + Diagnose, Refine [1]. The first
phase comprises the use of defensive measures to protect the
network from foreseeable challenges, the ability to detect in
real-time challenges that have not been anticipated and sub-
sequently remediate their effects before the network operation
is compromised, and finally disengage possibly sub-optimal
mechanisms via specific recovery procedures. The second
phase caters for the longer-term evolution of the system,
through the diagnosis of the causes of the challenge and
the refinement of the system operation. In particular, D2R2

can be seen as a conceptual online control-loop for network
resilience operation. Central to the strategy is the management
and reconfiguration of interacting detection and remediation
mechanisms operating in the network infrastructure.

On the one hand, detection mechanisms such as link
monitors, anomaly detection systems and traffic classifiers
permit the identification and categorisation of challenges to the
network. On the other hand, remediation mechanisms such as
rate limiters and firewalls are used in the subsequent mitigation
of these challenges. Recently, we have proposed the notion of
multi-stage resilience strategies [2], in which the configuration
of detection and remediation mechanisms deployed in the
network is dynamically refined as new information about
challenges becomes available. Policies are used to control
the operation of these mechanisms, and how they should be
reconfigured in the face of new types of challenges or changes
in their operational context.

In such resilience strategies, network components imple-
menting a range of resilience functions must be autonomous
and capable of continuously adapting their operation to, for
example, high resource utilisation, performance degradation,
or application-specific alarms. Therefore, we assume that each
resilience mechanism is capable of implementing a policy-
driven feedback control-loop, such as the one provided by the
Self-Managed Cell (SMC) [3] infrastructure.

This paper presents an integrated framework for the design
and evaluation of resilience strategies. Through an online
challenge analysis approach, it is possible to collect and
correlate network metrics and traffic information, in order
to build an up-to-date understanding of possible challenges978-1-4673-0269-2/12/$31.00 c© 2012 IEEE



affecting the network. Resilience strategies for addressing a
specific challenge are specified as policy-driven configurations
between a range of resilience mechanisms in the network
infrastructure. Such resilience strategies are likely to span mul-
tiple autonomous domains and protocol layers, and for these
reasons they need to be established systematically. To achieve
this, we define reusable patterns [4] for building policy-based
configurations that can be dynamically established between
sets of resilience mechanisms. Finally, we provide support
for the offline evaluation of these policy-driven resilience
strategies through a simulation environment. This permits
the simulation of network challenges (e.g., DDoS attacks,
flash crowds, worm propagations) and the evaluation of the
performance of a set of policy-driven resilience mechanisms.

The remainder os the paper is structured as follows: Sec-
tion II describes a process for the design and evaluation
of network resilience, and Section III presents the overall
framework that supports this process. Section IV outlines the
specification of patterns for network resilience. Section V dis-
cusses how patterns can be evaluated offline using a simulation
environment. Finally, Section VI presents the related work and
Section VII outlines the concluding remarks.

II. A NETWORK RESILIENCE PROCESS

This section defines a process for the design and evaluation
of strategies for network resilience. The basic idea is that
one must be able to (1) perform an offline evaluation of
resilience strategies to combat specific types of challenges,
then (2) generalise successful solutions into reusable patterns
of resilience mechanisms, and finally be able to (3) select and
deploy appropriate patterns to address these challenges when
they are observed during run-time.

The evaluation of large-scale challenges, such as DDoS
attacks, is difficult as resilience strategies for such challenges
often require the coordination of various monitoring and con-
trol mechanisms in different parts of the network. The use of
testbeds can involve high costs of hardware and development
effort, and are generally not suitable for the evaluation of large-
scale challenges, which tend to affect multiple autonomous
systems. As an alternative, to mitigate costs and address scal-
ing issues, we advocate the reproduction of network challenges
and resilience mechanisms in a simulation environment.

In our work, resilience strategies are expressed using poli-
cies. We have developed a policy-driven resilience simulator,
which is used to evaluate resilience strategies [5]. Strategies
that perform well in the simulation environment are promoted
to become resilience patterns. Patterns encode the overall
configuration of a set of resilience mechanisms, but will not
determine the exact instances or the precise parameterisation
of these mechanisms. Instead, these are determined at the point
of deployment, based on the current availability and capability
of the devices associated with a specific network. Patterns can
be used to rapidly reconfigure devices in the infrastructure
when challenges manifest in the live network.

The process we propose is illustrated in Fig. 1, and its three
key parts are described in the following:
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Resilience
Patterns

Network
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Fig. 1. Process for the design & evaluation of network resilience.

Challenge analysis: relies on an online monitoring in-
frastructure to gather and store information about
the current state of the network. Metrics can be
correlated to produce higher level information, and
trigger the reconfiguration of the network.

Resilience simulation: permits the simulation of different
challenge scenarios and the evaluation of policy-
based configurations of resilience mechanisms to
combat these challenges.

Resilience patterns: resilience configurations that perform
well against specific challenges in the simulation
environment are promoted to reusable patterns [4].
Patterns specify a policy-driven configuration be-
tween a set of abstract mechanisms types.

The simulation environment is valuable for the understand-
ing of the different challenge profiles and candidate mitigation
strategies. By capitalising on successful resilience configu-
rations, one can derive generalised patterns for coping with
different challenge behaviours. Patterns thus support the notion
of reusing tested solutions for well-known problems when
building strategies for network resilience.

III. POLICY-DRIVEN RESILIENCE FRAMEWORK OVERVIEW

In order to support the realisation of the process discussed
previously, we designed a resilience framework, which is
illustrated in Fig. 2. At its core is a resilience manager,
which is tasked with orchestrating network adaptation to
ensure the resilience of the network and its supported services.
Adaptation of network operation can occur in response to
either the detection of the onset of a challenge or the measured
performance of the network in relation to resilience targets,
expressed in Service Level Agreements (SLAs). These two
factors lead to a set of coarse-grain and fine-grain adaptations.

Coarse-grain adaptation involves the deployment of re-
silience patterns, which are configurations of resilience mech-
anisms, capable of combating a specific challenge. For this,
a challenge analysis module provides information about the
challenges that are affecting a network. Fine-grain adaptation
involves setting or adjusting the parameters of the mechanisms
that are currently deployed in the network as part of an
existing pattern. In this case, the resilience manager evaluates
to what extent a resilience target is being met, causing this fine-
grain adaptation. Both sets of adaptations, i.e., coarse-grain
pattern deployment and fine-grain mechanism configuration,
are expressed in terms of event-triggered condition-action
(ECA) policies, enforced by the resilience manager.
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Fig. 2. Overview of the framework for specification and evaluation of network resilience strategies.

In this section we present the overall design of the resilience
manager and the challenge analysis module. The specification
of resilience patterns and the validation of patterns using the
simulation environment will be discussed in detail in sections
IV and V, respectively.

A. Resilience Manager

The resilience manager runs a policy-driven feedback
control-loop, and its implementation is based on the Self-
Managed Cell (SMC). It relies on a set of management
services, including: a policy service, which supports both obli-
gation and authorisation policies; an event service that carries
events between other components and the policy service; and
a discovery service capable of discovering available resources,
as we assume the existence of a number of mechanisms
implementing a range of resilience functions and services
in the network. Such discovered mechanisms are catalogued
as managed objects by the resilience manager, and will be
later assigned to one or more roles in a pattern, accord-
ing to the functionality supported by each mechanism. The
resilience manager resides in a single autonomous domain,
and coordinates the transitions between the different stages of
the resilience process described in Section II, based on the
challenges observed and mechanisms available.

The resilience estimator service, shown in Fig. 3, is an
extension of the core set of management services supported
by the resilience manager. It subscribes to events generated by
the challenge analysis module, and its purpose is to determine
whether a desired resilience target, defined in an SLA, is
being met. An SLA describes the target behaviour of a set
of metrics {m0 . . . mn−1} at various levels of the protocol
stack, e.g., from average node degree to end-to-end delay. For
each metric mi there is a corresponding metric comparator
that takes measurement information collected from distributed
monitoring mechanisms and the behaviour described in the
SLA for mi, and determines whether a metric change event
should be generated.

Sterbenz et al. [1] propose a framework for multi-level
resilience metrics that can be used to determine boundaries for
acceptable, degraded and unacceptable metric performance; a
comparator can use transitions between these states to gener-
ate metric change events. Furthermore, temporal and spatial
constraints could be described, e.g., generate an event after
one minute of degraded performance for a given subnetwork.
Such events are used to trigger fine-grain ECA policies, such
as adjustments to the parameters and thresholds of resilience
mechanisms currently deployed1.
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Fig. 3. The resilience estimator.

B. Challenge Analysis

The aim of the challenge analysis component is to develop
situational awareness [6] with respect to the existence and na-
ture of challenges. It uses events published by the monitoring
infrastructure to perceive symptoms of a challenge. Monitoring
information is stored in DISco [7], which provides a common
information dispatching and persistence service. This informa-
tion is subsequently correlated to enable comprehension, i.e.,
identification, of a challenge. There are a number of techniques
for identifying a challenge, including data fusion [8]; we
propose to build on an approach by Steinder and Sethi, called
Incremental Hypothesis Updating (IHU) [9].

1In some circumstances, however, the generation of metric change events,
e.g., caused by a transition from acceptable to impaired metric state, could
also lead to coarse-grain adaptation.



IHU is a probabilistic fault localisation technique that can
be used to identify a set of faults that are the cause of
symptoms observed by various monitoring functionalities,
e.g., as a consequence of SNMP traps. Faults f and their
symptoms s are modelled as a symptom-fault map, using a
bipartite directed graph. (We generalise the use of symptom-
fault maps to describe relationships between challenges, in
addition to faults, and their symptoms.) In a challenge map,
the set of challenges to be modelled is connected to a set of
symptoms that are observed if the challenge manifests. The
IHU technique, on receipt of a newly observed symptom,
yields a set hypotheses explaining the observed symptoms
to-date. Furthermore, a measure of relative belief in the
correctness of each hypothesis is given. Challenges described
in the hypothesis with the highest belief measure will cause a
challenge event to be published into DISco, and subsequently
relayed to the resilience manager.

Based on the challenge event observed, pattern selection
is performed by the resilience manager via its coarse-grain
ECA policies. At pattern deployment, mechanism instances
providing the required functionality for each role defined in
a pattern are assigned by the resilience manager. According
to its role, each mechanism will have policies and event-
handling code transferred to it in order to enforce the pattern’s
semantics. We further discuss the specification and use of
resilience patterns in the next section.

IV. REUSABLE PATTERNS FOR RESILIENCE STRATEGIES

To assist the building of federated policy-driven mechanisms
implementing a resilience strategy, we rely on the notion of
reusable patterns [4]. In this paper, a pattern is a policy
configuration of resilience mechanisms and their relationships.
Patterns are used to address a particular type of network
challenge. Different challenge types will demand specific sets
of mechanisms to monitor features in the network (e.g., current
traffic load or alarms generated by an anomaly detection mech-
anism), and initiate remediation actions to combat anoma-
lous behaviour (e.g., blocking malicious flows or selectively
dropping packets). This assumes the existence of autonomous
mechanisms supporting a range of resilience functions in the
network, implemented as policy-enabled SMCs.

A. Pattern Specification

Patterns are abstractly specified in terms of roles, to which
management functions and policies are associated with. Roles
represent mechanism types. At instantiation, a pattern will
have mechanism instances (i.e., SMCs) assigned to its roles.
Patterns can use different, but compatible2, sets of mechanisms
available in the network, thus avoiding the need to know
during specification time the exact instances that will be used.

A pattern specification (Fig. 4) consists of:

2This assumes that the SMCs are compatible with the roles, which means
that an SMC must provide an interface that supports the events and policies
required by the role. In Fig. 4, it is expected that Rolen will be performed
by an SMC that supports the operation classifyFlows and that Role2 will be
performed by an SMC that supports the operation recordFlows, for example.

(a) the types of required mechanisms (represented by roles)
(b) how these mechanisms must interact with each other.

For example, a pattern for combating a flash crowd chal-
lenge may include roles such as VMReplicator and WebServer-
Monitor, whereas a pattern for addressing a DDoS attack may
include roles such as TrafficClassifier and RateLimiter. Note,
the same mechanism instance may be assigned to more than
one role. For example, an enhanced router [2] may perform
the generation of netflow records and also filter off determined
malicious flows.

In addition to roles, a pattern also defines their management
relationships, in terms of the policies that should be loaded
and the events that should be exchanged. These relationships
are expressed in terms of more primitive interactions (styles),
which are used as building blocks to connect the roles in the
pattern. A catalogue of styles defining common management
relationships, such as p2p, event diffusion, hierarchical man-
agement, has been presented in [4]. Each style defines its
own style-specific roles (e.g., source/target, for event diffu-
sion). The manner in which style-specific roles are connected
establishes the relationships between the roles in the pattern.

Fig. 4. Pattern specification and role assignment.

B. Pattern Deployment

We assume that mechanism instances providing a range of
management functions are initially catalogued by the resilience
manager (Fig. 2). When the onset of a challenge is identified
by the challenge analysis module, coarse-grain ECA policies
determine which pattern(s) must be deployed. Roles in the
chosen pattern prescribe the mechanism types required to
combat that challenge. To these roles, specific mechanism
instances are assigned.

Role assignment is defined in terms of a set of events (E)
that must be sent, notifications (N) that must be handled, and
operations (O) that must be supported by an SMC [4]. For-
mally, let Itfm = 〈Om, Em, Nm〉 be the management inter-
face of an SMC, let r be a role, and let Reqr = 〈Or, Er, Nr〉
be the requirements for that role, then the assignment of the
SMC which has Itfm to role r is subject to the following:

assign(Itfm, r)→ (Or ⊆ Om) ∧ (Er ⊆ Em) ∧ (Nr ⊆ Nm)



TABLE I
ROLES CONTAINED IN A PATTERN TO COMBAT HIGH-VOLUME TRAFFIC

CHALLENGES, SUCH AS A DDOS ATTACK.

AnomalyDetection Performs online analysis to identify anomalies in
network traffic, for example, anomalous changes in
the entropy distribution of ports, IP addresses, or
other statistical features

IPFlowExporter Responsible for generating IP flow records using
a specific sampling rate, which are truncated and
sent at specific time out period, e.g., 60s or 180s,
to other mechanisms to process the records

RateLimiter Selectively throttles network traffic in specific links
when anomalous activity is detected but not yet de-
termined (suspicious but not necessarily malicious)

TrafficClassifier Receives IP flow records and applies machine
learning algorithms to identify the precise nature
of the flow information, e.g., a flow is benign or
part of a TCP SYN attack

A given pattern may require roles with specific capabilities
in terms of the ability to, e.g., monitor links, capture flows
or classify traffic. Role assignment provides a way of type-
checking a mechanism instance in order to verify its suitability
for a given role. A pattern defines the overall configuration
of mechanisms, but the parameters and thresholds of these
mechanisms are defined according to fine-grain ECA policies,
which take as input the most recent metric change event
published by the resilience estimator (Fig. 3).

C. Example Scenario: High-Volume Traffic Challenge

Fig. 5 illustrates part of the textual specification3 of a
pattern to combat high-volume traffic challenges, e.g., a DDoS
attack. The pattern is parameterised with four roles, which
are described in Table I. The relationships between the roles
are defined in terms of the policies that must be loaded and
the events that must be exchanged. In lines 6-14, styles are
used to establish these relationships. In particular, we are
setting an event diffusion between IPFlowExporter and
Classifier (lines 6-8), another event diffusion between
AnomalyDetection and RateLimiter (lines 9-11), and
a hierarchical policy loading between AnomalyDetection
and RateLimiter (line 12-14).

A set of policies that can be loaded into another sys-
tem is called a mission [3]. Fig. 5 defines two mis-
sions, throttling in lines 16-19 (to be loaded into
RateLimiter) and detection in lines 21-30 (to be
loaded into AnomalyDetection). The former specifies a
simple rate limiting policy when a specific IP address is
deemed suspicious, and the latter defines what should occur
when an anomaly is detected with a certain confidence level
(%y), in particular flag the anomaly, configure Classifier
to use a specific algorithm, and generate an alarm.

A pattern is instantiated only if the available SMC in-
stances satisfy the requirements for their roles, as discussed
in Section IV-B. This ensures that the policies inside the
pattern can be executed by these SMCs. Patterns facilitate the
systematic building of policy-driven configurations, and can

3We use a succinct pseudo syntax but in the current implementation patterns
are written in PonderTalk [10] which is more verbose. We also limit the
example to the configuration of a small set of mechanisms.

1 type pattern HighVolumeTraffic (role AnomalyDetection,
2 role IPFlowExporter,
3 role RateLimiter,
4 role Classifier)
5 {
6 bind style diffusion (target Classifier,
7 source IPFlowExporter)
8 event: notify_new_record(flow);
9 bind style diffusion (target RateLimiter,

10 source AnomalyDetection)
11 event: notify_detection(IPAddress);
12 bind style hierarchical (manager AnomalyDetection,
13 managed RateLimiter)
14 mission: throttling;
15

16 mission throttling { //loaded into RateLimiter
17 on notify_detection(IPAddress)
18 do limit(IPAddress, %x);
19 }
20

21 mission detection { //loaded into AnomalyDetection
22 on notify_load(name, rate, link)
23 if ((process(link, IPAddress) > %y) &&
24 anomalyList notContain(IPAddress))
25 do {
26 anomalyList add(link, IPAddress));
27 Classifier setAlgorithm(KNearestNeighbors, %z);
28 generateAlarm notify_detection(IPAddress);
29 }
30 }
31 }

Fig. 5. The resilience pattern defines the overall configuration of mechanisms,
but the parameters and thresholds (%x, %y and %z above) are defined
according to the most up-to-date metrics published by the resilience estimator.

also be reused to cater for similar challenges that manifest at
different parts of the network, or variations of an attack.

V. RESILIENCE SIMULATION

To evaluate the performance of resilience strategies, we have
developed a policy-based resilience simulator [5]. The toolset
supports the simulation of a range of network challenges,
as well as the reproduction of the policy-driven interactions
between the mechanisms used to combat such challenges.
Resilience strategies for a particular challenge might use
different combinations of mechanisms and policies, and the
strategies that perform well in the simulation environment can
be subsequently promoted to reusable patterns.

Fig. 6. Policy-based resilience simulator implementation [5].

A. Simulation Platform

The toolset is based on an integration between the OM-
NeT++ network simulator [11] and the Ponder2 policy frame-
work [10]. It allows the use of policies to define which
mechanisms must be activated on demand according to events
observed in the simulated network (as opposed to hardcoded
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Fig. 7. Simulation results for the DDoS resilience strategy [2].

protocols). An event broker resolves event notifications in
the simulation (e.g., anomaly detections, link load) to the
policy framework. Fig. 6 presents an overview of the resilience
simulator implementation4.

Resilience mechanisms are implemented as instrumented
components that run alongside standard simulated objects. For
the challenge scenarios discussed in this section, we have im-
plemented a set of resilience mechanisms, most as extensions
of OMNeT++’s standard Router module. FlowExporter
and AnomalyDetection are positioned above the net-
work layer, and receive duplicate packets. RateLimiter
is placed in-line between the network and physical layers.
Finally, LinkMonitor was implemented by modifying an
existing channel type, and can be placed at any position of
the topology. Each instrumented object defines a management
interface specifying which operations it supports. Management
interfaces are used by Ponder2 for the invocation of operations
on the simulated objects. Communication between Ponder2
and OMNeT++ is implemented using XMLRPC5.

B. Challenge Simulation

To illustrate our approach we summarise the results of two
challenge scenarios: a DDoS attack and a worm propagation.
We use ReaSE6 to create realistic topologies and generate
background and attack traffic. In particular ReaSE can generate
DDoS attack traffic based on the Tribe Flood Network [12] and
also attack traffic that simulates Code Red Worm propagation.
Further details of the simulation set-up can be found in [2].

For the DDoS challenge scenario, we simulated a network
consisting of twenty Autonomous Systems (ASes): fourteen
stub ASes connected by six transit ASes. A Web server in one
of the stub ASes is configured as the victim to be attacked by
thirty nine DDoSZombie hosts across the network. In addi-
tion, 1105 hosts generate background traffic to a number of
other servers in the network. The resilience strategy evaluated
(shown in Fig. 8) consists of various mechanisms activated on
the ingress link from a core router to the gateway of the AS
under attack. That is, the functions of monitoring, anomaly
detection, rate limiting and so on are carried out at the edge
of the AS network, in order to protect the AS’s network.

Fig. 7 shows the observed incoming traffic rate on the
ingress link of the autonomous system under attack. At

4We have set up a website with instructions for downloading, installing and
executing the simulator: http://www.comp.lancs.ac.uk/resilience/software.

5http://xmlrpc-c.sourceforge.net/
6https://i72projekte.tm.uka.de/trac/ReaSE/wiki
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Fig. 8. DDoS resilience strategy using five types of mechanisms.

approximately 130 seconds (1), the onset of the attack can
be observed. The raising of an alarm (notify_load) by
LinkMonitor is seen at 139 seconds (2), whereby a sus-
tained traffic load in excess of the threshold defined in the poli-
cies has been reached (here, an increase in average incoming
traffic of four times the previous average). Shortly thereafter,
initial rate limiting of the ingress link by RateLimiter can
be observed. The filtering rate is likewise set by a policy. In
this case we filter 70% of all incoming traffic in order to
protect downstream servers and infrastructure. Results show
that 92% of blocked traffic during this period is malicious.

At 149 seconds (3), AnomalyDetection identifies the
destination IP address of the victim. This is achieved by
examining the destination address of each incoming packet,
and raising an event (notify_detection) when one desti-
nation accounts for 60% of all packets. RateLimiter is then
reconfigured to drop 70% of the traffic destined for the victim
only. Legitimate traffic that is not destined for the victim,
which previously was blocked, is now allowed to go through.
Results show that in this period, 95% of blocked traffic is
malicious, while the proportion of legitimate traffic that is not
blocked increases compared to the previous period.
Classifier is initiated at (3) and flow exporting

from the router is started. Hereafter, Classifier, re-
ceiving flow records from the FlowExporter, attempts
to identify the specific attack flows. At 209 seconds
(4), an event with the classification results is generated
(notify_classification), rate limiting is confined just
to the attack flow and legitimate traffic can continue. Results
show that after (4) no legitimate traffic is blocked. In this
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scenario, the strategy consists of using lightweight detection
initially, and then progressively applying more heavyweight
analysis to identify the specific challenge. In parallel, it applies
coarse-grain remediation initially, to maintain a level of normal
operation, which then moves to a more fine-grain remediation.

We evaluated a further strategy to address a worm propaga-
tion. We simulated the same AS network topology as above.
Hosts are randomly chosen to undertake Code Red worm
propagation across the network. For our simulated scenario
a maximum of 5000 probing packets are sent. In addition,
930 hosts, 71 web servers and 21 interactive servers generate
background traffic across the network. As above, the various
mechanisms are activated on the ingress link from a core router
to the gateway of an AS. The resilience strategy evaluated
(shown in Fig. 10) uses LinkMonitor and RateLimiter
from the DDoS scenario, but reconfigures them using different
policies to implement a different resilience strategy

:Link 
Monitor

:Entropy
Reporter

:Rate
Limiter

notify_load(name, rate)

notify_report(dstIP, dstPort, protocol)

limit(probingPacket)

setThreshold(t)

configure(dstIP, dstPort, srcIP, srcPort, protocol)

process(threshold)

Fig. 10. Worm resilience strategy using three types of mechanisms.

At the start of the simulation, LinkMonitor is activated
with an alarm threshold set to an increase in average incoming
traffic of twice the previous average (i.e., lower than the
threshold set in the previous scenario). EntropyReporter
is also activated to collect periodically (every ten seconds)
packet-level entropy values on five traffic features: destination
IP, destination port, source IP, source port and protocol.

Fig. 9 shows the worm propagation starting at approxi-
mately 20 seconds (1). This increases the volume of traf-
fic on the ingress link. An alarm (notify_load) is
raised by LinkMonitor at 29 seconds (2). Following this
event, EntropyReporter is interrogated for any signif-
icant changes in the five traffic features, as specified in a
threshold parameter. The most recent entropy trend for each

feature is computed, with results showing that destination
IP has become dispersed, destination port centralised, and
UDP protocol more dispersed. These results are reported
back (notify_report) at 40 seconds (3). The resilience
strategy implemented by policies recognises that these changes
in entropy signify a Code Red worm. Consequently, at (3)
RateLimiter is configured to filter all probing packets,
specified as all UDP packets with a destination port 80. These
experiments provide evidence of how specific policy-driven
strategies using different sets of resilience mechanisms can be
evaluated in the simulation environment, and show how chal-
lenges (for example, a flooding attack or a worm propagation)
can be dealt with. For different resilience strategies, we are
able to use different mechanism types and reconfigure their
operation via different policies.

VI. RELATED WORK

The framework presented in this paper builds on parts of our
previous efforts on network resilience [1], [2]. It also employs
research done independently by the authors. In particular, Self-
Managed Cells are used to provide the implementation of a
policy-driven feedback control-loop. SMCs have been used
in several application domains in the past, including in the
management of unmanned autonomous vehicles (UAVs) [13]
and healthcare applications [3]. Although the strategies for
network resilience discussed in this paper use the SMC model,
the principles could be generalised and applicable in a broader
scope using other policy-based systems.

Typically, network resilience strategies comprise mecha-
nisms for challenge detection and subsequent remediation.
Most intrusion detection systems from commercial vendors
such as Cisco [14], IBM [15] or Enterasys [16] are signature-
based. Often these systems offer automated response based
on detected signatures only, but in many cases require a
human operator to interpret anomalous behaviour. Anomaly-
based detection in real-time is resource intensive, and choices
in the sampling strategy can impact its accuracy [17]. This
may lead to high rates of false positive and false negative
detections, thus restricting the automatic launch of remedies as
they might create additional security risks. Our approach uses
policies that can be carefully crafted and evaluated offline on
a simulation environment. For a more extensive discussion on
network resilience research, we refer the reader to [18], [1].

Policy-based management has been widely used for the
configuration of network components and distributed sys-
tems [19]. However, configuring resilience mechanisms can



present difficulties, especially when one considers the inter-
action between mechanisms for detection and remediation of
challenges, and we propose the use of patterns to assist in the
design of resilience strategies. Patterns incorporate ideas from
software architectures, which typically define configurations of
components and connectors as a means of structuring software
development [20]. Patterns for the specification of policy-
driven configurations were first defined in [4]. As part of our
future work, we intend to investigate how resilience patterns
can be pre-verified for conflicts, possibly using existing solu-
tions and tools for policy analysis [21], [22].

VII. CONCLUSION

This paper has presented a framework and a process for
the design and evaluation of network resilience management.
The framework enables (1) the offline evaluation of resilience
strategies to combat several types of challenges, (2) the
generalisation of successful solutions into reusable patterns
of mechanisms, and (3) the rapid deployment of appropriate
patterns when challenges are observed at run-time.

We have developed a simulation platform to evaluate the
performance of resilience strategies. The toolset is based on an
integration between the OMNeT++ simulator and the Ponder2
framework. It supports the simulation of a range of challenge
scenarios and the resilience strategies used to combat these
challenges. The toolset enables us to identify best practices and
the most effective policy configurations for challenges such as
DDoS attacks, flash crowds and worm propagations.

Resilience strategies that perform well and can successfully
address a particular type of challenge in the simulation envi-
ronment can be ported to resilience patterns. These consist of
roles for the same mechanisms used in the simulation environ-
ment, as well as the policy and event exchanges evaluated in
the simulated strategies. Currently, the porting of a simulated
strategy into a resilience pattern is done manually. Patterns can
capture best practices and the experience of network operators
into reusable configurations of resilience mechanisms, and can
then be used to rapidly deploy a resilience strategy when
challenges are detected in the live network. Moreover, specific
mechanism instances and the threshold values to be used are
defined at the point of deployment, according to up-to-date
metrics. Therefore, resilience patterns are reusable and can
cater for similar challenges that are manifest at different parts
of the network, or for variations of a specific form of attack.
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