Logic Synthesis for Programmable Gate Arrays

Rajeev Murgai, Yoshihito Nishizaki, Narendra Shenoy, Robert K. Brayton and Alberto Sangiovanni-Vincentelli

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA-94720

Abstract

The problem of combinational logic synthesis is addressed for two interesting and popular classes of programmable gate array architectures: table-look-up and multiplexor-based. The constraints imposed on these architectures require new algorithms for minimization of the number of basic blocks of the target architecture, taking into account the wiring resources.

1 Introduction

Programmable devices (PD's) are devices that can be programmed by the user to implement a logic function. Because of short turnaround time, they are becoming increasingly important for rapid system prototyping. In addition, they have a low cost of manufacturing and are fully testable. For short turnaround time, it is necessary to have automatic tools that take a "high-level description" (like equations or a VHDL description) of a circuit and synthesize onto these architectures. PD's can be classified into two broad categories:

1. Programmable Logic Devices (PLD's) that are PLA-like. Typically these are interconnections of PLAs. Commonly used architectures are the ones manufactured by A.M.D. and Altera.

2. Programmable Gate Arrays (PGA's) that are gate-array-like. They are typically used to implement multi-level logic functions. Examples of such architectures are the Xilinx and Actel architectures.

Excellent tools (e.g. Espresso [9]) are available for optimizing the mapping of a high level description of the logic onto PLD's, since the differences vis-a-vis the standard PLA-minimization problem are small. However, very few tools are available for PGA's, since differences in basic building blocks as well as in the amount of wiring resources make the synthesis problem substantially more difficult than in the standard gate-array case.

The basic PGA architectures share a common feature: they consist of repeated arrays of identical logic blocks. A logic block (also called a Basic block) is a versatile configuration of logic elements which can be programmed by the user. The interconnections to realize the circuit have to be programmed using scarce wiring resources. There are two main categories of block structures, namely Table-Look-Up (TLU) and Multiplexor-Based (MB); the architectures resulting from them are called the TLU architectures and the MB architectures respectively. A basic block of a TLU implements any function with \(m \) inputs, \((m \geq 2) \). For a given TLU architecture, \(m \) is a fixed number. In MB architectures, the basic block is a configuration of multiplexors.

Existing multi-level logic synthesis tools like misf [7] break the synthesis task into two separate phases: technology-independent optimization and technology mapping. This strategy is based on the possibility of measuring the cost of an implementation at a higher level of abstraction. However, this strategy is not well suited for PGA architectures since the constraints posed by such architectures are not easily captured at an abstract level. For PGA's, the two steps should be merged together as much as possible to provide a better overall optimization algorithm driven by the target technology/structure.

The paper is organized as follows: Section 2 describes the two classes PGA architectures, and states the problem to be solved for PGA's. New approaches for these two classes are presented in Sections 3 and 4. Results on a set of benchmark examples are presented in Section 5.

2 PGA Architectures

2.1 TLU Architectures

The basic unit of logic in these architectures is called a configurable logic block (CLB). It can realize any logic function of up to \(m \) inputs. A typical example is the Xilinx architecture [1], in which \(m = 5 \). The interconnections between the logic blocks consist of metal segments joined by program-controlled pass transistors. The logic functions and the interconnections are determined by the configuration program data stored in the internal static memory cells. The main constraints from the synthesis point of view are:

1. A limited number of CLB's on a chip (e.g. the Xilinx chip typically has 64, 100 or 320 CLB's).

2. Maximum number of inputs a CLB can have.

3. Limited wiring resources.

2.2 MB Architectures

In this architecture, the basic block of logic has a multiplexor structure. An example of an MB architecture is the Actel architecture [2], in which the basic block has three 2-to-1 multiplexors and an OR gate as shown by the block STRUCT in Figure 3. The rows of logic blocks are separated by a routing channel consisting of routing tracks and a clock distribution network.

2.3 Problem Statement

Given a circuit description in terms of a set of Boolean equations, we are interested in its final realization using the basic blocks of the target PGA architecture. The objective could be to minimize the number of blocks used, the delay on the critical path or a combination thereof. In this paper, we address the problem of minimizing the number of blocks used and of reducing the routing complexity. The algorithms discussed below are implemented in the framework provided by misf. All the basic terminology used in this paper can be found in previous work ([7], [9], [4]).

3 An Approach for TLU Architectures

Misf uses the number of literals in the factored form of a node in the Boolean network as an estimate of the area or the gate count. This is a poor estimate in the minimization of the number of CLB's. For example, let \(m = 5 \), \(f_1 = abcd + e \) and \(f_2 = abc + bd' + a'b' + e'd' \). Functions \(f_1 \) and \(f_2 \) have 6 and 10 literals respectively. Function \(f_1 \) requires two CLB's in its optimum implementation, whereas \(f_2 \) needs just one (since \(f_2 \) is a function of five variables). Thus the objective function has to do more with the number of inputs than with the actual logic that the function realizes. Before we describe

* now with Kawasaki Steel Corporation, Tokyo, Japan.

Paper 37.4

© 1990 IEEE 0738-100X/90/0006/0620 $1.00
in detail various parts of the algorithm, we need the following definitions.

Definition 4.1: An expression is cube-free if no cube divides the expression evenly, e.g., $ab + ac$ is cube-free; $ab + ac + c$ is not. The primary divisors of an expression f are the set of expressions $D(f) = \{ g \mid g \subseteq D(f) \text{ and } g \text{ is cube-free} \}$. The kernels of an expression f are the set of expressions $K(f) = \{ g \mid g \in D(f) \text{ and } g \text{ is cube-free} \}$. The residue associated with a kernel $k \subseteq f$ of a function f is the expression for f with the new variable substituted for all occurrences of $k \subseteq f$.

Definition 4.2: The support of a function f, denoted as $sup(f)$, is the set of variables f explicitly depends on. $|sup(f)|$ represents the cardinality of $sup(f)$.

Definition 4.3: A function f is a feasible function if $|sup(f)| \leq m$.

Informally, a feasible function can be realized by one CLB.

Definition 4.4: A Boolean network η is feasible if every intermediate node of η realizes a feasible function.

The number of intermediate nodes in a feasible network gives an upper bound on the number of CLB’s needed for the network. An outline of the algorithm developed for TLU architectures is as follows:

```
synthesis_for_TLU(\eta, m): \text{ } m = \max \text{ inputs to CLB.} * /
{ misfit standard script * minimize logic */
  $\eta' = \text{obtain a feasible network } \eta, m$;
  $\eta'' = \text{minimize number of nodes}(\eta', m)$;
}
```

To obtain a feasible network η' from the given network η, two routines $\text{roth-karp.decompose}$ and partition have been developed. One of these two may be used to obtain η''. To reduce the number of nodes in η'', cover and merge routines are used.

3.1 Roth-Karp Decomposition

In the decomposition process we are interested in decomposing non-feasible nodes into feasible nodes. The network obtained after decomposition is a feasible network. A number of decomposition methods have been given (e.g., [5], [6]). We chose the Roth-Karp decomposition method [5] over others, because other methods need the construction of decomposition charts [6] whose size is always exponential in the number of inputs. In the Roth-Karp scheme, a cover representation of the on-set and the off-set of a function is used, which is more compact than decomposition charts.

Roth and Karp give necessary and sufficient conditions for a decomposition to exist. We have implemented their algorithm, but we do not search for the best possible decomposition in the present implementation, since this is computationally very expensive. Instead, we accept the first bound-set [5] that is found and do the decomposition.

3.2 Partition

Partition, like Roth-Karp decomposition, ensures that the function f_i associated with a node i is a feasible function. The difference is that partition relies on kernel extraction to do the decomposition. It operates in two phases. In the first phase, it examines nodes that do not have a feasible function associated with them. Kernels for the logic expression at a node (with logic function f) are enumerated. For every kernel k_i and residue r_i that are feasible functions, it associates a cost

$$\text{cost}(k_i) = |sup(k_i) \bigcap sup(r_i)|$$

(1)

and chooses the kernel with the least cost. Else it recursively computes the cost for kernels or residues that are not feasible functions. If kernels cannot be extracted, an AND-OR decomposition is done at the node. The cost can be interpreted as a measure of routing complexity as follows: if we were to replace a node in the network by one of its kernels k_i and the corresponding residue r_i, the number of new edges created in the network will be equal to

The first four numbers in every term of the summation represent the number of routing nets that would be created on collapsing. The remaining terms reflect the advantage of keeping the fanout of node i as the output of a CLB. The cheapest node is selected, collapsed into its fanouts, and costs are updated. This process is repeated until no further nodes can be collapsed. The simplify operation is used to minimize the logic at each node. This may reduce the number of fanins of some node and permit us to collapse more logic into it.

It should be noted that whereas $\text{roth-karp.decompose}$ just decomposes nodes, partition, besides doing a decomposition, also tries to reduce the number of nodes in the feasible network and the wiring resources in the final implementation.

3.3 Covering

At this point, we have a feasible Boolean network. It may be possible to decrease the number of nodes by appropriate collapsing. The problem, then, is: **given a feasible Boolean network, collapse nodes so that the resulting network is feasible and the number of nodes is minimum**. We call this the covering problem. Unlike the second phase of partition, it uses a global view of the network to determine nodes to be collapsed. However, it is very time consuming.

Define a supernode corresponding to a node i of a Boolean network to be a cluster that contains i, and some nodes in the transitive fanin of i. A cluster cannot contain any primary inputs. Every node in the cluster has a path to node i which lies completely in the cluster. Note that the boundary of any cluster forms a separating set between node i and the primary inputs. The constraint associated with a supernode is that it should have a maximum of m inputs, the motivation being that all the nodes in a supernode can be implemented by one CLB and hence collapsed. There may be several supernodes for a node.

Covering consists of two stages. In the first stage, all supernodes corresponding to each node of the network are generated by repeatedly applying the maxflow algorithm (Figure 1). Each invocation of the maxflow algorithm generates a separating set. If the cardinality of this set is less than or equal to m, this indicates that a new supernode has been found. In the second stage, we choose a subset T of supernodes from the candidates obtained in the first stage such that T covers the entire network. The aim is to minimize the cardinality of the set T, since each supernode in T corresponds to a CLB. This problem is formulated as a binar covering problem. Our formulation of the binar covering problem is similar to
the one described in [10]. There are two kinds of constraints concerning the choice of candidate supernodes. The first is that every intermediate node in the Boolean network should be included in at least one supernode. The second is that if a supernode is chosen, then for each input to the supernode, some supernode whose output supplies the input must also be chosen. (In ordinary covering problem (unate covering problem), the second set of constraints is a minimization of supernodes which satisfy these constraints. Note that the cost of each supernode is one, since it can be implemented by one CLB. An exact algorithm [12] as well as heuristic ones have been developed and/or implemented [11].

3.4 Merging

Special features of an architecture may be exploited at this point to improve the results. For example, in the Xilinx architecture, a CLB has the following properties:

- It can implement a feasible function \(m = 5 \).

- It can implement two feasible functions \(f \) and \(g \) provided: \(a \) each of them has at most four inputs, \(b \) the number of their common inputs is at most three, and \(c \) the total number of inputs is at most five. If \(f \) and \(g \) satisfy these three conditions, they are said to be mergeable. See Figure 2 for an example.

Given a feasible Boolean network \(\eta \), we want to find a largest set of disjoint pairs of mergeable functions. Consider a graph \(G \), in which each vertex \(v \) represents a feasible function \(f \) at a node \(n \) of the Boolean network \(\eta \). There is an edge between vertices \(v_i \) and \(v_j \) of \(G \) if and only if the feasible functions \(f_i \) and \(f_j \) (at nodes \(n_i \) and \(n_j \) of \(\eta \) respectively) are mergeable. Then the problem of merging is equivalent to the problem of finding a maximum cardinality matching in \(G \). This can be solved using standard optimization techniques.

4 An Approach for MB Architectures

MB architectures can be of many different forms. For our experiences we chose the Actel architecture as our primary target. In this architecture, the basic block, STRUCT, is a configuration of three 2-to-1 multiplexors, with an OR gate providing the select input to the output multiplexor. For the sake of simplicity, we explain our basic algorithm on a simplified, more uniform structure: STRUCT1 where the OR gate is ignored (Figure 3). However, the algorithm takes into account the OR gate when producing the final results.

In conventional technology mapping [13], each gate is chosen from a library and has a cost associated with it. The optimized network is decomposed into a subject graph in terms of the base functions. Typically the basic functions are NAND gates and inverters. The logic function of every gate is similarly represented as pattern graphs, which are also in terms of the base functions. The subject graph is then covered by a set of pattern graphs such that the cost of this set is minimized. One can use this approach to solve the MB problem, by deriving a library of gates from the basic block. The cost, then, is the number of STRUCT blocks needed to realize the function.

The basic idea of our approach is to select an appropriate base function, a library of cells and a set of pattern-graphs. Given the MB architecture, we choose 2-to-1 multiplexor as the base function.

The library consists of all the functions that can be realized by one basic block. Then, the complete set of pattern-graphs may be very large. However, if we have a good subject-graph, a very small subset of pattern-graphs generated from the cells in the library may suffice (Section 4.1).

Binary Decision Diagrams (BDD's) and Reduced Ordered Binary Decision Diagrams (ROBDD's) [4] are well known representations of Boolean functions in terms of multiplexors, and as such are used to build the subject graphs and the pattern-graphs. First, we define a few terms. A function \(f \) can be represented by a matrix whose rows are the cubes of \(f \). This is called a cover of the function \(f \). A unate cover is a cover in which every variable appears in only one phase. A binary cover is one in which at least one variable occurs in both phases. Such a variable is called a binate variable. A cover is said to be a tautology if it covers the entire Boolean space. The cofactor of a function \(f \) with respect to a literal \(l \) is the function when \(l \) evaluates to 1. Let the function \(f \) be a function of variables \(x_1, x_2, \ldots, x_n \). Then Binary Decision Diagram of \(f \) takes the form of a rooted directed graph with vertex set \(V \) containing two types of vertices. A non-terminal vertex \(v \) has as attributes an argument index \(\text{index}(v) \in \{1, 2, \ldots, n\} \), and two children, \(\text{low}(v) \) and \(\text{high}(v) \in V \). A terminal vertex \(v \) has a value, \(\text{value}(v) \in \{0, 1\} \). A BDD is said to be reduced if the indizes of the vertices in all root-to-terminal vertex paths follow a fixed order. A BDD is said to be ordered if there is no vertex \(v \) with \(\text{low}(v) = \text{high}(v) \), and there are no two distinct vertices \(v \) and \(w \) such that the sub-graphs rooted at \(v \) and \(w \) are isomorphic. A reduced ordered BDD is called an ROBDD. We say that a vertex of the subject-graph (pattern-graph) is a leaf if it is either a terminal vertex or a non-terminal vertex whose corresponding function evaluates to an input. A vertex that is not a leaf is a non-leaf vertex. The non-leaf portion of the graph is the graph with its leaves deleted. Also, a leaf-DAG is a directed acyclic graph (DAG) whose non-leaf vertices have single parents.

4.1 Pattern-graphs

We construct four pattern-graphs for STRUCT1 as shown in Figure 4. If a function is realizable by one STRUCT1 block, it either uses all the multiplexors, or two, or just one. These pattern-graphs are in one-to-one correspondence with these possibilities. So we need a very small set of patterns to capture all possible functions realizable by one STRUCT1 block. Note that all pattern-graphs are leaf-DAG’s and only pattern-graph 1 uses all the multiplexors. The introduction of the OR gate at the select input of MUX3 increases the number of functions realized by the block considerably. From an algorithmic point of view, it introduces some difficulties: the number of pattern-graphs increases, equivalence between the multiplexor usage and the pattern-graphs is destroyed, and some of the pattern-graphs may not be leaf-DAG’s. The algorithm is modified so as to explore for a possible occurrence of the OR structure. For this, the pattern set has to be expanded. Presently we have a set of 6 pattern-graphs for STRUCT.

The following propositions state two cases when optimum subject-graphs can be constructed for STRUCT and give a method to generate the subject graphs (proofs are omitted):

Proposition 4.1: If a function \(f = f_1, f_2, \ldots, f_k, g_1, g_2, \ldots, g_l \) is a single cube with input variables \(f_1, f_2, \ldots, f_k \) occurring in the
positive phase and \(g_1, g_2, g_3, \ldots, g_l \) in the negative phase, then the ROBDD corresponding to the ordering \(f_1, f_2, g_1, g_2, f_3, g_3, g_4, f_4, g_4, g_5, \ldots \) of input variables results in the minimum number of STRUCT blocks after covering.

Proposition 4.2: If a function \(f = f(f_1, f_2, \ldots, f_k, g_1, g_2, \ldots, g_l) \) consists of only single literal cubes with input variables \(f_1, f_2, \ldots, f_k \) occurring in the positive phase and \(g_1, g_2, \ldots, g_l \) in the negative phase, then the ROBDD corresponding to the ordering \(f_1, g_1, f_2, g_2, f_3, g_3, f_4, g_4, f_5, \ldots \) of input variables results in the minimum number of STRUCT blocks after covering.

When inputs of a phase finish, the remaining inputs are concatenated to complete the ordering. Also, both the orderings are listed such that they start from the terminal vertices and end at the root of the ROBDD.

4.2 Construction of Subject-graphs

Experiments showed us that the construction of a subject-graph for the entire network (global subject-graph [14]) leads to poorer results than the construction of subject-graphs for each node in the network (local subject-graph) [11]. This is because of the following reasons:

- The global subject-graph requires all vertices to be indexed by primary inputs. This may be too restrictive; it may be possible to obtain a better representation if intermediate functions could be the indices of the vertices. The local subject-graph allows that, since fanins to a node could be the intermediate nodes.

- The ordering heuristic used to construct global subject-graphs does not generate a good enough subject-graph for covering by the small pattern-set. The basic assumption behind having a small set of pattern-graphs is that the subject-graph is close to optimum. If it is not, then the pattern-set may have to be expanded.

So, we construct subject-graphs for each node of the network separately. We now describe the two representations for the subject-graph and the heuristics used to build them.

1) ROBDD: We choose ROBDD as a representation for the subject-graph because it is compact and has no duplication of logic. The basic method is to construct an ROBDD for the function at a node (the inputs of the function being the fanins of the node) and then cover it with the pattern-graphs. The size of the ROBDD of a function is sensitive to the ordering of the input variables. No polynomial-time algorithm is known for finding the ordering that results in the smallest ROBDD. However, if the function has a small number of inputs, an optimum ordering can be determined quickly by trying all possible input permutations. This leads to the first heuristic for constructing the subject graph.

Heuristic 1: Transform the given network \(\eta \) into a network \(\eta' \) in which every node has at most \(N \) fanins. For each node, construct the ROBDD's corresponding to all the input orderings, evaluate their cost using covering algorithm, and pick the one which yields minimum cost. Since the problem of obtaining the network \(\eta' \) from \(\eta \) is similar to the problem for TLU architectures, the routines partition, roth-karp decompose and cover are used with \(m = N \). Values of \(N \) from 3 to 6 give good results [11].

A shortcoming of this representation is that the input ordering constraint imposed by the ROBDD may be too severe and may yield a poor result in terms of the basic blocks. Also, there may be a lot of vertices with multiple parents. Since the covering procedure is tree-based, it breaks the subject-graph at vertices with multiple parents (Section 4.3). If there are a lot of vertices with multiple parents, the subject-graph is partitioned into too many sub-trees. This may not give a good result. This leads us to consider another representation which does not have these two restrictions.

2) BDD: We now give a heuristic which constructs a BDD (without any ordering restrictions) such that

- the number of vertices in the BDD is small, and
- the number of vertices with multiple parents is small.

Heuristic 2: For every node in the network, we construct a BDD trying to minimize the number of vertices. The logic cover of the node is cofactored with respect to its input variables until we reach a unate cover (also called a unate leaf). Cofactoring with respect to variable \(x_j \) corresponds to creating a vertex (with index \(j \)) in the BDD. The selection of the cofactoring-variable at each stage is done as follows. If there are \(k \) variables that appear in all the cubes in the same phase, they are selected first (in any order). Next, at each step the most bistable variable is chosen. Ties are broken by selecting those variables first that occur in both phases nearly the same number of times. Selecting variables this way tries to minimize the number of vertices in the BDD.

At the unate leaf, we construct a \(0-1 \) matrix \(B = (b_{ij}) \) for the unate cover \(UC \), where

\[
 b_{ij} = \begin{cases}
 1 & \text{if } i^{th} \text{ cube of } UC \text{ contains variable } x_j, \\
 0 & \text{otherwise}.
\end{cases}
\]

A minimal column cover \(CC \) for \(B \) is then obtained [9]. It contains some variables occurring in the unate leaf. For each variable \(x_j \) in \(CC \), a sub-cover \(SC_j \) is constructed using cubes of \(UC \) that depend on \(x_j \). Each cube is put in exactly one such sub-cover (ties are broken arbitrarily). From the sub-cover \(SC_j \), \(x_j \) is extracted out to yield modified sub-cover \(MSC_j \). In \(MSC_j \), \(x_j \) is a don't care. This corresponds to creating a vertex with index \(j \) in the BDD corresponding to \(SC_j \). The column covers for \(MSC_j \) are recursively obtained. The recursion stops when either a tautology is reached or a single cube is left in \(MSC_j \). A tautology corresponds to the terminal 1 vertex of the BDD. The BDD for a single cube is constructed using the ordering determined from Proposition 4.1 (Section 4.1). Hence we have the BDD of \(MSC_j \) after this operation. The BDD of \(SC_j \) is obtained by ANDing the BDD's of \(MSC_j \) and \(x_j \), with \(x_j \) higher in the order. The BDD of \(UC \) is then obtained by ORing repeatedly pairs of BDD's corresponding to sub-covers \(SC_j \). Constructing minimal column cover helps in reducing the number of vertices with multiple parents in the BDD. We make the following observation:

Observation 4.1: If \(q \) is the number of cubes in the BDD of a unate cover \(UC \), and \(p \) is the number of non-terminal vertices in the BDD with multiple parents, then \(p \leq (q - 1) \).

In the BDD of the function \(f \), there are no non-terminal vertices with multiple parents until unate leaves are reached. By choosing the most bistable variable at each stage, the depth of the BDD and the number of unate leaves is kept small. If there are few cubes in each unate leaf, the number of vertices with multiple parents in the BDD for \(f \) will be small.

A drawback of this heuristic is that there may be duplication in different branches of the BDD. It may not be possible to predict which one of ROBDD or BDD will result in a lower cost. So, we may wish to construct both types of subject-graphs for a node and select the one with the lower cost. This leads to Heuristic 3.

Heuristic 3: Construct both subject-graphs for the node - ROBDD and BDD; cover them using the covering algorithm and select the one with the lower cost.
4.3 Covering algorithm

We use the tree-covering heuristic proposed in [13]. However, the subject graph and the pattern graphs are in terms of 2-to-1 multiplexors. We now justify the use of the set of pattern graphs by stating the following theorem (proof is omitted):

Theorem 4.1: For a function \(f \) realizable by one STRUCT1 module, a subgraph \(S \) whose non-leaf portion is isomorphic to the non-leaf portion of one of the four pattern graphs of Figure 4, say \(p \). The covering algorithm will map \(S \) onto \(p \).

Since the pattern-set is small, the covering algorithm is fast.

4.4 Iterative improvement

By performing some local transformations on the network, it may be possible to improve the result. The basic idea is to apply these transformations in sequence - if a transformation yields a lower cost, it is accepted. If the subject-graph construction is fast, we can afford to recompute the cost. The outline of the **iterative improvement** algorithm follows:

```plaintext
iterative.improvement()
{
  repeat {
    partial.collapse(network);
    decompose.nested.network();
  } until satisfied or no further improvement;
  quick.phase(network);
}
```

4.4.1 Partial collapse

Partial collapse collapses a node into each of its fanouts. The aim is to select nodes for simultaneous partial collapse such that the gain is maximized. If by partial collapsing a node \(n \), the cost of the network decreases, the node is a candidate for being selected for final partial collapse.

A cluster \(C \) corresponding to \(n \) is formed. It contains \(n \) and all its fanouts. This cluster represents the subnetwork affected by the partial collapse operation on \(n \). The process is repeated for all the nodes. We impose the condition that only disjoint clusters be simultaneously collapsed. This condition guarantees that the cost computed for a node \(n \) of a cluster at the time of forming that cluster remains valid after all the selected nodes are collapsed into their fanouts. We formulate the problem as a 0-1 integer program. Let \(\text{cost}(n) \) be the cost of node \(n \) and \(C \) be the cluster that corresponds to node \(n \). The cost for cluster \(C \), \(\text{cost}(C) \), is the sum of the costs of the nodes in the cluster before \(n \) is partially collapsed. After \(n \) is collapsed into its fanout nodes, let the sum of the new costs of the fanouts be \(\text{newcost}(C) \). Define

\[
\text{gain}(C) = \text{cost}(C) - \text{newcost}(C). \tag{4}
\]

If \(\text{gain}(C) > 0 \), then node \(n \) is a candidate for selection. We compute the gain for every cluster, and retain only those clusters which have a positive gain. Let us call these clusters **good clusters**.

Let \(x_i \) be the 0-1 variable corresponding to the good cluster \(C_i \). Let \(M = (m_{ij}) \) be the node-cluster incidence matrix, where

\[
x_i = \begin{cases}
1 & \text{if } C_i \text{ is selected for partial.collapse,} \\
0 & \text{otherwise.}
\end{cases} \tag{5}
\]

\[
m_{ij} = \begin{cases}
1 & \text{if node } n_i \text{ belongs to good cluster } C_j, \\
0 & \text{otherwise.}
\end{cases} \tag{6}
\]

The problem, then, can be formulated as

\[
\begin{align*}
\text{maximize} & \quad \sum_i \text{Gain}(C_i) \times x_i \\
\text{s.t.} & \quad \sum_i m_{ij} x_i \leq 1 \quad \forall i \\
& \quad \sum_j x_j = 1
\end{align*} \tag{7}
\]

\[\text{This subgraph } S \text{ is an ROBDD and can be found by constructing ROBDD's for all possible input orderings for } f. \text{ Note that } f \text{ is a function of at most } 7 \text{ inputs.}\]

4.4.2 Decompose nodes

Decomposition is an inverse operation of **partial collapse**. It breaks down a large node into smaller nodes. If the sum of the nodes of \(n \) is less than the cost of the original node, the node is decomposed. Since decomposing a node has no affect on other nodes, this operation is independent of other nodes in the network.

4.4.3 Quick phase

This operation decides if it would be beneficial to implement a node in its complemented form. Since this operation affects the fanout nodes, the cost computation is done as in **partial collapse**. In this greedy heuristic, a node is picked; if it is beneficial to implement it in the complemented form, the same is done and the fanout nodes are appropriately modified. The process is repeated till a single pass is performed over all the nodes.

5 Results

The algorithms discussed above have been implemented in C and incorporated in misf [7] to form a system called **mis-pga**. It can be run in interactive or batch mode. In batch mode, a "script" is used to control the optimization. The input to our program is the result of a misf1 optimization with the standard script. All the examples were run on VAX 8800.

5.1 TLU Architectures

We set \(m = 5 \) for this set of results. Since there are no published results for TLU architectures, we compare our results with some results obtained from industry [8] in Table 1. However, we also present our results on some MCNC and ISCAS benchmarks. We use the following order of commands for the experiments: **partition**, **simplify**, **cover**, **merge**. For each example, the table shows the number of nodes in the initial Boolean network (column \(n_l \)), the number of CLB's after synthesis by mis-pga, the run time in seconds (in parentheses) and the corresponding industrial results (column \(\text{ind. result} \)).

It was experimentally observed that **cover** is effective but expensive. For small examples, exact algorithm can be used, but for large ones, heuristic methods should be used. The **merge** reduces the CLB count by 5-15%. This increases the CLB utilization on the chip.

5.2 MB Architectures

We compare the performance of **mis-pga** (using our direct approach), with misf (using the Actel Actel benchmarks in Table 2. Each entry in the columns shows the block count and the run time in seconds (in parentheses). The **mis-pga** results are shown in the columns \(h^l \).
Table 2: Results: MB architecture

<table>
<thead>
<tr>
<th>name</th>
<th>m</th>
<th>h1</th>
<th>h</th>
<th>h-pga</th>
<th>h3</th>
<th>h4</th>
</tr>
</thead>
<tbody>
<tr>
<td>dukc2</td>
<td>175 (55)</td>
<td>198 (3.9)</td>
<td>187 (269.6)</td>
<td>138 (3.0)</td>
<td>57 (9.0)</td>
<td>47 (69.0)</td>
</tr>
<tr>
<td>s1lm</td>
<td>52 (21)</td>
<td>56 (1.7)</td>
<td>51 (117.5)</td>
<td>60 (3.0)</td>
<td>50 (5.3)</td>
<td>47 (69.0)</td>
</tr>
<tr>
<td>C1908</td>
<td>189 (104)</td>
<td>197 (7.8)</td>
<td>182 (803.9)</td>
<td>271 (2.1)</td>
<td>187 (59.8)</td>
<td>204 (56.7)</td>
</tr>
<tr>
<td>bw</td>
<td>80 (46)</td>
<td>80 (3.5)</td>
<td>71 (67.1)</td>
<td>75 (5.4)</td>
<td>68 (7.1)</td>
<td>61 (478.0)</td>
</tr>
<tr>
<td>c1p</td>
<td>57 (19)</td>
<td>62 (1.9)</td>
<td>51 (182.1)</td>
<td>64 (0.4)</td>
<td>58 (9.8)</td>
<td>60 (7.8)</td>
</tr>
<tr>
<td>vg2</td>
<td>45 (12.9)</td>
<td>46 (0.9)</td>
<td>41 (69.9)</td>
<td>37 (0.2)</td>
<td>37 (1.1)</td>
<td>37 (2.4)</td>
</tr>
<tr>
<td>p3</td>
<td>62 (36.3)</td>
<td>72 (1.8)</td>
<td>64 (211.8)</td>
<td>188 (1.2)</td>
<td>71 (11.2)</td>
<td>188 (34.4)</td>
</tr>
<tr>
<td>5x1p</td>
<td>52 (19)</td>
<td>53 (1.5)</td>
<td>51 (103.6)</td>
<td>62 (0.4)</td>
<td>47 (5.6)</td>
<td>61 (39.1)</td>
</tr>
<tr>
<td>C499</td>
<td>174 (81)</td>
<td>173 (10.0)</td>
<td>171 (751.6)</td>
<td>166 (1.3)</td>
<td>166 (33.2)</td>
<td>166 (61.1)</td>
</tr>
<tr>
<td>CS</td>
<td>732 (351)</td>
<td>812 (29.7)</td>
<td>776 (5795.4)</td>
<td>737 (4.0)</td>
<td>665 (993.9)</td>
<td>674 (1577.9)</td>
</tr>
<tr>
<td>tot</td>
<td>310 (108)</td>
<td>-</td>
<td>-</td>
<td>383 (2.8)</td>
<td>300 (236.9)</td>
<td>334 (455.3)</td>
</tr>
</tbody>
</table>

References

6 Conclusions

We have proposed new techniques for minimization of combinational circuits for two generic PGA architectures that make optimization and technology-mapping tightly-coupled. These algorithms are general; they can be used for a TLU architecture having CLB's with m inputs (m ≥ 2) and can be easily extended for any MB architecture. In future, we will address optimization and synthesis for sequential circuits.

7 Acknowledgement

The authors wish to thank E. Detjens, A. Wang, S. Malik, L. Lavagno and K.J. Singh for their assistance in this project. We also thank AT&T Bell Labs., Actel Corporation and Xilinx for their help. The financial support provided by NSF under contract number EEC-84-17924 and DARPA under contract number 44-26555 is gratefully acknowledged.