
i

From Rigorous Requirements and User Interfaces

Specifications into Software Business Applications: The

ASL Approach

Ivo Miguel Torrado Gamito

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Alberto Manuel Rodrigues da Silva

Examination Committee

Chairperson: Prof. Daniel Jorge Viegas Gonçalves

Supervisor: Prof. Alberto Manuel Rodrigues da Silva

Member of the Committee: Dr. João Paulo Pedro Mendes de Sousa Saraiva

January 2021

ii

iii

Abstract

Software applications have been developed with multiple programming languages together with

specific software libraries and frameworks and deployed on various software and hardware

infrastructures. We introduce and discuss the ASL language (short for “Application Specification

Language”) that combines constructs from two previous languages: ITLingo RSL and OMG IFML. ASL

specifications are strict and rigorous sentences that allow to define both requirements and user

interfaces aspects of software applications in a consistent and integrated way. Alike RSL, and

differently from IFML, ASL is a controlled natural language with a textual concrete syntax.

This research proposes an approach, called “ASL approach” that produces source code artifacts for a

popular Python Web framework, Django. The approach consists of several tasks including the

generation of UI textual specifications (model-to-model transformation) and crucial components for

Django (model-to-code transformation). We apply and evaluate these methods through two case

studies: MyTinyBlog, a typical blog application and RiverCure Portal, a web platform that improves

water resources management and protection.

Keywords: Requirements Engineering, Model-driven engineering, Web engineering, ITLingo RSL,

OMG IFML, ITLingo ASL, RiverCure Portal.

iv

v

Resumo

As aplicações de software têm sido desenvolvidas com várias linguagens de programação juntamente

com bibliotecas e frameworks específicas e instaladas em diferentes infraestruturas de software e

hardware. Nesta dissertação, apresentamos e discutimos a linguagem ASL (abreviação de

“Application Specification Language”) que combina duas linguagens anteriores: ITLingo RSL e OMG

IFML. As especificações ASL são frases estritas e rigorosas que permitem definir os requisitos e os

aspetos das interfaces do utilizador das aplicações de software de forma consistente e integrada. Tal

como o RSL, e contrariamente ao IFML, o ASL é uma linguagem natural controlada com uma sintaxe

textual concreta.

Esta investigação propõe uma abordagem, a “ASL approach”, que produz artefactos de código-fonte

para uma popular framework de Python, Django. A abordagem consiste em várias tarefas, incluindo a

geração de especificações textuais de interfaces de utilizador (transformação de modelo para

modelo) e componentes cruciais para o Django (transformação de modelo para código). Aplicamos e

avaliamos esses métodos através de dois casos de estudo: o MyTinyBlog, uma aplicação típica de

blog e o RiverCure Portal, uma plataforma web que visa melhorar a gestão e proteção dos recursos

hídricos.

Palavras-chave: Engenharia de Requisitos, Model-driven engineering, Web engineering, ITLingo RSL,

OMG IFML, ITLingo ASL, RiverCure Portal.

vi

vii

Acknowledgments

First, I would like to express my sincere gratitude to Professor Alberto Silva for his guidance. I would

not have made it through my master’s degree without his support.

Next, I want to thank the entire team in the RiverCure Project. Everyone contributed with their

knowledge to make this project successful and I wish them the best of luck for this and all their other

projects. Special thanks to Jorge Marques, whom I developed the RiverCure Portal with.

Many thanks to my parents, siblings and friends who supported me throughout my studies.

I also acknowledge Fundação para a Ciência e Tecnologia (FCT) for supporting the work reported in

this dissertation.

viii

ix

Table of Contents

Abstract ... iii

Resumo... v

Acknowledgments ... vii

Table of Contents ... ix

List of figures .. xi

List of Tables ... xiii

List of Acronyms ... xv

1. Introduction .. 18

1.1. Context .. 18

1.2. Goals ... 19

1.3. Research methodology .. 19

1.4. Dissertation structure ... 20

2. Background .. 22

2.1. Model-driven approaches .. 22

2.1.1. ITLingo RSL .. 24

2.1.2. IFML .. 25

2.2. Technologies .. 26

2.2.1. Xtext and Xtend .. 26

2.2.2. Django... 26

2.2.3. Django REST Framework ... 27

2.2.4. Django projects architecture ... 27

2.2.5. Django Admin ... 28

3. Related Work .. 31

3.1. Industry Related Work ... 31

3.2. Research Related Work .. 32

4. ASL Language .. 35

4.1. ASL Architecture .. 36

4.2. Data Entities .. 37

4.3. Use Cases ... 39

4.4. User Interface Elements .. 39

x

4.5. ASL Extensibility .. 41

5. ASL Based Approach and Key Transformations .. 43

5.1. Model-to-model transformation.. 44

5.2. Model-to-code Transformation .. 46

5.2.1. Django Views .. 49

5.2.2. Filters .. 50

5.2.3. Users, Groups and Permissions ... 51

5.2.4. URLs ... 53

6. Validation .. 55

6.1. Case Study A: the MyTinyBlog .. 55

6.1.1. Impact of the ASL approach in the development ... 55

6.2. Case Study B: the RiverCure Portal .. 57

6.2.1. RiverCure Main Challenges .. 60

6.2.2. M2C Transformations for RCP ... 61

6.2.3. Impact of the ASL approach in the development ... 65

6.3. Comparison with the Related Work ... 67

7. Conclusion ... 70

7.1. Contributions ... 70

7.2. Future Work ... 70

Appendix A ... 73

Appendix B ... 75

Appendix C ... 83

References ... 91

xi

List of figures

Figure 1 - Classification of RSL constructs: abstraction levels versus RE specific concern [7] 24

Figure 2 - Search Posts: IFML model .. 25

Figure 3 - Django Architecture seen as MVC [41] ... 28

Figure 4 - Django Architecture seen as MVT [41] ... 28

Figure 5 - MyTinyBlog data model (UML class diagram) .. 35

Figure 6 - MyTinyBlog use cases model (UML use cases diagram) ... 36

Figure 7 - ASL Based approach (in BPMN notation) ... 43

Figure 8- User Interfaces generated ... 44

Figure 9 - Search posts: IFML model (top) and UI (bottom) ... 46

Figure 10 - M2C transformation output files .. 46

Figure 11 - MyTinyBlog posts list ... 49

Figure 12- Groups Page in Django Admin ... 52

Figure 13 - User Profile Form in Django Admin... 52

Figure 14 - Analysis of the generated files (CLOC) ... 56

Figure 15 - Analysis of deployed MyTinyBlog files (CLOC)... 57

Figure 16 - RiverCure Portal data model (simplified) .. 58

Figure 17 - RiverCure Portal Use Cases Diagram (simplified) .. 58

Figure 18 - Activities diagram of Context creation (in BPMN) ... 60

Figure 19 - Sensors List in RiverCure Portal ... 63

Figure 20 - Sensors detail page in RiverCure Portal ... 64

Figure 21 - Sensor Observations Page in RiverCure Portal ... 64

Figure 22 - Sensor observations detail page in RiverCure Portal ... 65

Figure 23 - Figure 14 - Analysis of the generated files for RCP (CLOC) .. 66

Figure 24 - Analysis of the RCP after deployment (CLOC) ... 66

Figure 25 - Administration page in Django Admin ... 83

Figure 26 - RiverCure Portal (Log In Page) ... 83

Figure 27- RCP User Profile Page .. 84

Figure 28- Hydro Feature Detail Page in RCP .. 85

xii

Figure 29 - Context Detail Page in RCP .. 86

Figure 30 - Event List Page in RCP .. 86

xiii

List of Tables

Table 1 - Related Work tools and their development setting ... 31

Table 2 - Analysis of the support languages to each tool/approach .. 33

Table 3 - Features analysis of each tool/approach .. 33

Table 4 - Classification of ASL constructs: abstraction levels versus RE specific concern 36

Table 5 - ASL important Tags Names and Values ... 37

Table 6 - Supported types for UI Containers in ASL .. 40

Table 7 - Supported types for UI Parts in ASL ... 40

Table 8 - Supported types for UI Components in ASL ... 40

Table 9 - ASL to Django concepts mapping .. 51

Table 10 - ASL Specification Analysis – Case Study A .. 55

Table 11- MyTinyBlog lines of code statistics .. 57

Table 12 - ASL Specification Analysis – Case Study B ... 65

Table 13 - RiverCure Portal - lines of code statistics ... 67

xiv

xv

List of Acronyms

ANEPC

API

ASL

BPMN

CBV

CLOC

CNL

CRM

CRUD

DSL

DSRM

DTM

FR

GCBV

GPL

IFML

MDE

MTB

MTV

MVC

M2C

M2M

NFR

NL

OMG

RCP

Autoridade Nacional de Emergência e Proteção Civil

Application Programming Interface

Application Specification Language

Busines Process Model and Notation

Class-Based View

Count Lines of Code

Controlled Natural Language

Customer Relationship Management

Create, Read, Update and Delete

Domain Specific Language

Design Science Research Methodology

Digital Terrain Model

Functional Requirement

General Class-Based View

General Programming Language

Interaction Flow Modeling Language

Model-Driven Engineering

MyTinyBlog

Model-Template-View

Model-View-Controller

Model-to-code

Model-to-model

Non-Functional Requirement

Natural Language

Object Management Group

RiverCure Portal

xvi

RE

RSL

SCM

SRS

SVARH

UC

UI

VPN

Requirements Engineering

Requirements Specification Language

Supply Chain Management

Software Requirements Specification

Sistema de Vigilância e Alerta de Recursos Hídricos

Use-Case

User Interface

Virtual Private Network

xvii

18

1. Introduction

In this chapter, we explain the context and the goals of this project. We also present the followed

research methodology and the dissertation structure.

1.1. Context

Currently, developers use expressive programming languages, software libraries and frameworks that

help them develop a multitude of software applications. However, they have to master multiple details

of these tools and technologies, which are complex, require long learning curves, and raise challenges

like the need to create appealing and cross-platform user interfaces, and the need to deal with cross-

cutting concerns like scalability, performance, security and others [1, 2]. In this scope, the importance

of requirements engineering (RE) has been crucial to the development and management of software,

and to reduce software errors at the early stages of the development process [3]. RE has had a crucial

role in different stages of software engineering and has provided a variety of approaches [3]. RE

practices have been essential to give a broad understanding of the problem-domain before starting

any sort of effort toward the design, development and deployment of a given solution, as well as to

prevent rework costs [4,5]. RE has been crucial for the success of a project and has dealt with socio-

technical challenges like the adoption of elicitation techniques, communication difficulties, and the

management of conflicting and ambiguous requirements [6].

In this scope, the ITLingo initiative intends to mitigate problems that arise when writing requirements.

RSL is a controlled natural language that helps writing requirements and test specifications in a

systematic, rigorous, and consistent way [7,9]. RSL includes a rich set of constructs logically arranged

in views according to concerns that exist at different abstraction levels, such as stakeholders, actors,

data entities, use cases, goals, use case tests [7,8,9,10]. Using a model-driven approach to transform

RSL specifications, Gonçalo Pereira showed that it is possible to generate web applications to an

Angular/ASP.Net framework [11]. However, that approach also showed some limitations, namely it is

inflexible in what concerns the fine tuning and better specification of the software application’s UIs.

This approach has a predefined set of user interfaces used in the final application. On the other hand,

Interaction Flow Modeling Language (IFML) is an OMG (Object Management Group) standard

modeling language in the field of software engineering. IFML allows to define platform-independent

models of the user interfaces of software applications. IFML describes the structure and the behaviour

of the applications as perceived by end-users [12].

In this context, we introduce and discuss the design of the ASL specification language (“Application

Specification Language”) that combines constructs from these languages (further details in the next

section): ITLingo RSL [7,8,9,10] and IFML [12]. Like with ITLingo RSL, the ASL specifications (or ASL

models) are strict and rigorous sentences. However, ASL is comprehensive enough to specify user

interface (UI) aspects, as inspired by the concepts found in modeling languages like IFML. ASL

19

gathers characteristics and advantages from both RSL and IFML. Likewise RSL, and differently from

IFML (that is a visual modeling language), ASL is a controlled natural language with a textual concrete

syntax (that is the reason we named it as a “specification language” instead of a “modeling language”).

Finally, beyond the rigorous and systematic specification of software applications, we also show that it

is possible to take advantage of these specifications to semi-automatically generate software

applications following a model-driven engineering approach: this means that with appropriate tools, an

ASL user can create define and then web applications, which are be generated through automatic

transformations techniques, from ASL rigorous specifications.

1.2. Goals

In this dissertation, we propose an approach to improve the RE process by mitigating some of its

problems, namely in what concerns the specification and validation of requirements. This proposal is a

model-driven approach, so, not only documents artifacts are considered, but they are also central in

the way the software applications are developed. Similarly, to other approaches in ITLingo, ASL deals

with business data concepts, but also improves the specification and the extensibility of such

elements. When it comes to the resulting generated application, we can go further and explore front-

end specifications providing details that are in the same range of detail of other approaches, such as

those based on IFML.

The building of web applications in ASL is achieved through two steps: (i) the generation of UI

specifications (model-to-model transformation); (ii) the generation of Django framework (model-to-

code transformation), using the ASL specifications that was generated in the first step. This is the core

part of this project that is explained in Chapters 4 and 5. Subsequently, we evaluate this approach,

using two different applications with different domains, purposes, and complexity: (i) the MyTinyBlog

application; and (ii) the RiverCure Portal, a web-based system that allows specialized users to

manage information regarding water resources captured by distinct sources, such as hydrometric

sensors, and use it to multiple objectives, the main one being defining simulations for climate-change

events, like floods [13].

1.3. Research methodology

The research used in this project is based on the Design Science Research Methodology (DSRM), as

discussed by several authors. This methodology is usually described in six steps [14]:

 Problem identification and motivation which is about defining the specific research problem

and justifying the value of a solution for it. In this investigation, we look at problems that start

from ambiguous requirements and lead to undesired results in IT projects which usually deal

with said requirements using a variety of frameworks and languages.

 Objectives definition which is about defining objectives for a solution to the problem, taking

into account what is possible and feasible. In this dissertation, we propose an approach to

20

improve the RE process by mitigating some of its problems, namely in what concerns the

specification and validation of requirements.

 Design and development, the core part of the projects that use this methodology and usually

shows the architecture and explains the solution. In this project, it can be explained in two

main steps: (i) the generation of UI specifications (model-to-model transformation); (ii) the

generation of Django framework (model-to-code transformation), using the ASL specifications

that were generated in the first step.

 Demonstration by applying the solution in at least one or more instances of the problem

debated: we do this by applying the ASL based approach to two case studies with different

features and complexity levels: MyTinyBlog and RiverCure Portal.

 Evaluation which measures how well the artifact developed supports a solution for problem

defined, by using objective metrics and comparing the solution to others in order to take

conclusions about the developed work. We are going to evaluate our solution with metrics

regarding the generated code in model-to-model model-to-code transformations, their usage

in deployed systems and a questionnaire answered by RiverCure Portal users.

 Communication that deals with communicating all the previous parts to audiences such as

researchers and professionals in the fields that the project problem and solution may involve.

We communicate all the previous parts in this dissertation.

1.4. Dissertation structure

This document is composed by six chapters and is organized in the following way: Introduction,

Contextualization, Related work, ASL Language, ASL Approach and Key Transformations,

Demonstration and Conclusion. Chapter 1, Introduction, introduces the context, the goals of the

project along with a brief discussion of the research methodology and document structure. Chapter 2,

Background, introduces the important conceptual and technological concepts of this investigation

including: model-driven engineering, requirements engineering, Natural Language, Domain Specific

Languages, General Programming Languages, Controlled Natural Languages, RSL, IFML, Xtext,

Xtend and Django. Chapter 3, Related Work, presents and discusses some approaches and tools that

have improved how the community has produced software applications, either developed by the

industry or the academia. Chapter 4, ASL Language, introduces the ASL language architecture and its

main features, supported by a simple running example. Chapter 5, ASL Approach and Key

Transformations introduces and explains the ASL approach and its model-to-model and model-to-code

transformations. Chapter 6, Validation, demonstrates and analyses two case studies, where we

applied the ASL approach and a comparison to the related work. In Chapter 7, Conclusion, we present

a final analysis of the developed work, the contributions for this project and future work.

21

22

2. Background

This chapter introduces important concepts and technologies related to this project, namely: MDE

(model-driven engineering), RE (requirements engineering) and related practices. We also discuss

classes of languages such as: Natural Language, Domain Specific Languages, General Programming

Languages, Controlled Natural Languages, RSLingo and IFML. Finally, we present and discuss

important technologies for this project: Xtext, Xtend and Django.

2.1. Model-driven approaches

Model-driven engineering (MDE) involves the adoption of languages and transformation engines to

address the diversity and complexity of software platforms and frameworks [15]. In the scope of MDE,

we consider a model as an abstraction of a system often used to replace the system under study [16].

MDE aims to raise the abstraction level of software specifications and increase automation in software

development. Using executable model transformations, a model can be transformed into another

(lower level) model until it can be transformed or generated into (programming language) artifacts, or it

can be directly executed by some interpretation engine [16].

System requirements are the description of what services and features the system shall provide, as

well as its quality attributes and other constraints [5]. These requirements reflect the needs of different

stakeholders, like customers, end-users, but also software engineers. System requirements are often

broadly classified as functional (FRs), non-functional requirements (NFRs) and constraints. They are

statements of features and services the system shall provide and may define how the system

responds to its users’ inputs, what outputs to generate. FRs may be defined in multiple NFRs, like use

cases or scenarios. On the other hand, non-functional requirements define the cross-cutting quality

attributes of the system, such as availability, performance, usability, or security. Finally, constraints are

requirements that can affect the product itself or the involved development process, and can be

defined as a technology, legal or process constraints.

This distinction still does not make the requirements definition easy because there are requirements

difficult to distinct between non-functional and functional; also, some requirements often generate or

constraint other requirements.

The software requirements specification (SRS) is an official statement of what the system developers

should implement. It should include both the user requirements for a system and a detailed

specification of the system requirements. Even if sometimes a requirements document is out of date in

a short period of time (for example in agile development), it is still important to formally specify the

system requirements [17].

The document of requirements may have a diverse set of users, such as [5]:

23

 System Customers: Specify the requirements and check if all their needs for the system are

written

 Development Managers: Use the requirements to plan a bid for the system and to plan the

system development process

 System Engineers: Use it to understand what system is to be developed

 System Test Engineers: After developed, they can use the document to develop validation

tests and test the system

 System Maintenance Engineers: Use the document to provide maintenance to the system

Natural language (NL) is often used to write system requirements specifications as well as user

requirements. User requirements mostly define “how a user will interact with a system and they expect

of it” [18], e.g. what happens when the user selects an action on the screen. However, because

system requirements are more detailed than user requirements, natural language specifications can

become confusing and hard to understand. NL understanding relies on the readers and writer’s

interpretation, leading to misunderstandings. NL is over flexible, making it possible for a user and a

developer referring to the exact same requirement in completely different ways. Because of these and

other related problems, requirements specifications written in natural language may lead to mistakes

when building a software product. These mistakes can become very expensive depending on the

timing or the feature it affects [19].

A domain-specific language (DSL) is a computer language specialized to a particular application

domain. It provides a notation and is based on the relevant concepts and features of that domain.

DSLs are small languages, focused on a particular aspect of a software system. We cannot build a

whole program with a DSL, but we can often use multiple DSLs in a system mainly written in a

general-purpose language. DSL can be much easier to program with than a traditional programming

language. It may also improve the communication with domain experts, becoming an important tool

[20,21,22].

There are general programming languages (GPL) that are used for any number of purposes to solve

any number of problems. Generally, they can be used to implement anything that is computable with a

Turing machine [23]. These languages are used for what they are used due to different reasons. They

offer different features and are also optimized for the tasks that are relevant in the respective domains.

Using C, programmers can benefit from a language that combines advantages of low-level and higher-

level languages (arrays, pointers…), which can be compiled or executed on any operating system. At

the same time, they can choose an object-oriented language as Java when creating modular

programs and reusable code. The more specific the tasks are, the more useful specialized languages

are. A Domain-Specific Language is simply a language that is optimized for a given class of problems,

like the SQL is optimized for solving relational algebra problems [23].

There’s a gap between a natural language and a formal language. Formal languages are languages

that are designed by people for specific applications. For example, the notation that mathematicians

use is a formal language that is particularly good at denoting relationships among numbers and

24

symbols. Controlled natural languages (CNL) help mediating these languages. CNLs are engineered

subsets of natural languages whose grammar and vocabulary have been restricted in a systematic

way to reduce both ambiguity and complexity of full natural languages. Some requirements for these

languages are simplicity, a standardized format to give coherence and uniformity to all sentences;

short and active voice style, and a limited vocabulary [24].

2.1.1. ITLingo RSL

ITLingo RSL (or just RSL for brevity) is a specification language created to mitigate problems that arise

when writing requirements. RSL is a controlled natural language that helps writing requirements and

test specifications in a systematic, rigorous, and consistent way. RSL includes a rich set of constructs

logically arranged in views according to concerns that exist at different abstraction levels, such as

stakeholders, actors, data entities, use cases, goals, use case tests [7,8,9,10]. RSL constructs are

logically classified according to two cross-cutting dimensions: abstraction levels and RE specific

concerns. According to the abstraction level, the constructs can be used to define businesses,

applications, software or even hardware systems. According to the RE concerns dimension, the

constructs are classified in the following aspects: active structure, behaviour, passive structure,

requirements, tests, relations and sets, and others [7,9].

Figure 1 - Classification of RSL constructs: abstraction levels versus RE specific concern [7]

Spec. 1 illustrates a simple example of an RSL specification that defines the actor “Blog Editor”, whom

participates in the use-case “Manage Blog Posts”, which involves the management of the data entity

“Blog Post”.

Actor aU_Editor "Blog Editor": User
DataEntity e_Post "Blog Post": Document [
 attribute Id "Post ID": Integer [isNotNull isUnique]
 attribute State "Post State": DataEnumeration enum_PostState
 attribute Title "Post Title": String (30) [isNotNull]
 attribute Body "Post Body": Text
 [...]]

UseCase uc_1_ManagePost "Manage Blog Posts": EntitiesManage [
 actorInitiates aU_Editor
 dataEntity e_Post
 actions Create, Read, Update, Delete]

Spec 1. Simple example of a RSL specification.

25

2.1.2. IFML

Interaction Flow Modeling Language (IFML) is a standard modeling language in the field of software

engineering. IFML allows us to define platform independent models of graphical user interfaces (GUIs)

of software applications. IFML describes the structure and the behaviour of the applications as

perceived by end-users [12]. IFML brings benefits to the development process of application front-

ends, namely [25]: (i) supports the specification of application front-ends with different perspectives

(the connection with the business logic, the data model, and the graphical presentation layer); (ii)

isolates the front-end specification from implementation-specific details; (iii) separates the concerns

between roles in the interaction design; and enables the communication of UI design to non-technical

stakeholders.

IFML was developed by WebRatio and inspired by the previous WebML notation [26], as well as by

other experiences in the Web modeling field [12]. IFML intends to solve a problem mentioned in the

introduction: the variety of hardware devices and software platforms and, consequently, the complexity

of designing and developing software applications.

IFML supports the specification of the following perspectives [12]: UI structure, UI content

specification, events, events transition specification and parameter binding. The UI structure

specification consists of the UI containers, while the UI content specification focus on the data

contained. The events specification consists of the definition of events that may affect the UI while the

specification of events transition defines the changes to apply after those events occur. Finally,

specifications of parameter binding consist of the definition of the input-output dependencies between

view components and between view components and actions. Figure 2 shows a simple example of an

IFML model.

Figure 2 - Search Posts: IFML model

26

2.2. Technologies

2.2.1. Xtext and Xtend

Xtext is a framework for development of programming and domain-specific languages. With Xtext we

can define a language using a powerful grammar language. As a result, we get a full infrastructure,

including parser, linker, type checker, compiler, as well as editing support for Eclipse, any editor that

supports the Language Server Protocol and a web browser [27]. One of the main features of Xtext is

that Xtext can build full-featured text editors for both general-purpose and domain-specific languages.

Xtext editors have already been implemented for JavaScript, VHDL, Xtend, and many other languages

[28].

Xtend is a statically typed programming language which translates to comprehensible Java source

code. Syntactically and semantically Xtend has its roots in the Java programming language. Most of

its concepts are very similar to Java, that is, classes, methods, interfaces, etc. Xtend include many

language concepts that are especially beneficial when processing models. For example, it offers

template strings which are ideal to generate executable code from a given model [29].

Differently from Java, In Xtend, classes may have more than one constructor by using the keyword

“new” [30]:

class MyClass extends AnotherClass {

 new(String s) {
 super(s)
 }

 new() {
 this("default")
 }
 }

Spec 2. Xtend syntax example [30].

2.2.2. Django

Used by some of the largest websites in the world (Instagram, Pinterest, Reddit, Bitbucket, etc.),

Django is one of the most used web development frameworks. It is based on Python, the 3rd most

popular programming language in 2020, according to the Tiobe Index [31].

As any other framework, it has its own advantages and disadvantages. Starting with the advantages:

Being written in Python, lots of useful external libraries and packages are provided and easily imported

to a Django project [32]. In Django, more emphasis is placed on explicit programming rather than

implicit programming, making it one of the ideal frameworks for applications that require rapid

changes. Django provides many useful and advanced functionalities like object-relational mapping

(ORM), database migrations, admin panel and user authentication and forms [33].

Django also enables rapid development by having the MTV architecture. The developers can work in

parallel and integrate their progress easily. The compatibility with some of the powerful machine

27

learning libraries like PyTorch or NumPy, makes developers choose Django over other lightweight

frameworks, such as Flask, when deploying machine learning models is required [32].

On the other hand, the server processing times can be an issue for Django. For smaller websites that

can only run on short bandwidth, this framework may be less viable than others [32]. The

functionalities we mentioned for advantages can lead developers to make more errors, sometimes

more often than with other popular frameworks, like Flask, which only provides the minimum required

for web applications [34].

2.2.3. Django REST Framework

In the current days, talking web development often includes front-end frameworks that were not

available when Django was first released. Currently there are several dedicated JavaScript front-end

frameworks such as React, Angular, Vue, Ember. Each of them brings several benefits to web

applications, but we can still choose to build the front-end around Django template language [35],

using template languages (HTML5, CSS), adding Bootstrap [36] and jQuery [37] features. One of the

most used front-end frameworks used with Django is React, a JavaScript library for building user

interfaces [38]. It provides a clear interface between front-end and back-end logic and makes the user

experience smoother, with less loading times and less perceived transitions between pages.

Given the rapid rate of change in front-end libraries, developers often need to create a REST API

(Application Programming Interface), which is a software intermediary that allows two applications to

talk to each other. APIs can support multiple front-ends written in different languages or frameworks,

which comes in great use when we want our Django web application to support different platforms, like

with different mobile operating systems [39].

Django REST Framework is the most popular choice to build REST services from Python/Django

packages [39] and these are some of its core advantages [40]: a web browsable interface that

provides a user-friendly descriptive page for all REST services (e.g., input parameters, options);

Integrated authentication mechanisms to restrict access to REST services like OAuth2, HTTP

Signature; flexible and sophisticated serializers designed to work with complex data relationships.

2.2.4. Django projects architecture

Django handles most of the HTTP request and response cycle. Developers need only focus on

processing the HTTP request, and Django provides tools to make even that easy [41].

Django projects are often structured in the same way, which makes it simpler to work with. Its structure

is described in the literature according to the Model-View-Controller (MVC) or Model-View-Template

(MVT) architecture. The main difference between the two is how the various concepts are coupled

together. Django projects aren’t truly MVC. MVC is strict about which part of the framework can

communicate with another. In MVC architecture, the Controller then either tells Model to make

changes and update the View or returns a View based on a Model. In this pattern, the view

corresponds to the template displayed in the website [41].

28

Figure 3 - Django Architecture seen as MVC [41]

MTV is looser and allows for communication between all the parts of the app. In frameworks like

Django, developers don't have to write any code related to fetching data from the database and

mapping it with the URL (the controller part). This is handled by the framework itself. When a user

makes an HTTP request, the corresponding view performs a query on the Model and collects the

result set from the Model. The framework will then create a view based on the data and send it to the

user. The view fills the result in a template and sends it to the user. [41]

Figure 4 - Django Architecture seen as MVT [41]

2.2.5. Django Admin

Django Admin is a powerful application to manage contents of a relational database linked to a Django

project [40,42]. It takes minimal effort to set it up and its model-centric interface is user-friendly. Its

use is often limited to administrators of the system; however, it allows a decent customization that is

beneficial to applications who are mainly focused in CRUD operations [40,42]. Later, in a case study

(Chapter 5) we are going to explore some customizations options for Django Admin Panel.

Using Django Admin, we can deal with Django permissions. All models in a Django project are given a

set of permissions to manipulate object model instances [40]. This set of permissions is composed of:

29

‘add’,’ change’, ‘read’, ‘delete’. These actions are equivalent to the CRUD operations mentioned

before: ‘add’ is equivalent to ‘create’ and ‘change’ is equivalent to ‘update’.

These permissions can be linked to the Django user system, based on the “django.contrib.auth”

package built in to the Django framework.

Before a user is authenticated in a Django application, he is recognized as an AnonymousUser while

navigating the site. Once he authenticates himself, Django recognizes him as a User. There are

subtypes of users [40]:

 Superuser: The most powerful user with permissions to create, read, update, and delete data

in the Django admin, which includes model records and other users.

 Staff: A user marked as staff can access the Django admin. But permissions to create, read,

update, and delete data in the Django admin must be given explicitly to a user. By default, a

superuser is marked as staff.

 Active: All users are marked as active if they’re in good standing. Users marked as inactive

are not able to authenticate themselves, a common state if there’s a pending post-registration

step (e.g., confirm email) or a user is banned, and you don’t want to delete his data.

Django offers the concept of Groups to organize sets of users with the same set of permissions. The

permissions we described previously can be assigned to users individually or groups. This is done

through Permission model records. Then we can assert these permissions on URL, view methods or

even on templates content [40].

class BlogPostCreateView(LoginRequiredMixin,UserPassesTestMixin, CreateView):

[...]

 def test_func(self):
 if self.request.user.groups.filter(name='Blogger').exists():
 return True
 else:
 return False
[...]

Spec 3. Example of permissions assertion in a Django Generic Class-Based View.

 [...]

 <div class="navbar-nav">

 {% if user.is_authenticated %}

 {% if user|has_group:"Administration" or user.is_superuser %}

 [...]

Spec 4. Example of permissions assertion in a Django Template.

30

31

3. Related Work

This chapter presents some approaches and tools that have improved how the community has

produced software applications, either developed by the industry (e.g., Microsoft Power Apps, Mendix,

Outsystems, WebRatio, or Quidgest Genio) or by research settings (e.g., EMF on Rails, ADM, XIS or

ITLingo RSL).

Table 1 - Related Work tools and their development setting

Tool Development Setting

Microsoft Power Apps

Industry

OutSystems Studio

Mendix Studio

Quidgest Genio

WebRatio/IFML

Research

EMF On Rails

ADM

XIS

ITLingo Studio (RSL)

3.1. Industry Related Work

Mendix Studio is a commercial platform designed to enable different groups of people to create

software that delivers business value. It was founded in the early 2000s with the belief that software

development could be improved with a paradigm shift [43]. Mendix builds a wide range of

transactional, event-driven, and adjacent applications for all kinds of industries [43]. According to

Mendix perspective, it is becoming harder to keep up to date with the evolving number of

programming tools and languages across the spectrum [43]. To reduce the development effort and to

improve the feedback loop, Mendix follows a model-driven approach that includes tools like Mendix

Studio and Mendix Studio Pro. These tools provide visual drag-and-drop features for UI, data, logic,

and navigation using no-code or low-code development [43].

32

OutSystems Studio is another commercial platform for low-code rapid application development with

advanced capabilities for enterprise mobile and web apps [44]. In 2001, OutSystems recognized that a

vast majority of software projects were failing due to deadlines not being met or budges being overrun.

Therefore, OutSystems Studio was created. It is an integrated development environment that covers

the entire development lifecycle, namely: development, quality assurance, deployment, monitoring and

management [44].

Quidgest Genio allows users to define architectures, models, configurations of projects through a

graphical interface that generates the source code [69]. The generated code follows certain patterns

that accommodate technological solutions for a diverse set of business areas, including technology,

engineering, banking, and finances [69]. It includes automatic testing and manipulation of code which

provides a better performance to this platform users.

3.2. Research Related Work

EMF on Rails proposes an approach that combines MDE with automation frameworks for web

development like Spring Roo [45]. It uses ATL, a rule-based declarative model transformation

language, where “transformations are specified by mapping object patterns from the source model into

patterns of the target model”.

WebML (Web Modeling Language) is a domain-specific language for designing complex, distributed,

multi-actor, and adaptive applications deployed on the Web and Service-Oriented Architectures using

Web Services [46]. WebML provides graphical, yet formal, specifications, embodied in a complete

design process, which can be assisted by visual design tools. It was extended to cover a broader

spectrum of frontend interfaces, thus resulting in the Interaction Flow Modeling Language (IFML),

adopted as a standard by the OMG. Formerly known as the WebML, it is now IFML because it is no

longer limited to web development but also used for mobile apps [46].

ADM (Ariadne Development Method) is another approach with the primary goal of accelerating the

development of web systems [68]. Like ASL, it offers constructs to specify these systems making use

of Labyrinth++. This tool allows the specification of all the components for web systems and includes a

pattern language. Those patterns are organized according to the nature of the problem they solve and

make the development of solution easier for less-experienced web developers [68].

XIS is a research project that has developed and evaluated mechanisms and tools to produce

business applications more efficiently and productively than it was done [47]. XIS intends to reduce

costs and improve the fulfilment of the requirements in software production. XIS approach defends

that the most significant effort in a project shall not be in the implementation phase; these activities

shall be performed almost automatically, based on high-level and platform-independent specifications.

Defining the right specifications shall be the main effort of the developers. XIS also defends a model-

driven approach for designing interactive systems at a platform-independent level, considering its

modeling languages (i.e., the XIS* languages) that are defined as UML profiles [48,49,50]. The

approach discussed in this paper gathers the benefits from the tools and approaches mentioned

33

above. For example, like the IFML, it supports a platform-independent description of graphical user

interfaces.

ITLingo RSL uses a model-driven approach to transform RSL specifications. The approach has a

predefined set of user interfaces used in the final application that is based in an Angular/ASP.Net

framework [11]. This approach uses the Xtext and it is the closest approach to the one presented in

this dissertation, especially because it is part of the ITLingo initiative and due to the fact RSL and ASL

share many constructs.

Table 2 - Analysis of the support languages to each tool/approach

Tools Languages(s) Meta-
language

Concrete Syntax
(Visual/Textual/…)

Aspects Supported
Data UI UseCases Tests Workflow

Mendix Studio Mendix
Language

Property
format

Visual Yes Yes Yes Yes Yes

OutSystems
Studio

OutSystems
Language

Property
format

Visual Yes Yes Yes Yes Yes

Quidgest Genio Genio Property
format

Form-based Yes Yes No Yes Yes

WebRatio/IFML IFML UML
IFML

Visual Yes Yes No No Yes

EMF On Rails ATL Ecore Visual Yes No Yes No No

ADM - Labyrint++ Textual Yes No Yes No Yes

XIS XIS2,
XIS-Mobile,
XIS-Web,
…

UML
Profile

Visual

Yes

Yes

Yes

No

No

ITLingo Studio RSL Grammar
(Xtext)

Textual Yes No Yes Yes Yes

ASL Grammar
(Xtext)

Textual Yes Yes Yes No No

Table 3 - Features analysis of each tool/approach

Tools

Languages(s) Language
Support

M2M Transformations M2C Transformations

Technology Transformations Transformation
Specification

Target
Framework

Mendix Studio Mendix
Language

Property
format

Mendix UI
Framework

* Property
Framework

*

OutSystems
Studio

OutSystems
Language

Property
format

Outsystems UI
Framework

* Property
Framework

.Net or Java
stacks

Quidgest Genio Genio Property
format

- - Property
Framework

MVC
architectures (C#,
Java, C++, etc.)

WebRatio/IFML IFML IFML
WebML

- - - Independent

EMF On Rails ATL * * * * Spring Roo

ADM - HTML, XML,
SMIL, RDF

Ariadne Tool * * Markup
Languages

XIS XIS2,
XIS-Mobile,
XIS-Web

Sparks
Enterprise
Architect

XIS
Framework

Domain
BusinessEntities
Architectural
UseCases
NavigationSpace
InteractionSpace

* WebSQL+
HTML5,
JavaScript,CSS
Android

ITLingo Studio RSL Xtext Xtend UseCases
Data Entities

Xtend ASP.NET/Angular

ASL Xtext Xtend UseCases
Data Entities
User Interfaces

Xtend Django

34

35

4. ASL Language

This chapter introduces the ASL language and its main features. The discussion is supported by a

simple running example named “MyTinyBlog” application, as follows:

MyTinyBlog

MyTinyBlog is a simple web application that allows a blog editor to setup and manage his own blog.

The blog administrator manages MyTinyBlog users (includes groups and permissions) and categories.

The blog editor may add posts to the blog. Each blog post has a title, a body, the creation date, and

the author. A post can be classified by a given category and can be in one of the following states:

"Draft" or "Public". Only public posts are visible to the blog's audience (i.e. the readers). Readers can

read and submit comments of a public post but can only edit or delete their own comments. They can

also add a “like” and share posts.

Figures 5 and 6 illustrate some models of the MyTinyBlog application: the domain model (in Figure 5)

and the use-cases model (in Figure 6). The main features of this application involve managing blog

posts through typical create, read, update, and delete (CRUD) operations.

Figure 5 - MyTinyBlog data model (UML class diagram)

36

Figure 6 - MyTinyBlog use cases model (UML use cases diagram)

4.1. ASL Architecture

The ASL language combines the main aspects of the RSL and the IFML languages to support the

specification of software applications systematically and rigorously. These applications can be

considered “business applications, in which data is a core asset, and support several business

activities like planning, forecasting, control, coordination, decision making and operational activities

[51]. Popular classes of software business applications are e-commerce, ERP (enterprise resource

planning), CRM (customer relationship management), SCM (supply chain management).

Table 4 - Classification of ASL constructs: abstraction levels versus RE specific concern

Concerns

Active
Structure

Behaviour
(Actions)

Passive Structure
(Objects)

Requirements User Interfaces

Abstract
Levels
Business ActiveElement

(Task, Event)
DataEntity

Application ContextActor DataEntityCluster UIAction

Software DataEnumeration UseCase UIViewContainer
UIViewComponent
UIViewComponentPart

Hardware

Other

37

4.2. Data Entities

ASL adopts and extends the definition of the DataEntity construct as defined initially in RSL [8,9].

DataEntity is the construct used to define domain concepts or information entities such as goods,

people, or business transactions. A DataEntity denotes an individual structural entity that might include

the specification of attributes, foreign keys and other data constraints [8]. A DataEntity can be

classified by type and subtype. The types are the following [70]: (1) Parameter, which can include

data that is specific to an industry or business; (2) Reference, simple reference data, which is required

to operate a business process; (3) Master, data assets of the business, usually reflects more complex

data (e.g., customers, vendors, projects); (4) Document, worksheet data that might be converted into

transactions later (e.g., invoices); and (5) Transaction, the operational transaction data of the business

(e.g., paid invoices). The subtypes are [70]: Regular and Weak.

ASL Data Entities and Data Entities Clusters can be enriched with the element “Tag” that provide more

information to the generation algorithm. A Tag has a name and a value. The Tags presented in the next

table change the output of the ASL model-to-code transformations. The Inline affects the layout of

interfaces where two data entities have a relationship. Tags with name and value “User” map a data

entity and respective attributes with the user profile in the final application.

Table 5 - ASL important Tags Names and Values

Name Value

Inline Stacked

Tabular

User User

In the MyTinyBlog example, we define the following data entities, as also suggested in Figure 5: Blog,

Category, User, Blog Post, Comment and Like (see Spec. 5).

DataEnumeration enum_PostState values ("Draft", "Public")

DataEntity e_Blog "Blog": Parameter [
 attribute Name: String (30) [constraints (NotNull Unique)]
 attribute Slogan: String (80) [constraints (NotNull)]]

DataEntity e_Category "Category": Reference [
 attribute Name: String (30) [constraints (NotNull Unique]
 constraints (showAs (Name))
 description "Blog Categories"]

DataEntity e_User "MyTinyBlog User": Master [
attribute username: String [constraints (NotNull Unique) tag (name "username" value
"username")]
 attribute firstName: String

38

 attribute lastName: String
 attribute email: Email [constraints (NotNull) tag (name "email" value "email")]
 attribute registrationDate: Datetime [defaultValue "CurrentDateTime" constraints
(NotNull ReadOnly)]
 attribute bio: Text
 tag (name "user" value "user")]

DataEntity e_Post "Blog Post": Document: Regular [
 attribute state: DataEnumeration enum_PostState
 attribute title: String (30) [constraints (NotNull)]
 attribute Body: Text [constraints (NotNull)]
 attribute date: Datetime [defaultValue "CurrentDateTime" constraints (NotNull ReadOnly)]
 attribute category: String [constraints (NotNull ForeignKey (e_Category))]
 attribute author: String [constraints (NotNull ForeignKey (e_User))]

]

DataEntity e_Comment "Comments": Document: Weak [
 attribute post "Post ID": Integer [constraints (NotNull ForeignKey (e_Post))]
 attribute comment "Comment": Text [constraints (NotNull)]
 attribute date "Comment Date": Datetime [defaultValue "CurrentDateTime" constraints
(NotNull ReadOnly)]
 attribute author "Post Author": String [constraints (NotNull ForeignKey (e_User))]

]

DataEntity e_Like "Like": Document: Weak [
 attribute like: Boolean
 attribute post "Post ID": Integer [constraints (NotNull ForeignKey (e_Post))]
 attribute date "Comment Date": Datetime [defaultValue "CurrentDateTime" constraints
(NotNull ReadOnly)]
 attribute user: String [constraints (NotNull ForeignKey (e_User))]
]

Spec 5. ASL Specification of MyTinyBlog data entities

After defining the data entities, DataEntityClusters can be defined. A DataEntityCluster construct

denotes a cohesive set of structural entities that present logical arrangements among them and are

commonly used in the context of use cases.

In this example, we define three data clusters with specific roles to their involved data entities. The

“main” role represents the primary data entity involved, while the “child” role represents a “part of” (or

“child”) data entity, and the “uses” role represents other logical dependencies between entities [9].

Furthermore, the tag “Inline” with value “Stacked” (see Table 5), in the ec_Post cluster, is used as an

extended property (in what respect the UI definition of the application when it to comes to posts and

comments).

//Application
DataEntityCluster ec_Blog "Blog": Parameter [main e_Blog]

//List View Post
DataEntityCluster ec_PostList: Document [main e_Post uses e_User, e_Category]

//Detail View Post
DataEntityCluster ec_Post: Document [main e_Post child e_Comment uses e_Category
 tag (name "Inline" value "Stacked")]

Spec 6. ASL Specification of MyTinyBlog Data Entity Clusters

39

4.3. Use Cases

A use case is defined as a sequence of interactions between an actor(s) and the system under

consideration, which gives some value to the actor [8,71]. Use cases is a popular technique of

modelling user tasks, that can be complemented with informal storyboards and free-form scenarios

[9]. Likewise with the RSL, ASL includes the UseCase construct that allows to define several

properties such as: the involved DataEntity/DataEntityCluster; the actor that initiates the use-case and

other participating actors or the actions that may be performed in the use case scope, e.g. CRUD

actions.

In the MyTinyBlog (MTB) example (see Spec. 7), we define the ContextActor “Blog Editor” that creates

and manages blog posts. The use case “Manage Blog Posts” is initiated by the “Blog Editor” and has

actions over the data cluster “Blog Posts” (ec_Post) with CRUD actions. The only non-CRUD action is

the action “aShare”. This action means users can share posts in social media and we explain in

section 4.5 how this action can be defined.

ContextActor aU_Admin "Blog Administrator": User
ContextActor aU_Editor "Blog Editor": User
ContextActor aU_Reader "Blog Reader": User

ActionType aShare

UseCase uc_1_ManageUsers "Manage Blog Users": EntitiesManage [
 actorInitiates aU_Admin
 dataEntity e_User //this user should be able to create groups and permissions aswell
 actions aCreate, aRead, aDelete, aUpdate]

UseCase uc_2_ManagePosts "Manage Blog Posts": EntitiesManage [
 actorInitiates aU_Editor
 dataEntity ec_Post //post with comments
 actions aCreate, aRead, aDelete, aUpdate, aValidate]

UseCase uc_3_ManageCategories "Manage Posts Categories": EntitiesManage [
 actorInitiates aU_Admin
 dataEntity e_Category
 actions aCreate, aRead, aDelete, aUpdate]

UseCase uc_4_BrowsePosts "Browse Blog Posts": EntitiesBrowse [
 actorInitiates aU_Reader
 dataEntity ec_PostList
 actions aRead, aShare]

UseCase uc_4_1_CreateComment "Create Comment on Post" : EntitiesManage [
 actorInitiates aU_Reader
 dataEntity e_Comment
 actions aCreate, aRead, aUpdate]

UseCase uc_4_2_LikeComment "Like Comment on Post" : EntitiesManage [
 actorInitiates aU_Reader
 dataEntity e_Like
 actions aCreate]

Spec 7. Specification of Context Actors and Use Cases (in ASL)

4.4. User Interface Elements

As seen above, using ASL we can define Data Entities, Data Entities Clusters, Use Cases, Context

Actors, and other constructs needed to specify the application. We may also define UI elements,

namely (and following the IFML terminology): UI containers, UI components and UI parts. The rules to

40

express such elements in ASL are aligned with the IFML definition. The UI components supported by

ASL are of the following types: List, Details, Form, Dialog and Menu. These UI components can be

further classified as different sub-types like List-MultiChoice, List-Tree, List-Table, etc. as suggested in

the next Tables.

Table 6 - Supported types for UI Containers in ASL

Type Window Menu Other

Sub-Type

Modal Main Other

Modeless Contextual

Other Other

Table 7 - Supported types for UI Parts in ASL

Type Field Slot Other

Sub-Type

Output Menu Group Other

Input Menu Group

Selection Menu Separator

Editable Selection Other

Table 8 - Supported types for UI Components in ASL

Type List Detail Form Dialog Menu

Sub-Type

MultiChoice Simple Success Main

Tree MasterDetail Error Contextual

Table Other Warning

Nested Info

 Message

41

UIContainer uiCt_Delete_Warning : Window : Modal [

 component uiCo_DeleteWarning : Dialog : Dialog_Warning [

part uip_Delete_Warning_Text: Field: Field_Output [Text defaultValue "Are you sure you want to
delete e_Post?"]
 event uiev_delete : Submit: Submit_Delete [navigationFlowTo uiCt_e_Post]
 event uiev_cancel : Submit: Submit_Cancel [navigationFlowTo uiCt_e_Post]

]
]

Spec 8. Example of Delete Interface (in ASL)

4.5. ASL Extensibility

We have demonstrated how ASL allows a very detailed description of what described applications

should be at the final state. DataEntity attributes types are vast, from Strings, Integers to Email or

Images. ASL also provides a way of customizing the types accepted by the ITLingo Studio, where ASL

specs are written. A new DataAttributeType can be declared and it will be recognized and even

suggested during the specification of the “System” where it was introduced.

This does not mean the DataAttributeType will have a corresponding attribute type for the desired

framework files. However, it still is an indicator that we are referring to a different type attribute in our

application specification. Using customized attribute types may be decisive in specific situations and

the ASL can embrace these new types in a later version, according to how often they are used.

This is also possible with Use Cases action types. ASL users can introduce customized actions for use

cases. Although they are not initially expected by the grammar parser, they can still have an impact, in

a model-to-code transformation, if declared properly. We are going to look further into this impact in

Chapter 5.

DataAttributeType GeoPoint [description "GeoPoint attribute type (for geospatial data)"]
ActionType aShare “Share blog posts”

Spec 9. Introducing a new Data Attribute Type and a new Action Type for ASL Use Cases

42

43

5. ASL Based Approach and Key

Transformations

This chapter introduces and explains the ASL approach and its model-to-model (M2M) and model-to-

code (M2C) transformations. This discussion is once again supported by the MTB application, briefly

introduced in Chapter 4.

Figure 7 suggests the ASL approach proposed to systematically and rigorously define software

applications based on the ASL language and with the possibility of automatically generating the

software application for a specific software platform.

The proposed approach consists in 6 main tasks, as suggested by the Figure 7. Task 1 starts with a

developer specifying the application’s data and use cases models in the ASL. Task 2 automatically

validates the quality of the partial model, if it is valid, the ASL tool support may run model-to-model

transformations to generate ASL UI specifications (Task 3). Then, in the Task 4, the developer can still

update and extend the generated model with their preferences and repeat the process (this is not

illustrated in the figure for the sake of legibility). After this hybrid set of manual and automatic tasks,

the complete model shall be validated (Task 5) before running model-to-code transformations (Task 6)

and producing the source code artifacts for the target software infrastructure.

Figure 7 - ASL Based approach (in BPMN notation)

Due to their relevance, Task 3 and Task 6 will be described with more details respectively in sections

5.1 and 5.2.

44

5.1. Model-to-model transformation

The proposed approach follows an idea initially introduced with the XIS approach [47]: the idea of

smart and dummy modeling approaches. According to that approach, the designer has just to define

the Domain, Business Entities, Actors and Use Cases views (according to the XIS terminology), and

then the User Interfaces views are generated based on model-to-model (M2M) transformations and a

predefined set of UI patterns [47].

We integrate that “smart approach” in the ASL approach, which involves the generation of UI

specifications, as referred in Task 3 of Figure 7. These generated ASL files include UI specifications

that depend on the data entities and use cases previously defined. These files are generated through

a Xtend file executed in the scope of the ITLingo Studio.

[…]
class ASLMainContainers {
 def static compile(UseCase usecase, ArrayList<UseCase> usecases, System system){

 var List<String> all_editable_attributes = newArrayList
 var List<String> readonly_attributes = newArrayList
[…]

‘’’
Package p_«system.name»

Import p_«system.name».«system.name»
Import p_«system.name».«system.name».*

System UI_«system.name» : Application []

//UIContainer aligned with «usecase.name»
//MAIN WINDOW UI

UIContainer uiCt_«main_ent» : Window [
 component uiCo_«main_ent»List : List: List_Table [
 isScrollable

[…]

Spec 10. ASL UI Generator based on use-cases (Xtend file)

For each use-case a new .asl file is generated containing descriptions of interfaces for CRUD actions

related to the target DataEntity or DataEntityCluster in the use-case.

For instance, for MyTinyBlog, 6 different .asl files were generated, each one with the name of the

corresponding use-case (e.g. uc_2_ManagePosts.asl), as showed in Figure 8. These files have

different elements regarding the actions in the use-case, but they follow a pattern and similar

interfaces may be found in different files due to repeated actions over the same clusters.

Figure 8 - User Interfaces generated for MTB

45

Considering the use-case defined in Spec.7 (i.e., use case "Manage Blog Posts"(uc_2_ManagePost)),

a model-to-model transformation generates UI elements to support all CRUD actions of posts. Spec 11

shows part of the generated file.

UIContainer uiCt_e_Post: Window [

 component uiCo_e_PostList: List: List_Table [
 isScrollable
 dataBinding e_Post [
 visualizationAttributes e_Post.title, e_Post.category, e_Post.date
 sortAttributes e_Post.title, e_Post.category, e_Post.date
 orderBy e_Post.date DESC
]
 [...]

Spec. 11 - ASL List Component

The main components for this “UIContainer” in MyTinyBlog fit the purpose of listing posts,

corresponding to the action “aRead” in “uc_2_ManagePost”. By default, a component of the

type/subtype “List/ ListTable” was generated and the “databinding” mentions the e_Post entity, since

this is the main entity for the ec_Post cluster. In this component we can customize the visualization,

the sorting and the order in which instances of e_Post should be presented in this List.

Other features like listing, filtering and searching instances of features are also considered, since they

are common or essential in business applications. These features can be manually customized in the

.asl files, once again by choosing attributes of the target data entities referred in the use-case. The

ITLingo-Studio tool gives suggestions when typing these modifications and will warn of errors (e.g.

wrong attribute declaration) in case they exist.

Spec. 12 shows in another part of this generated .asl file, generic components for “reading blog posts”

and how we can customize them.

 component uiCo_Filter_e_Post: Details [
 dataBinding e_Post [
 filterAttributes, e_Post.state, e_Post.author, e_Post.date
]
]

 component uiCo_Search_e_Post: Details [
 dataBinding e_Post [
 searchAttributes, e_Post.author, e_Post.title
]
]

Spec. 12 – ASL Search and Filter components

The complete specifications of these UI’s are available in the full version of this file, in Appendix A.

Even though not all of them currently influence the M2C transformation, they are useful in representing

and communicating features for web applications, regardless of the target framework.

Figure 9 shows an example of such a UI model (in IFML, on the top) that describes the search feature

and the flow of data to the list of posts, and the corresponding UI of the final application developed in

Django (on the bottom of the figure).

46

Figure 9 - Search posts: IFML model (top) and UI (bottom)

5.2. Model-to-code Transformation

The mode-to-model (M2M) transformation referred in section 5.1 (Task-3 in Figure 7) generates ASL

UI specifications, but the target software application (e.g., MyTinyBlog) is not yet developed and

deployed. However, the complete specification of the application under consideration can be used to

produce the target application into a different number of software frameworks. As a proof of concept,

we develop model-to-code (M2C) transformations for the Django web framework due to it being a

framework that encourages rapid development and clean and pragmatic design [9,41]. From the

MyTinyBlog specifications and the UI specifications generated from it, ITLingo Studio generates new

files. Figure 10 shows a common output files tree when applying this transformation:

Figure 10 - M2C transformation output files

47

As showed in Figure 10, this set of files includes:

 A models.py script responsible for generating migrations to a database;

 A python script to generate groups, users and assigned permissions to groups;

 A basic template that customizes part of Django Admin;

 A “users” folder which associates Django users with a different and flexible model (Profile);

 A simple admin.py file that registers the use-cases entities to be used in Django Admin;

 An alternative admin.py that with more customized interfaces;

 A filters.py script based on the desired filters;

 2 Generic urls.py files to be used at different levels (project and application), which are

mandatory in Django projects;

 A views file that contains Class Based Views, the logic part of Django applications;

 2 bash scripts that support the organization and creation of the Django project;

To use and speed up the process of deploying the MTB application with the above components, there

is an “Deployment Instructions” document that explains how to make use of the bash scripts for

Windows along with the generated Django application files. The web application is ready in a few

minutes and the developers can proceed to make changes or test the application running it in

localhost.

The main requirements for this deployment are having Python and Django installed along with a few

additional packages: (i) a theme for Django admin interface, Django Suit; and (ii) Django-Filter, a

Django application which simplifies filters definitions for applications. Other front-end frameworks and

templates can be used to display data and logic provided by ASL. Spec. 6 illustrates the

corresponding Django data model for the MTB application, produced from the model-to-code

transformation.

#GENERATED ENTITIES
from django.db import models
from datetime import datetime
from django.contrib.auth.models import User
from django.core.exceptions import ValidationError
from django.core.validators import RegexValidator
#MIGHT BE NEEDED from django.contrib.gis.db import models

ENUM_POSTSTATE_CHOICES = (('draft','Draft'), ('public','Public'),)

class e_Blog(models.Model):

 Name = models.CharField(max_length=20)

 Slogan = models.CharField(max_length=20)

class e_Category(models.Model):

 Name = models.CharField(max_length=20)

class e_Post(models.Model):

 state = models.CharField(max_length=15, choices=ENUM_POSTSTATE_CHOICES)

 title = models.CharField(max_length=20)

 Body = models.TextField()

 date = models.DateTimeField(default=datetime.now, blank=True)

48

 category = models.ForeignKey('e_Category', on_delete=models.CASCADE,
related_name='e_Post_category')

 author = models.ForeignKey(User, on_delete=models.CASCADE, related_name='e_Post_author')

class e_Comment(models.Model):

 post = models.ForeignKey('e_Post', on_delete=models.CASCADE, related_name='e_Comment_post')

 comment = models.TextField()

 date = models.DateTimeField(default=datetime.now, blank=True)

 author = models.ForeignKey(User, on_delete=models.CASCADE, related_name='e_Comment_author')

class e_Like(models.Model):

 like = models.BooleanField()

 post = models.ForeignKey('e_Post', on_delete=models.CASCADE, related_name='e_Like_post')

 date = models.DateTimeField(default=datetime.now, blank=True)

 user = models.ForeignKey(User, on_delete=models.CASCADE, related_name='e_Like_user')

Spec 13. Django model generated for MTB (in Python)

 This code is generated mainly from the data entities defined in ASL (see Spec 5). This transformation

generates the file “models.py”, which considers all the data entities, attributes, and data constraints,

including foreign keys constraints.

This generated Python file defines the domain model with the application’s data structure and allows to

create and update the respective database. Then, a developer can customize and refine that model

and eventually add more information (by default, Django uses SQLite database to store the data [41]).

Users (who were given permissions) can create, read, update, or delete the blog posts using the

Django admin site [41]. This site reads metadata from the models and provides a simple, yet efficient

model-centric interface.

To perform CRUD operations, we need to register those models in the “admin.py” file. This file is

created by default when a Django project is started. However, we have replaced it with new settings; It

shall contain the models to be registered, and other constraints generated from the ASL specifications

files (specs 11 and 12).

[…]
admin.site.register(e_Comment)

class e_CommentsInstanceInline(admin.StackedInline):
 model = e_Comment
 extra=0
 filter=()
 readonly_fields=('date',)

@admin.register(e_Post)
class e_PostAdmin(admin.ModelAdmin):
 inlines = [e_CommentsInstanceInline,]
 exclude = ()
 readonly_fields=('date',)
[…]

Spec 14. Part of the admin.py file generated by ASL reflecting the relation main-child between posts and

comments (in Python)

49

The name of the app which can be important for some businesses and the application users is visible

in Django Admin through modifications in templates like the following:

{% extends "admin/base.html" %}

{% block title %}{{ title }} | MyTinyBlog{% endblock %}

{% block branding %}
<h1 id="site-name">MyTinyBlog</h1>
{% endblock %}

{% block nav-global %}{% endblock %}

Spec 15. Template generated in ASL for MTB

For sakes of legibility and styles, we have been using a theme for Django admin interface, Django Suit

[51]. This is a view of posts list considering the search and filters fields in admin.py files:

Figure 11 - MyTinyBlog posts list

5.2.1. Django Views

One of the three parts of the MTV Django architecture are Views, “Python callables that accept an

HttpRequest object as argument and returns an HttpResponse object is deemed a view in Django”

[41]. In Django we have three different types of views: function views (FV), class-based views (CBV)

and generic class-based views (GCBV) [41, 52].

A CBV is any class that inherits from View. The Difference between FV and CBV is that the last one

has several benefits, among them automatic handling of HTTP options, instead of branching code with

conditions [52].

In its turn, GCBV is a CBV that comes to address the common use cases in a web application, such

as creating or listing objects, form handling, pagination, etc. They make use of attributes that must be

configured, which can be one of the disadvantages of working with CBV: trying to work out exactly

which and how pre-programmed methods need to be configured [52].

def BlogPostListView(request):
 posts = e_Posts.objects.all()

 […]

 context={
 'queryset': posts,
 […]

50

 }

 return render(request, "mytinyblog/e_Posts_list.html", context)

Spec 16. Example of a function view in Django (list of Blog Posts)

class BlogPostListView(ListView):
 model = e_Post
 context_object_name = 'posts'
 template_name = 'mytinyblog/e_Posts_list.html'

[…]

Spec 17. Example of a Django Generic Class-Based View (ListView)

For the views, we will be using Django Generic Class Based Views. For each “CRUD” action, we need

a corresponding view: CreateView, ListView, UpdateView, DeleteView.

In our MyTinyBlog example, there is at least one actor, that can create posts, therefore, a CreateView

will be generated. “Blog Editors” can create “Blog Posts”, therefore they are given such permissions.

In this view, we make sure only “Blog Editors” can access it but the same assertion could be done by

testing if the actor was in “Blog Editors” group.

[…]
class e_PostCreateView(LoginRequiredMixin,UserPassesTestMixin, CreateView):
 model = e_Post
 #form_fields = []
 #success_url = reverse_lazy('e_Post-list')

 def test_func(self):
 if self.request.user.groups.filter(name='aU_Editor').exists():
 return True
 else:
 return False
[…]

Spec 18. CreateView generated in ASL for MyTinyBlog (form_fields and success_url need to be revisited by the

developer to assure they work as expected in their application)

5.2.2. Filters

Filter options are also taken in consideration for MTB front-end. They are relevant for ListViews, in

order to help users accessing the objects in a long list. This is the generated “filters.py” file that can be

connected to a template. In this file we write what fields can be used to filter posts. We use the

application “django_filters” [53], that simplifies the creation and usage of such filters.

class e_PostFilter(django_filters.FilterSet):
 class Meta:
 model = e_Post
 fields = ['author', 'category', 'title',]

Spec 19. Generated Filters.py that contains fields to filter MyTinyBlog posts

51

5.2.3. Users, Groups and Permissions

The implemented model-to-code transformations can speed up the process of managing users and

permissions (see Table 2 for some concepts mapping between ASL and Django. We have seen that

Django Admin provides a built-in authentication system that allows to create groups and assign

permissions to users [54]). Using Python interpreter, we can create groups and assign permissions to

users through a Python script.

In the MyTinyBlog application, the blog administrator oversees all the tasks. In his turn, the blog editor

should be able to create, read, update and delete posts. ASL tool generates a Python script to insert

groups, users, and permissions in the database. To quickly validate the authorization features, this

script adds one user to each group instance. All these settings can be later directly managed by a

superuser using the Django admin site, or again the python interpreter.

Table 9 - ASL to Django concepts mapping

ASL Django

ContextActor Group Instance

ContextActor (name) User

UseCase Actions Permissions

from django.contrib.auth.models import Group
from django.contrib.auth.models import Permission
from django.contrib.auth.models import User

aU_Editor_group = Group(name='aU_Editor_group')
aU_Editor_group.save()

user = User.objects.create_user('aU_Editor', password='password')
user.is_staff=True
user.save()
aU_Blogger_group.user_set.add(user)

permission_CreatePost = Permission.objects.get(codename='add_e_post')
aU_Blogger_group.permissions.add(permission_CreatePost)

Spec 20. Part of the generated Django roles script for MTB (in Python)

Apart from other interfaces and functions being added, the Blog Administrator will be able to manage

permissions, users, and groups in Django Admin:

52

Figure 12- Groups Page in Django Admin

The generated user application contains, among other important files, the model for a user profile with

the fields chosen in ASL, when we used the tag with name and respective value “user” (spec. 5)

from django.db import models
from django.contrib.auth.models import User
from datetime import datetime

class Profile(models.Model):
 user = models.OneToOneField(User, on_delete=models.CASCADE)
 username = models.CharField(max_length=20)
 firstName = models.CharField(max_length=20)
 lastName = models.CharField(max_length=20)
 email = models.EmailField(max_length=254)
 registrationDate = models.DateTimeField(default=datetime.now, blank=True)
 bio = models.TextField()

 def __str__(self):
 return f'{self.user.username} profile'

Spec 21. Generated Django profile model for MyTinyBlog users (in Python).

Each profile has a one-to-one relation to the users of MyTinyBlog and in Django Admin we can edit

them.

Figure 13 - User Profile Form in Django Admin

53

5.2.4. URLs

A front-end interface could be added now created for MyTinyBlog through templates, url paths and the

views generated. During that process, developers can use the ASL UI concepts in ITLingo Studio or

use another tool, like IFML in Enterprise Architect [55], in order to get the a more user-friendly and

complete version of MyTinyBlog. The developers would need to add new urls.py configurations.

Through ASL, the urls.py configurations that are responsible for connecting different areas of the blog

are very basic:

from django.urls import path, include
from . import views

urlpatterns = [
 path('', views.home, name='home'),
 path('/about', views.about, name='about-page'),
]

Spec 22. Urls.py generated for MyTinyBlog application

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path('admin/', admin.site.urls),
 path('', include('MyTinyBlogApp.urls'))
]

Spec 23. Urls.py generated for MyTinyBlog (project level)

54

55

6. Validation

This chapter presents and analyses case studies where we applied the ASL approach described in

Chapter 5.

6.1. Case Study A: the MyTinyBlog

The Case Study A was introduced in Chapter 4 to support the explanation of the ASL language and to

show how to generate business applications through model-to-model and model-to-code

transformations, as discussed in Chapter 5.

Blogs are popular case studies when introducing developers to new methodologies or programming

languages and can often be enriched with new features and with different levels of complexity. Blogs

can be used to show how to run unit tests, to deploy web applications, or to make asynchronous

requests. In the scope of this research, the MyTinyBlog application helps us to introduce common

practices to CRUD operations and different ways to display data in webpages.

6.1.1. Impact of the ASL approach in the development

In MTB, ASL was effective and efficient. The data entities and attributes are straightforwardly created.

The groups were easily identified, and their roles defined. The UI components are enough for the blog

usability, as Django Admin could now be used to perform the application main operations. It is

important to notice that the views.py file is not being used in our demonstration.

We can analyze the complexity of our applications keeping track of the number of data entities,

clusters, use-cases, actors, etc. in the ASL specification. We can follow these numbers with an

analysis of lines of code were generated and their coverage level, regarding how many manual

changes were likely to happen since the files were generated from ITLingo Studio to be used in

another text editor or development environment, such as Visual Studio Code [56]. In MyTinyBlog we

chose to use CLOC (Count Lines of Code) [58], a software that not only counts lines of source code in

many programming languages (Python being one of them) but also blank lines and comment lines.

In MTB specifications, using ITLingo Studio, we had a system with approximately 100 lines of

specification:

Table 10 - ASL Specification Analysis – Case Study A

ASL Element #

itens

Lines of Specs

Data Entities 6 46

Data Entity Clusters 3 6

56

Data Enumeration 1 1

Context Actors 3 3

Use-Cases 6 35

Custom Actions for use-cases 1 1

Other elements - 6

 98

Generated in M2M transformation, even though not widely used and containing some repeated code,

the use-cases interfaces contain: 650 lines of specs evenly divided in 6 files for each use-case. 2 of

the 6 files had interfaces for the entity “e_Post” and contained repeated code (110 lines of code each).

For the demonstration in section 5.1, we used 22 lines that allow the specification of search, filter and

visualization fields of Posts in MyTinyBlog and impact the subsequent transformation (M2C). This

corresponds to 20% of the lines of code, regarding posts (110).

The M2C transformation for MTB resulted in a folder named “Django” and its structure is identical to

the structure presented in Chapter 5 – Figure 10.

This is the analysis of the folder over the files that were generated in ITLingo Studio:

Figure 14 - Analysis of the generated files (CLOC)

57

Figure 15 - Analysis of deployed MyTinyBlog files (CLOC)

Table 11- MyTinyBlog lines of code statistics

MyTinyBlog

ASL Specifications Application

Manual Generated Manual Generated (CLOC) Deployed (CLOC)

98 650 5 287 354

The code generation ratio through the ASL Approach is 287 (Application Generated (CLOC)) / 98

(Manual ASL Specifications) = 2.92 (almost triplicated)

After 5 lines manually changed and the deployment in a Windows machine, the MyTinyBlog has a total

of 354 lines of code, so the coverage of the ASL Approach is 287/354 = 81%

6.2. Case Study B: the RiverCure Portal

The second study case for the ASL approach is the RiverCure Portal (RCP) which main goal is to

improve water resources management and habitat protection. By having a solid information system

that collects all the useful data, technicians can reduce uncertainty and improve their hydrodynamic

and morphodynamic mathematical models. A digital platform that could collect and maintain data from

several sources (such as SVARH, HiSTAV and crowdsourcing) is necessary [13].

58

Figure 16 - RiverCure Portal data model (simplified)

Figure 17 - RiverCure Portal Use Cases Diagram (simplified)

RCP is a Django web application and we can divide its flow of operations in 4 main modules: general

information, in which hydro features are the most relevant data; sensors and respective

observations; contexts, complex data entity clusters which main attributes are from the

geographical domain (polylines and points) that should be defined by experts in order to have a

purposeful meaning. Last, but not least, events that depend on the other 3 modules.

The first module contains some information that can be accessed by people that do not perform any

core activities in the RCP, like hydro features, but the management of these elements and others, such

as Cities or Parishes is done by a set of users in the group ‘Managers’.

In the second module, the responsible users belong to the group ‘Sensor Managers’. Currently, the

sensors and respective observations data are not yet provided by any official external system. This

module is thought to be integrated in the future with official information from SVARH (Sistema de

Vigilância e Alerta de Recursos Hídricos). SVARH is a system that allows to know the hydrological

state of Portuguese rivers and dams, like levels laid up volumes and quality of water. Along with that, it

collects relevant meteorological information and allows a better understanding and prediction of the

collected and future data [59]. SVARH is a system that is available to entities related to hydric

resources management and it is essential in ANPC [60] missions which aim to save people and goods

59

upon dangerous events, such as floods [59, 61]. For now, sensor managers create sensors and

respective observations using the RCP interface. They can introduce sensors locations by introducing

coordinates or placing a marker in a map. Both sensors and observations can be uploaded to RCP in

an Excel spreadsheet by a Python script that reads its information and updates the RCP PostgreSQL [

62] database.

This module should be provided more data through the future integration of a web application

(crowdsourcing in Figure 17) developed in Python by Jorge Pereira [63]. Upon its integration, all RCP

users, including visitors shall have access to a photo gallery and should be able to submit their own

photos. These photos provide information that includes metadata and an estimation of flood risk by

measuring water heights [63].

RCP contexts are managed by Context Administrators and Context Managers. The first group of users

can create a context from scratch and assign permissions to other Context Administrators or

Managers related to the contexts they “own”. Contexts are constituted by meta-data such as name,

code or hydro feature, and their geographical elements is not only their most important part but also

the RCP most distinguished feature. Users have the option to upload information such as digital model

terrain (DTM), domain, alignments, refinements, boundaries, and contour lines for each context. On

the other hand, they can create and manipulate these elements in RCP itself [64]. After

uploading/creating their context manually, they can associate existing sensors to the context boundary

points and assert its validation through a button (e.g. one context must have a domain). Once it is

validated, the context can be chosen to generate a mesh and to be target in events, such as

simulation events through HiSTAV.

HiSTAV is a high-resolution simulation tool that uses a 2DH (two-dimensional horizontal) mathematical

model based on shallow water equations featuring dynamic bed geometries and sediment transport to

simulate fluvial and estuarine flows [13, 65]. This tool allows the forecasting of an overland tsunami

and assists in the decision-making process regarding water-related hazards [13, 65].

The flow of operations in HiSTAV can be divided in 3 steps [13]: in the first step, a pre-processing tool

prepares the data that is going to be applied in the model. The HiSTAV receives data inputs from RCP

such as: initial conditions, boundary conditions, physical constants. Context Administrators and

Managers can generate a mesh, from a context detail page when the necessary inputs are defined

and validated. At this point, users who belong to the group Context Event Managers can procced to

request a simulation in HiSTAV by creating an event for the context (2nd step). The simulation request

is sent through a virtual private network (VPN) that connects the RCP server and the HiSTAV [64]. A

simulation can take a long time depending on the complexity of the data being processed and

generates output files that can be post-processed by tools such as ParaView [66]. In the third step: the

RCP receives the simulation results from HiSTAV and the user responsible for this simulation can

access and interpret the simulation resulting files using the tool ParaView Web Visualizer [67].

60

The BPMN diagram displayed in Figure 18 represents the described activities from the moment a

context is created and a simulation for it ends. Due to the existence of different types of users in RCP,

we consider a “Super User” that can perform all the activities to simplify this representation:

Figure 18 - Activities diagram of Context creation (in BPMN)

6.2.1. RiverCure Main Challenges

RiverCure Portal is distinct from all the previous study cases in ITLingo. It is very different from

MyTinyBlog, but also the ‘BillingSystem’, the most iconic study case in RSL [11]. It contains lots of data

entities and some of them have new data attributes types (e.g. geographical attributes).

There are several challenges in this project. One of the main ones is the existence of several and

different stakeholders. These stakeholders have different knowledge, impacting the RiverCure Portal

development in different ways. They come from different departments and areas, such as Civil

Engineering and Information Systems.

The data provided by some sources can be a problem because currently standards are not well

defined and used in the involved organizations. One example is the geographical coordinates for

hydrometric sensors, one of the most important type of entities in this project.

Another challenge is the fact that data is needs to be sent and processed by external systems, such

as HiSTAV and that increases the complexity of the development.

Some of the RiverCure use-case actions are not found in the previous study cases, which also leads

to a richer set of permissions and groups of actors. This is observed in some of the permissions that

are single object specific and not entity specific. Finally, the ending system can have a serious impact

both in academic investigation and society, supporting how authorities can forecast and act upon

natural events.

This is part of the ASL Specification for RiverCure Portal, based in a RSL specification previously

developed by Marta Gonzalez [13] and that was target of improvements and refinements throughout

the development of the web application, due to the complexity of the product being developed and the

fruitful discussions that happened during the development with different stakeholders. The

interoperability between the two languages (RSL and ASL) made the task of converting the system

into ASL easier.

61

6.2.2. M2C Transformations for RCP
//Sensors: General Sensor, e_FixedInSituSensor, e_WeatherSensor, e_PhotoSensor

DataEnumeration SensorKind "Sensor Kind" values ("HydrometricSensor", "WeatherSensor",
"SocialNetworkScanner", "HumanSensor", "TBD Sensor")

DataEnumeration SensorModalityKind "Sensor Modality Kind" values ("PhysicalFixed",
"PhysicalMobile", "DigitalSocialNetworkScanner", "DigitalHumanUpload")

DataEnumeration MetricKind "Metric" values ("Sec", "Min", "Hour", "Day", "Week", "Month",
"Year")

DataEntity e_Sensor "Sensor": Master [
 attribute id "Id": Integer [constraints (PrimaryKey)]
 attribute code "code": String [constraints (NotNull Unique)]
 attribute Name "name": String [constraints (NotNull)]
 attribute type "Type": DataEnumeration SensorKind [constraints (NotNull)]
 attribute modalityType "Modality Type": DataEnumeration SensorModalityKind [constraints
(NotNull)]
 attribute Description "Description": Text
 attribute Version "Version": String
 attribute responsible "User Responsible": Integer [constraints (NotNull ForeignKey(e_User))]
 attribute geom "Geometry": GeoPoint

// FixedInSituSensor
 attribute recRhythmValue "Recording rhythm value": Integer []
 attribute recRhythmMetric "Recording rhythm metric": DataEnumeration MetricKind

// HydrometricSensor
 attribute zeroLevelScale "Zero level scale": Decimal

// WeatherSensor
 attribute maxRange "Max range": Integer
 attribute PRF "Pulse repetition frequency (PRF)": Integer
 attribute recRhythm "Recording rhythm": String

// PhotoSensor
 attribute isSocialNetwork "is from a social network": Boolean [defaultValue "False"]
 attribute isUpload "is from an upload": Boolean [defaultValue "False"]
 attribute source "Source": String
 attribute url "URL": URL
 attribute isAgreeTerms "is agreed with terms and conditions": Boolean [defaultValue "True"]]

Spec 24 - ASL Specification for the data entity regarding sensors (e_Sensor) and respective attributes

SENSORKIND_CHOICES = (('HydrometricSensor','Hydrometric Sensor'), ('WeatherSensor','Weather
Sensor'), ('SocialNetworkScanner','Social Network Scanner'), ('HumanSensor','Human Sensor'),
('TBDSensor','TBD Sensor'),)

SENSORMODALITYKIND_CHOICES = (('PhysicalFixed', 'Physical Fixed'), ('PhysicalMobile',
'Physical Mobile'), ('DigitalSocialNetworkScanner','Digital Social Network Scanner'),
('DigitalHumanUpload','Digital Human Upload'),)

METRICKIND_CHOICES = (('sec','Sec'), ('min','Min'), ('hour','Hour'), ('day','Day'),
('week','Week'), ('month','Month'), ('year','Year'),)

class e_Sensor(models.Model):

 code = models.CharField(max_length=20)

 Name = models.CharField(max_length=20)

 type = models.CharField(max_length=15, choices=SENSORKIND_CHOICES)

 modalityType = models.CharField(max_length=15, choices=SENSORMODALITYKIND_CHOICES)

 Description = models.TextField()

 Version = models.CharField(max_length=20)

 responsible = models.ForeignKey(User, on_delete=models.CASCADE,
related_name='e_Sensor_responsible')

 geom = models.PointField()

62

 recRhythmValue = models.IntegerField()

 recRhythmMetric = models.CharField(max_length=15, choices=METRICKIND_CHOICES)

 zeroLevelScale = models.DecimalField(max_digits=5, decimal_places=2)

 maxRange = models.IntegerField()

 PRF = models.IntegerField()

 recRhythm = models.CharField(max_length=20)

 isSocialNetwork = models.BooleanField()

 isUpload = models.BooleanField()

 source = models.CharField(max_length=20)

 url = models.URLField(max_length=200)

 isAgreeTerms = models.BooleanField()

Spec 25 - Example of a final model in Django for the Sensors entities

This is an example of a specification for use-cases about sensors in ASL for RCP. There is not a single

way to write use-cases and there could be shorter ways of specifying the same actions, but the

amount of entities, clusters, use-cases and actors in this study case makes a more structured

specification necessary. We chose to group some of the use-cases through extension points in order

to improve the legibility and to make changes easier when it comes to the use-cases and involved

entities.

DataEntityCluster ec_Sensor "Sensor Simple": Master [main e_Sensor]
DataEntityCluster ec_SensorComplete "Sensor": Master [main e_Sensor child e_SensorObservation]

ContextActor aU_SensorsManager "SensorsManager": User [description "manages sensors"]

UseCase uc_7_ManageSensors "Manage sensors": EntitiesBrowse [
 actorInitiates aU_SensorsManager
 dataEntity ec_Sensor
 actions aRead]

UseCase uc_7_1_ManageSensor "Manage a single sensor": EntitiesManage [
 actorInitiates aU_SensorsManager
 dataEntity ec_SensorComplete
 actions aCreate, aRead, aUpdate, aDelete
 extensionPoints xp_ManageSensorData]

UseCase uc_7_1_1_ManageSensorData "Manage Sensor Observations": EntitiesManage [
 actorInitiates aU_SensorsManager
 dataEntity e_SensorObservation
 actions aCreate, aRead, aUpdate, aDelete
 extends uc_7_1_ManageSensor onExtensionPoint uc_7_1_ManageSensor.xp_ManageSensorData]

Spec 26. Actors and Use Cases (regarding sensors in RCP)

from django.contrib.auth.models import Group
from django.contrib.auth.models import Permission
from django.contrib.auth.models import User

aU_SensorsManager_group = Group(name='aU_SensorsManager_group')
aU_SensorsManager_group.save()

user = User.objects.create_user('aU_SensorsManager', password='password')
user.is_staff=True
user.save()
aU_SensorsManager_group.user_set.add(user)

permission_aRead = Permission.objects.get(codename='view_e_sensor')

aU_SensorsManager_group.permissions.add(permission_aRead)

63

permission_aCreate = Permission.objects.get(codename='add_e_sensor')
permission_aRead = Permission.objects.get(codename='view_e_sensor')
permission_aUpdate = Permission.objects.get(codename='change_e_sensor')
permission_aDelete = Permission.objects.get(codename='delete_e_sensor')

aU_SensorsManager_group.permissions.add(permission_aCreate)
aU_SensorsManager_group.permissions.add(permission_aRead)
aU_SensorsManager_group.permissions.add(permission_aUpdate)
aU_SensorsManager_group.permissions.add(permission_aDelete)

permission_aCreate = Permission.objects.get(codename='add_e_sensorobservation')
permission_aRead = Permission.objects.get(codename='view_e_sensorobservation')
permission_aUpdate = Permission.objects.get(codename='change_e_sensorobservation')
permission_aDelete = Permission.objects.get(codename='delete_e_sensorobservation')

aU_SensorsManager_group.permissions.add(permission_aCreate)
aU_SensorsManager_group.permissions.add(permission_aRead)
aU_SensorsManager_group.permissions.add(permission_aUpdate)
aU_SensorsManager_group.permissions.add(permission_aDelete)

Spec 27. Script to create groups and assign permissions (regarding sensors in RCP)

Trough Spec 27., we can notice that our organization of use-cases specification generated a

duplicated permission (‘view_e_sensor ‘) in our script, but that will not cause any undesired effect

when we run this script.

RCP pages regarding sensors

The RCP pages represented in the next Figures are accessible to users who belong to the group

‘SensorManager’. Users who don’t belong to this group will not be able to perform most of the actions

here displayed and the interface will be properly adjusted to them (visitors can’t access these pages at

all).

This is the main page of the sensors’ module. From here, a sensor manager can consult information

regarding sensors registered in RCP, search, filter or order them by certain fields. They also can

access individual sensors, its observations, add or upload a new sensor.

Figure 19 - Sensors List in RiverCure Portal

Accessing a sensor detail page, sensor managers they can access more information and perform new

operations, such as editing or deleting the sensor.

64

Figure 20 - Sensors detail page in RiverCure Portal

Using the button with the label “Observations” we navigate to a page that contains a list table with

observations that belong to this sensor:

Figure 21 - Sensor Observations Page in RiverCure Portal

Similarly, to the sensors, each sensor observation has a page with detailed information:

65

Figure 22 - Sensor observations detail page in RiverCure Portal

6.2.3. Impact of the ASL approach in the development

In RCP, the ASL approach had the most impact in the data model’s definition. It also helped identifying

different groups of users and limiting their access to perform actions in different modules through a

python script (Spec. 27).

On the other hand, the impact it had defining the logic and presentation layers (views, urls, templates)

was minimal because most of the actions over a single object was often related to other objects and

parts of the application (e.g. relations between contexts and sensors), or even other systems, like

HiSTAV. The Django class-based views did not cover the necessary actions to define geographical

elements (e.g. context domains, boundaries, etc.) or uploading data from files (e.g. sensors’

observations). Django CBV ended up being used at some cases, but it was often necessary to

customize them following a standard practice of code production by the developers. Nevertheless,

when it came to asserting the permissions for views and templates, the use-cases in ASL were an

important source of information. Even though, data entities were registered in order to be used in the

Django Admin interface, it is not a central part for this project after it has been deployed, except for

administrators or managers when accessing certain entities that are not available in the RCP front-

end, like Cities or Parishes, which makes the admin.py files less relevant for most of the RCP users.

Once again, using CLOC, we can check how many lines of Python code were generated in the model-

to-code transformation. The RCP specification in ITLingo Studio suffered lots of modifications during

this project and usually had a higher number of lines (that made it easy to work with and interact with

stakeholders when necessary), but in order to display the actual M2M and M2C transformations, we

had a .asl file with approximately 520 lines.

Table 12 - ASL Specification Analysis – Case Study B

ASL Element # itens Lines of Code

Data Entities 19 213

Data Entity Clusters 9 9

Data Enumeration 19 19

66

Context Actors 7 7

Use-Cases 19 117

Data Attribute Types 4 4

Other elements - 21

Total 390

Generated in our M2M transformation, even though not widely used and containing some repeated

code, the use-cases interfaces contain 2090 lines of code evenly divided in 19 files for each use-case.

We did not use these components for specification of searching, filtering and visualizing fields like we

did for MyTinyBlog.

The M2C transformation for RiverCure Portal resulted in a folder named “Django” and its structure is

identical to the structure presented in Chapter 5 – Figure 10. The biggest influence of ASL in RCP is

in: (i) the models; (ii) scripts for groups/permissions; (iii) admin.py files (modified); (iv) users’ folder. We

analyze these files with the tool CLOC after the M2C transformation in ITLingo Studio and then

compare it to a recent version of the RCP that has been deployed.

This is the analysis of the folder over the files that were generated in ITLingo Studio:

Figure 23 - Figure 14 - Analysis of the generated files for RCP (CLOC)

Figure 24 - Analysis of the RCP after deployment (CLOC)

67

Table 13 - RiverCure Portal - lines of code statistics

RiverCure Portal

ASL Specifications Application

Manual Generated Manual Generated

(CLOC)

Deployed Files

(CLOC)

390 2090 14289 1023 15312

The code generation ratio through the ASL Approach is 1023 (Application Generated (CLOC)) / 390

(Initial ASL Specifications) = 2,62 (more than the double).

After all the manual code changes for the development and the deployment in a Windows Server, the

MyTinyBlog has a total of 15312 lines of code, so the coverage of the ASL Approach is 1023/15312 =

6%.

The difference of the values between the MyTinyBlog (81%) and RiverCure Portal (6%) was expected

since the development of RiverCure Portal was mostly achieved through traditional coding practices

except for some parts as we have explained in this section.

6.3. Comparison with the Related Work

Mendix and Outsystems platforms surpass ASL transformations by providing a user-friendly interface

that allows development of applications with features and customization aspects. ASL provides a good

start for many situations due to its flexibility and extensibility. Using a lower code-level, it can be

challenging for people that do not usually work with programming languages and other IT tools. Still, it

may simplify the communication of the software application’s vision. From the generated application,

we still have control over the necessary code to scale the web application.

Like ASL, EMF on Rails it accelerates the generation of CRUD operations on data models [45]. A

difference of our project and EMF on Rails transformations is when their impact is more visible, as ASL

promotes a better understanding of requirements at the start and final specifications through interfaces

and use-cases specifications. ADM (Ariadne Development Method) is another approach with the

primary goal of accelerating the development of web systems [68]. Like ASL, ADM offers constructs to

specify these systems making use of Labyrinth++. This tool allows the specification of all the

components for web systems and includes a pattern language. Those patterns are organized

according to the nature of the problem they solve and make the development of solution easier for

less-experienced web developers [68].

68

Like RSL, but on the contrary of IFML, the concrete syntax of ASL specs are textual and consequently

more natural to be rigorously defined and validated. ASL adapts the XIS smart approach, where UI

models can be generated from high-level models.

Unlike XIS, ASL can allow to specify and to automatize the process of creating different types of users,

assigning distinct roles and respective permissions. Due to its platform-independent and human-

friendly text-based syntax, ASL specifications are more open and easier to be manipulated and

interoperated comparing with the options referred above, namely the commercial solutions. One

relevant work to explore in the future is to verify if ASL could be suitable to support interoperability

between the models developed with these low-code or no-code platforms.

69

70

7. Conclusion

This dissertation proposes an approach that intends to address the followings issues: How to combine

the specification of requirements and the design of business applications’ in an integrated way and

how to increase the productivity of developers by automatizing the production of artifacts like technical

documentation and software code. The ASL-based approach combines the disciplines of requirements

engineering and model-driven engineering. This approach is based on existing solutions, namely

those mostly related to the RSL and IFML languages, in which the ASL design is based. ASL allows to

rigorously specify requirements (namely use cases with their relationships with actors and data

entities), but also to specify user interfaces of applications. We show that this language can be

properly supported by tools like the ITLingo Studio, also model-to-model and model-to-code

transformations, and thus can considerably improve the quality and productivity of both the

requirements definition and the development of these applications. We support our proposal and

discussion with two case studies, developed on top of a popular Python based framework, the Django

framework.

7.1. Contributions

To achieve the objectives of this research, the most important contributions of this dissertation can be

summarized as follows: (i) updates and tests of the ASL Language, developed in Xtext framework by

Professor Alberto Rodrigues da Silva, the original creator of the language; (ii) development of a

cohesive set of Xtend files that allows to implement a first generation of the M2M and M2C

transformations, respectively from ASL specifications and into new ASL specifications and into Django

artifacts; (iii) along with Jorge Marques, design and development of the RiverCure Portal (RCP), which

main goal is to improve water resources management and protection. I focused in the development of

the models, CRUD operations, groups and permissions for each module using ASL M2C

transformations; (iv) publication of a scientific article in QUATIC 2020 and its presentation at 10th

September [72].

7.2. Future Work

Future research shall consider improving the customization of either the specification and generation

of the business applications and shall specify and develop more cases studies. The integration or

combination with other popular software (e.g., NodeJS, JavaScript frameworks, .NET) and low-code

frameworks (e.g., Mendix, OutSystems) can also be considered as they may bring more flexibility to

this solution.

As seen in Chapter 6, we were able to generate many code files that contain namely ASL

specifications and Python code, but there were repeated blocks of specifications that ended up not

being viable with the complex features of case study B, such as generated ASL UI specifications. This

shows that the ASL M2M transformation needs to be optimized. These improvements can be dealt

71

with by analyzing the ASL model-to-model process and finding new patterns of model-to-code

transformations for other languages and frameworks.

Since the current version of the IT-Lingo-Studio is not a friendly tool to unexperienced users or people

who have no IT background, a more interactive development could be considered namely to generate

parts of web applications, similarly to some of the related work approaches.

72

73

Appendix A

Generated ASL UIs for MyTinyBlog Use Case uc_2_ManagePosts "Manage Blog Posts"

Package p_MyTinyBlog

Import p_MyTinyBlog.MyTinyBlog
Import p_MyTinyBlog.MyTinyBlog.*

System UI_MyTinyBlog : Application []

//UIContainer aligned with uc_2_ManagePosts
//MAIN WINDOW UI

UIContainer uiCt_e_Post : Window [

 component uiCo_e_PostList : List: List_Table [
 isScrollable
 dataBinding e_Post [
 visualizationAttributes e_Post.author, e_Post.category, e_Post.title,
 sortAttributes e_Post.author, e_Post.category, e_Post.title,
 //orderBy e_Post.author e_Post.author e_Post.author DESC
]

 part uip_checkselect: Field: Field_Input : WFC_CheckBox
]

component uiCo_Filter_e_Post: Details [
 dataBinding e_Post [
 filterAttributes , e_Post.author, e_Post.category, e_Post.title
]
]

 component uiCo_Search_e_Post: Details [
 dataBinding e_Post [
 searchAttributes , e_Post.author, e_Post.category, e_Post.title
]
]

component uiCo_Actions: Menu [

 event uiev_create "Create e_Post" : Submit: Submit_Create [navigationFlowTo
uiCt_e_PostCreator]
 event uiev_delete "Delete e_Post" : Submit: Submit_Delete
 event uiev_update "Edit" : Submit: Submit_Update [navigationFlowTo uiCt_e_PostCreator]
]

]
//UC Type: EntitiesManage

//UI FOR SEARCH

component uiCo_Search: Details [
 part uip_search: Field: Field_Output: WFC_Label [Text defaultValue "Search:"]
 part uip_search_e_Post: Field: Field_Input : WFC_Text [Text defaultValue "Search e_Post"]
 event uiev_search "Search": Submit: Submit_Ok
]
// UI FOR DELETE

UIContainer uiCt_Delete_Warning : Window [
 component uiCo_DeleteWarning : Dialog : Dialog_Warning [

 part uip_Delete_Warning_Text: Field: Field_Output [Text defaultValue "Are you sure you
want to delete e_Post?"]
 event uiev_delete : Submit: Submit_Delete [navigationFlowTo uiCt_e_Post]
 event uiev_cancel : Submit: Submit_Cancel [navigationFlowTo uiCt_e_Post]
]
]

UIContainer uiCt_Delete_Confirmation : Window : Window_Modal [
 component uiCo_Delete_Message : Dialog : Dialog_Info [
 part uip_Delete_Confirmation_Text: Field: Field_Output [Text defaultValue "e_Post
Deleted"]

74

 event uiev_confirm: Submit : Submit_Ok [navigationFlowTo uiCt_e_Post]
]
]

UIContainer uiCt_e_PostReader : Window: Window_Modal[

 component uiCo_Edite_Post : Form : Form_Simple [
 part uip_authorLabel : Field: Field_Output : WFC_Label [Text defaultValue "author"]
 part uip_authorValue : Field: Field_Input : WFC_Text[Text defaultValue "Editable Value"]

 part uip_categoryLabel : Field: Field_Output : WFC_Label [Text defaultValue "category"]
 part uip_categoryValue : Field: Field_Input : WFC_Text[Text defaultValue "Editable Value"]

 part uip_dateLabel : Field: Field_Output : WFC_Label [Text defaultValue "date"]
 part uip_dateValue : Field: Field_Input : WFC_Text[Text defaultValue "Editable Value"]
 part uip_BodyLabel : Field: Field_Output : WFC_Label [Text defaultValue "Body"]
 part uip_BodyValue : Field: Field_Input : WFC_Text[Text defaultValue "Editable Value"]
 part uip_titleLabel : Field: Field_Output : WFC_Label [Text defaultValue "title"]
 part uip_titleValue : Field: Field_Input : WFC_Text[Text defaultValue "Editable Value"]
 part uip_stateLabel : Field: Field_Output : WFC_Label [Text defaultValue "state"]
 part uip_stateValue : Field: Field_Input : WFC_Text[Text defaultValue "Editable Value"]
]
component uiCo_e_PostNavigationButtons: Details [

 event uiev_beginning_e_Post "Beginning": Submit: Other [navigationFlowTo uiCt_e_PostReader]
 event uiev_previous_e_Post "Previous": Submit: Other [navigationFlowTo uiCt_e_PostReader]
 event uiev_next_e_Post "Next": Submit: Other [navigationFlowTo uiCt_e_PostReader]
 event uiev_end_e_Post "End": Submit: Other [navigationFlowTo uiCt_e_PostReader]
 event uiev_back "Back#: Submit: Other [navigationFlowTo uiCt_e_Post]
]

]
//UI FOR CREATE/UPDATE

 UIContainer uiCt_e_PostCreator : Window : Window_Modal[
 component uiCo_Edite_Post : Form : Form_Simple [
 part uip_authorLabel : Field: Field_Output : WFC_Label [Text defaultValue "author"]
 part uip_authorValue : Field: Field_Input : WFC_Text[Text defaultValue "Editable
Value"]
 part uip_categoryLabel : Field: Field_Output : WFC_Label [Text defaultValue "category"]
 part uip_categoryValue : Field: Field_Input : WFC_Text[Text defaultValue "Editable
Value"]
 part uip_dateLabel : Field: Field_Output : WFC_Label [Text defaultValue "date"]
 part uip_dateValue : Field: Field_Input : WFC_Text[Text defaultValue "Editable Value"]

 part uip_BodyLabel : Field: Field_Output : WFC_Label [Text defaultValue "Body"]
 part uip_BodyValue : Field: Field_Input : WFC_Text[Text defaultValue "Editable Value"]

 part uip_titleLabel : Field: Field_Output : WFC_Label [Text defaultValue "title"]
 part uip_titleValue : Field: Field_Input : WFC_Text[Text defaultValue "Editable Value"]

 part uip_stateLabel : Field: Field_Output : WFC_Label [Text defaultValue "state"]
 part uip_stateValue : Field: Field_Input : WFC_Text[Text defaultValue "Editable Value"]

 event uiev_create "Create e_Post" : Submit : Submit_Create [navigationFlowTo
uiCt_e_Post]
 event uiev_cancel "Cancel e_Post" : Submit : Submit_Cancel [navigationFlowTo
uiCt_e_Post]
]

]

75

Appendix B

RiverCure Portal ASL Specification (complete):

 Package RiverCure
/**
 System definition
**/

System RiverCurePortal "RiverCure Portal" : Application: Application_Web [isFinal
description
"RiverCurePortal shall provide data from different sources, such as SNIRH (APA's system),
photos obtained
from social media and from the simulation tool, HiStav"]

/**
 DataAttributeType
***/
DataAttributeType GeoPoint [description "GeoPoint attribute type (for geospatial data)"]
DataAttributeType GeoPolyline [description "GeoPolyline attribute type (for geospatial data)"]
DataAttributeType GeoPolygon [description "GeoPolygon attribute type (for geospatial data)"]
DataAttributeType GeoRaster [description "GeoRaster attribute type (for geospatial data)"]

/**
 DataEnumerations
***/
DataEnumeration SensorKind "Sensor Kind" values ("HydrometricSensor", "WeatherSensor",
"SocialNetworkScanner", "HumanSensor", "TBD Sensor")
DataEnumeration SensorModalityKind "Sensor Modality Kind" values ("PhysicalFixed ",
"PhysicalMobile", "DigitalSocialNetworkScanner", "DigitalHumanUpload")
DataEnumeration TimeserieType "Timeserie type" values ("Continuous", "Discontinuous",
"Statistical")
DataEnumeration HydroFeatureKind "HydrometricFeature Kind" values ("River", "Estuary", "Lake",
"RiverBasin", "DrainageBasin", "Dam")
DataEnumeration GeometryKind "Geometry Kind" values ("Point", "Polyline", "Polygon")
DataEnumeration SimulationKind "Simulation Kind" values ("Simulation", "Scenario")
DataEnumeration InformationKind "Information Kind" values ("Simulation", "Event", "Sensor",
"Alarm")
DataEnumeration CityKind values ("City", "Town", "Village", "Other")
DataEnumeration OrganizationKind values ("WaterAuthority", "Municipality", "ResearchLab",
"Partner", "Other")
DataEnumeration AlarmPermission "Alarm Permission" values ("Yes", "Yes (only authorities
alarms)", "No", "Depend on secondary role")
DataEnumeration MetricKind "Metric" values ("Sec", "Min", "Hour", "Day", "Week", "Month",
"Year")
DataEnumeration ColourKind "Colour" values ("Red", "Yellow", "Green")
DataEnumeration ContextBoundaryLineKind values ("Input", "Output", "InputOutput")
DataEnumeration ContextBoundaryLineDataKind values ("Depth (H)", "Discharge (Q)", "Velocity
(V)", "Elevation (Z)")
DataEnumeration EventKind values ("Flood", "HeavyPrecipitation", "HydrologicalDrought",
"MeteorologicalDrought", "Hurricane", "Tsunami", "Storm", "LandSlide")
DataEnumeration EventState values ("Announced", "Occurring", "Concluded")
DataEnumeration EventSubKind values ("Forecast", "Hindcast", "Planning")
DataEnumeration AccessRequestState values ("Processing", "Finished")
DataEnumeration ContextUserKind values ("ContextAdmin","ContextManager", "Visitor")

/**
 DataEntities
***/

/**
 General geographic entities, e.g. Country, District, ...
***/
DataEntity e_Country "Country" : Reference [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute code "Code ISO-2" : Regex [constraints(NotNull Unique Check
(RegexValidationExpression "r'^[A-Z][A-Z]"))]
 attribute Name "Name" : String [constraints(NotNull Unique)]
 attribute capital "Capital" : Integer [constraints(NotNull Unique ForeignKey(e_City))]
 attribute geom "Geometry" : GeoPolygon
 constraints (showAs (Name))
]

76

DataEntity e_District "District" : Reference [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute code "Di Code" : Regex [constraints(NotNull Unique Check
(RegexValidationExpression "r'^PT[0-9][0-9]"))]
 attribute Name "Name" : String [constraints(NotNull Unique)]
 attribute capital "Capital" : Integer [constraints(NotNull Unique ForeignKey(e_City))]
 attribute country "Country" : Integer [constraints(NotNull ForeignKey(e_Country))]
 attribute geom "Geometry" : GeoPolygon
 constraints (showAs (Name))
]

DataEntity e_Municipality "Municipality" : Reference [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute code "Dico Code" : Regex [constraints(NotNull Unique)]
 attribute Name "Name" : String [constraints(NotNull Unique)]
 attribute district "District" : Integer [constraints(NotNull ForeignKey(e_District))]
 attribute capital "Capital" : Integer [constraints(NotNull Unique ForeignKey(e_City))]
 attribute geom "Geometry" : GeoPolygon
 constraints (showAs (Name))
]

DataEntity e_Parish "Parish" : Reference [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute code "Dicofre Code" : Regex [constraints(NotNull Unique)]
 attribute Name "Parish name" : String [constraints(NotNull)]
 attribute municipality "Municipality" : Integer [constraints(NotNull ForeignKey
(e_Municipality))]
 attribute geom "Geometry" : GeoPolygon
 constraints (showAs (Name))
]

DataEntity e_City "City" : Reference [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute code "Code" : Regex [constraints(NotNull)]
 attribute Name "Name" : String [constraints(NotNull)]
 attribute type "Type" : DataEnumeration CityKind [constraints(NotNull)]
 attribute municipality "Municipality" : Integer [constraints(NotNull ForeignKey
(e_Municipality))]
 attribute geom "Geometry" : GeoPoint
 constraints (showAs (Name))
]

// HydroFeature: River, Lake, RiverBasin, ...
DataEntity e_HydroFeature "Hydrometric feature" : Master [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute code "HydroFeature Code" : Regex [constraints(NotNull Unique)]
 attribute Name "Name" : String [constraints(NotNull)]
 attribute type "Type" : DataEnumeration HydroFeatureKind [constraints(NotNull)]
// attribute shape "Shape" : DataEnumeration GeometryKind [constraints(NotNull)]
// attribute dico "Municipality code" : Regex [constraints(NotNull Unique ForeignKey(
e_Municipality))]

 // just for e_RiverBasin, Dam, ...
 attribute area "Area" : Decimal
 //attribute alarmName "Alarm name" : String [constraints(ForeignKey (e_Alarm))]
 // just for e_River, ...
 attribute length "Length" : Decimal
 //attribute hierarchy "Hierarchy" : String

 attribute PartOf "PartOf" : Integer [constraints(ForeignKey (e_HydroFeature))]
 attribute flowsInto "Flows Into" : Integer [constraints(ForeignKey (e_HydroFeature))]

 attribute geom "Geometry" : GeoPolygon
 constraints (showAs (Name))
]

/**
 Organization entity: Organization
***/
DataEntity e_Organization "Entity" : Master [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute Name "Name" : String [constraints(NotNull Unique)]
 attribute type "Type" : DataEnumeration OrganizationKind [constraints(NotNull)]
 attribute sector "Sector" : String [constraints(NotNull)]

 attribute address "Address" : String [constraints(multiplicity "0..2" Encrypted)]
 attribute city "City" : Integer [constraints(ForeignKey(e_City))]

77

 attribute country "Country" : Integer [constraints(NotNull Encrypted ForeignKey(e_Country))]
 attribute email "Email" : Email [constraints(multiplicity "0..2" Encrypted)]
 attribute phone "Telephone" : String [constraints(multiplicity "0..2" Encrypted)]

 attribute geom "Geometry" : GeoPoint [constraints (NotNull)]
 constraints (showAs (Name))
]

/**
 Users: General Sensor, e_FixedInSituSensor, e_WeatherSensor, e_PhotoSensor
***/
DataEntity e_User "User" : Master [
 //attribute id "ID" : Integer [constraints (PrimaryKey)]
 attribute login "Login" : String [constraints (NotNull Unique)]
 attribute password "Password" : Regex [constraints (NotNull Encrypted Check
(RegexValidationExpression "r'[A-Za-z0-9@#$]{6,12}'"))]
 attribute Name "Name" : Text [constraints (NotNull Encrypted)]
 attribute email "Main Email" : Email [constraints (Unique Encrypted)]
 //attribute state "State" : DataEnumeration UserState [constraints(NotNull)]
 // attribute userProfileID "User Profile" : Integer [constraints (NotNull ForeignKey
(e_UserProfile onDelete PROTECT))]

 attribute emails "Email address(es)" : Email [constraints(multiplicity "0..3" NotNull Unique
Encrypted)]
 attribute phoneNumbers "Telephone number(s)" : Regex [constraints(multiplicity "0..3"
NotNull Unique Encrypted Check (RegexValidationExpression "r'^([0-9]{9}"))]
 constraints (showAs (login))
 tag (name "tenant" value "user")
]

/**
 Sensors: General Sensor, e_FixedInSituSensor, e_WeatherSensor, e_PhotoSensor
***/
DataEntity e_Sensor "Sensor" : Master [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute code "code" : String [constraints (NotNull Unique)]
 attribute Name "name" : String [constraints (NotNull)]
 attribute type "Type" : DataEnumeration SensorKind [constraints (NotNull)]
 attribute modalityType "Modality Type" : DataEnumeration SensorModalityKind [constraints
(NotNull)]
 attribute Description "Description" : Text
 attribute Version "Version" : String
 attribute responsible "User Responsible" : Integer [constraints(NotNull ForeignKey(e_User))]
 attribute geom "Geometry" : GeoPoint

// FixedInSituSensor
 attribute recRhythmValue "Recording rhythm value" : Integer []
 attribute recRhythmMetric "Recording rhythm metric" : DataEnumeration MetricKind

// HydrometricSensor
 attribute zeroLevelScale "Zero level scale" : Decimal

// WeatherSensor
 attribute maxRange "Max range" : Integer
 attribute PRF "Pulse repetition frequency (PRF)" : Integer
 attribute recRhythm "Recording rhythm" : String

// PhotoSensor
 attribute isSocialNetwork "is from a social network" : Boolean [defaultValue "False"]
 attribute isUpload "is from an upload" : Boolean [defaultValue "False"]
 attribute source "Source" : String
 attribute url "URL" : URL
 attribute isAgreeTerms "is agreed with terms and conditions" : Boolean [defaultValue "True"]
]

// SensorAlarm
DataEntity e_SensorAlarm "Sensor Alarm" : Master [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute sensorId "Sensor" : Integer [constraints (NotNull ForeignKey (e_Sensor))]
 attribute Name "Name" : String [constraints (NotNull)]
 attribute Action "Action" : String
 attribute Description "Description" : Text
 attribute colour "Colour" : DataEnumeration ColourKind [constraints (NotNull Derived
("TBD"))]

78

 attribute redMinthreshold "Low threshold" : Decimal [constraints (NotNull)]
 attribute redMaxthreshold "Up threshold" : Decimal [constraints (NotNull)]
 attribute yellowMinthreshold "Low threshold" : Decimal [constraints (NotNull)]
 attribute yellowMaxthreshold "Up threshold" : Decimal [constraints (NotNull)]
 attribute greenMinthreshold "Low threshold" : Decimal [constraints (NotNull)]
 attribute greenMaxthreshold "Up threshold" : Decimal [constraints (NotNull)]
]

DataEntity e_SensorObservation "Sensor observation" : Document [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute sensorId "Sensor" : Integer [constraints (NotNull ForeignKey (e_Sensor))]
 //attribute sensorType "Sensor Type" : DataEnumeration SensorKind [constraints (Derived
("sensorId.type"))]

// attribute startDatetime "Start Datetime" : Datetime [constraints (NotNull)]
// attribute endDatetime "End Datetime" : Datetime [constraints (NotNull)]
 attribute date "Date" : Date[constraints (NotNull)]

 attribute time "time" : Time [constraints (NotNull)]

 // TBD

 attribute data "Data" : String //dados

 // HydrometricSensor
 attribute depth : Double // profundidade (m)
 attribute discharge : Double // caudal (m3/seg)
 attribute volume : Double // volume (m3)
 attribute velocity : Double // velocidade (m/seg)
 attribute elevation : Double // cota (m)

 // WeatherSensorObservation
 attribute rainfall : Double // precipitação (m)
 attribute soilWaterContent : Double // teor em água do solo (%)

 //HumanSensorObservation
 attribute photo : Image
 attribute geom "Geometry" : GeoPoint [constraints (NotNull)]
 attribute elevation : Double [constraints (Derived ("ML techniques from Photo"))] //
cota (m3)
 attribute velocity : Double [constraints (Derived ("ML techniques from Photo"))] //
velocidade (m/seg)

 //RadarSensorObservation
 // Mapa de valores
 attribute rainfall : Double // precipitação (m)

 //TBD SensorObservation
 attribute isCummulative "is Cummulative" : Boolean [defaultValue "False"]
 attribute nValueTotal "Total number of values" : Integer [constraints (NotNull)]

 //e_PhotoSensorObservation
 attribute url "URL" : URL
 attribute fileName "File name" : String
 attribute height "Height" : Integer
 attribute horizontalRes "Horizontal resolution" : Integer
 attribute verticalRes "Vertical resolution" : Integer
 attribute nBits "Number of bits" : Integer
 attribute width "Width" : Integer
 attribute fileFormat "File format" : String
]

/**
 Core entities: Context, ContextBoundaryLine, ... ContextOrganization,
ContextOrganizationUser, ...
***/
DataEntity e_Context "Context" : Master [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute code "Code" : String [constraints(NotNull Unique)]
 attribute Name "Name" : String [constraints(NotNull Unique)]
 // attribute country "Country" : Integer [constraints(NotNull ForeignKey(e_Country))]
 attribute hydroFeature "HydroFeature" : Integer [constraints(NotNull
ForeignKey(e_HydroFeature))]

 //attribute geomExternalBoundary : Integer [constraints(NotNull ForeignKey(e_Geometry))]

79

 //the context shall have internal and external boundaries, an alignment line, and several
boundary-lines
 attribute geomExternalBoundary "ExternalBoundary Geometry" : GeoPolygon
 // aka Domain
 attribute CLExternalBoundary "ExternalBoundary CL" : Double
 // aka Domain's CL, characteristic lenght

 attribute geomInternalBoundary "InternalBoundary Geometry" : GeoPolygon
[constraints(multiplicity"1..*")] // aka Refinement
 attribute CLInternalBoundary "InternalBoundary CL" : Double
[constraints(multiplicity"1..*")] // aka Refinement's CL

 attribute geomAlignment "Alignment Geometry" : GeoPolyline
[constraints(multiplicity"1..*")] // aka Alignment
 attribute CLAlignment "Alignment CL" : Double [constraints(multiplicity"1..*")]
 // Alignment's CL

 attribute userResponsible "User Responsible" : Integer [constraints(NotNull
ForeignKey(e_User))]

 attribute isPublic "Context Access Restrictions" : Boolean [defaultValue "False"
constraints (NotNull)]

 tag (name "tenant-main" value "true")

]

DataEntity e_ContextBoundaryLine : Master [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute context "Context" : Integer [constraints(NotNull ForeignKey(e_Context))]
 attribute geom : GeoPolyline [constraints (NotNull Check (superimposed "must be a line
superimposed on context.geomExternalBoundary"))]
 attribute type : DataEnumeration ContextBoundaryLineKind [constraints (NotNull)]
 attribute dataType: DataEnumeration ContextBoundaryLineDataKind
]

DataEntity e_ContextBoundaryPoint : Master [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute contextBoundaryLine "Context BoundaryLine" : Integer [constraints(NotNull
ForeignKey(e_ContextBoundaryLine))]
 attribute geom : GeoPoint [constraints (NotNull Check (superimposed "must be a point
superimposed on e_ContextBoundaryLine.geom"))]
 //attribute Sensor "Sensor" : Integer [constraints(NotNull ForeignKey(e_ContextSensor))]
]

DataEntity e_ContextBoundaryPointSensor : Master [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute point "Context BoundaryPoint" : Integer [constraints(NotNull
ForeignKey(e_ContextBoundaryPoint))]
 attribute Sensor "Sensor" : Integer [constraints(NotNull ForeignKey(e_ContextSensor))]
]

/**
 ContextSensor entity: ContextSensor
***/
DataEntity e_ContextSensor "ContextSensor" : Master [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute context "Context" : Integer [constraints(NotNull ForeignKey(e_Context))]
 attribute Sensor "Sensor" : Integer [constraints(NotNull ForeignKey(e_Sensor))]
 attribute Description "Description" : Text

 attribute associateDatetime "Associate Datetime" : Datetime [constraints(NotNull)]
 attribute associateUser "Associate User" : String [constraints(NotNull ForeignKey (e_User))]
]

/**
 Context's Events
***/

DataEntity e_ContextEvent "Event" : Master [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute context "Context" : Integer [constraints(NotNull ForeignKey(e_Context))]
 attribute Name "Name" : String [constraints (PrimaryKey)]
 attribute type "Event Type" : DataEnumeration EventKind [constraints(NotNull)]
 attribute subType "Event SubType" : DataEnumeration EventSubKind [constraints(NotNull)]
 attribute state "State" : DataEnumeration EventState [constraints(NotNull)]

80

 attribute startDatetime "Start Event" : Datetime [constraints(NotNull)]
 attribute endDatetime "End Event" : Datetime [constraints(Check (ck_datesValidation
"endDatetime >= startDatetime"))]
 attribute Description "Description" : Text

 // Attributes for "Flood Simulation" event, with HiStav
 attribute returnPeriod "Return Period" : Integer // nº of years ...
 attribute warmUp "Warm up" : Boolean
 //attribute simulationType "Simulation Type" : DataEnumeration EventKind
[constraints(NotNull)]

]
/**
 Context's Organizations and Users
***/

//Associated to ContestAccessRequest
DataEntity e_ContextUser "ContextUser" : Parameter [
 attribute id "Id" : Integer [constraints (PrimaryKey)]
 attribute context "Context" : Integer [constraints(NotNull ForeignKey(e_Context))]
 attribute user "User" : Integer [constraints(NotNull ForeignKey(e_User))]
 attribute contextUserRole "User Role" : DataEnumeration ContextUserKind [constraints
(NotNull)]

 tag (name "tenant-detail" value "true")
]

DataEntity e_ContextAccessRequest "Context Request Access" : Parameter [
 attribute context "Context" : Integer [constraints(NotNull ForeignKey(e_Context))]
 attribute access_granted "Access granted": Boolean [defaultValue "False"]
 attribute state "request state" : DataEnumeration AccessRequestState [constraints (NotNull)]
 attribute requestUser "request user" : String [constraints(NotNull ForeignKey(e_User))]
 attribute type "access type" : DataEnumeration ContextUserKind [constraints (NotNull)]
]

/**
 DataEntityClusters
***/

DataEntityCluster ec_Country "Country" : Reference [main e_Country uses e_City]
DataEntityCluster ec_District "District" : Reference [main e_District child e_Municipality
[uses e_City] uses e_City]
DataEntityCluster ec_Municipality "Municipality" : Reference [main e_Municipality child
e_Parish uses e_City]
DataEntityCluster ec_City "City" : Reference [main e_City]
DataEntityCluster ec_Organization "Organization" : Master [main e_Organization uses e_Country]
DataEntityCluster ec_User "User" : Master [main e_User]//child e_UserSettings]
DataEntityCluster ec_Sensor "Sensor Simple" : Master [main e_Sensor]
DataEntityCluster ec_SensorComplete "Sensor" : Master [main e_Sensor child
e_SensorObservation] //child e_SensorAlarm]
DataEntityCluster ec_HydroFeature "HydroFeature" : Master [main e_HydroFeature]

DataEntityCluster ec_ContextEvent "Event" : Master [main e_ContextEvent child e_SensorAlarm]

/**
 Actors view
***/

ContextActor aU_Admin "Administrator" : User [description "manages Users and organizations,
configures settings"]
ContextActor aU_Manager "Manager" : User [description "manages geographic entities (e.g.,
country, city, ..., hydro-feature; creates context"]
ContextActor aU_SensorsManager "SensorsManager" : User [description "manages sensors"]
ContextActor aU_User "User" : User [description "consult general info, see maps with context's
boundary, hydro-features, ..."]
ContextActor aU_ContextAdmin "Context Administrator" : User [description "manage admin
context, namely associate organizations and users"]
ContextActor aU_ContextManager "Context Manager" : User [description "define geo-elements of
the context, associate sensors"]
ContextActor aU_ContextEventManager "Context Event Manager" : User [description "manage
events, simulations"]

UseCase uc_1_ManageUsers "Manage Users" : EntitiesManage [
 actorInitiates aU_Admin
 dataEntity ec_User //Users, Groups, Permissions

81

 actions aCreate, aRead, aUpdate, aDelete

]

UseCase uc_2_ManageOrganizations "Manage Organizations" : EntitiesManage [
 actorInitiates aU_Admin
 dataEntity ec_Organization
 actions aCreate, aRead, aUpdate, aDelete
]

UseCase uc_3_ManageLocations "Manage Locations" : EntitiesManage [
 actorInitiates aU_Manager
]

UseCase uc_3_1_ManageCountries "Manage Countries" : EntitiesManage [
 actorInitiates aU_Manager
 dataEntity ec_Country
 actions aCreate, aRead, aUpdate, aDelete
]

UseCase uc_3_2_ManageCities "Manage Cities" : EntitiesManage [
 actorInitiates aU_Manager
 dataEntity ec_City
 actions aCreate, aRead, aUpdate, aDelete
]

UseCase uc_3_3_ManageMunicipalities "Manage Municipalities" : EntitiesManage [
 actorInitiates aU_Manager
 dataEntity ec_Municipality
 actions aCreate, aRead, aUpdate, aDelete
]

UseCase uc_3_4_ManageParishes "Manage Parishes" : EntitiesManage [
 actorInitiates aU_Manager
 dataEntity e_Parish
 actions aCreate, aRead, aUpdate, aDelete
]

UseCase uc_5_ManageHydrofeatures "Manage HydroFeatures" : EntitiesManage [
 actorInitiates aU_Manager
 dataEntity e_HydroFeature
 actions aCreate, aRead, aUpdate, aDelete
]

UseCase uc_7_ManageSensors "Manage sensors" : EntitiesBrowse [
 actorInitiates aU_SensorsManager
 dataEntity ec_Sensor
 actions aRead
]

UseCase uc_7_1_ManageSensor "Manage a single sensor" : EntitiesManage [
 actorInitiates aU_SensorsManager
 dataEntity ec_SensorComplete
 actions aCreate, aRead, aUpdate, aDelete
 extensionPoints xp_ManageSensorData, xpManageSensorAlarms
]

UseCase uc_7_1_1_ManageSensorData "Manage Sensor Observations" : EntitiesManage [
 actorInitiates aU_SensorsManager
 dataEntity e_SensorObservation
 actions aCreate, aRead, aUpdate, aDelete
 extends uc_7_1_ManageSensor onExtensionPoint uc_7_1_ManageSensor.xp_ManageSensorData
]

UseCase uc_7_1_2_ManageSensorAlarms "Manage Sensor Alarms" : EntitiesManage [
 actorInitiates aU_SensorsManager
 dataEntity e_SensorAlarm
 actions aCreate, aRead, aUpdate, aDelete
 extends uc_7_1_ManageSensor onExtensionPoint uc_7_1_ManageSensor.xpManageSensorAlarms
]

UseCase uc_6_ManageContexts "Manage contexts" : EntitiesBrowse [
 actorInitiates aU_ContextAdmin
 dataEntity e_Context
 actions aRead
]

82

UseCase uc_6_1_AdminContext "Manage a single context, namely updating info, deleting and
associating organizations/users" : EntityUpdate [
 actorInitiates aU_ContextAdmin
 dataEntity e_Context
 actions aDelete, aRead, aUpdate
]

UseCase uc_6_2_ManageContext "define geo-elements of the context, associate sensors" :
EntityUpdate [
 actorInitiates aU_ContextManager
 dataEntity e_Context
 actions aRead, aUpdate
 extensionPoints xp_ManageEvents
]

UseCase uc_6_2_1_ManageEvents "Manage Events" : EntitiesManage [
 actorInitiates aU_ContextEventManager
 dataEntity ec_ContextEvent
 actions aCreate, aRead, aUpdate, aDelete
 extends uc_6_2_ManageContext onExtensionPoint uc_6_2_ManageContext.xp_ManageEvents
]

UseCase uc_13_ConsultGeneralInfo "Consult general info" : EntitiesBrowse [
 actorInitiates aU_User
 extensionPoints xp_ConsultHydrofeatures, xp_ConsultSensorData
]

UseCase uc_13_1_ConsultHydrofeatures "Consult hydrofeatures" : EntitiesBrowse [
 actorInitiates aU_User
 dataEntity e_HydroFeature
 actions aRead
 extends uc_13_ConsultGeneralInfo onExtensionPoint
uc_13_ConsultGeneralInfo.xp_ConsultHydrofeatures
]

UseCase uc_13_2_ConsultSensorData "Consult sensor data" : EntitiesBrowse [
 actorInitiates aU_User
 dataEntity e_SensorObservation
 actions aRead
 extends uc_13_ConsultGeneralInfo onExtensionPoint
uc_13_ConsultGeneralInfo.xp_ConsultSensorData
]

83

Appendix C

RiverCure Portal Screenshots:

Figure 25 - Administration page in Django Admin

Figure 26 - RiverCure Portal (Log In Page)

84

Figure 27-RCP User Profile Page

85

Figure 28- Hydro Feature Detail Page in RCP

86

Figure 29 - Context Detail Page in RCP

Figure 30 - Event List Page in RCP

87

Appendix D

Xtend main script for the generation of User Interfaces

package org.itlingo.asl.generator.ASL_From_UseCases

import java.util.ArrayList
import java.util.List
import org.itlingo.asl.asl.DataAttributeTypeOriginal
import org.itlingo.asl.asl.DataEntityCluster
import org.itlingo.asl.asl.System
import org.itlingo.asl.asl.UseCase
import org.itlingo.asl.asl.UseCaseTypeOriginal
import org.itlingo.asl.asl.DataEntity

class ASLMainContainers {
 def static compile(UseCase usecase, ArrayList<UseCase> usecases, System system){

 var List<String> all_editable_attributes = newArrayList
 var List<String> readonly_attributes = newArrayList
 var List<String> visualization = newArrayList
 var List<String> order = newArrayList
 val ArrayList<String> visibleTypes = new ArrayList();

 visibleTypes.add("String");visibleTypes.add("Integer");visibleTypes.add("Decimal");visibleTy
pes.add("Boolean");

 visibleTypes.add("Currency");visibleTypes.add("Date");visibleTypes.add("Time");visibleTypes.
add("DateTime");

 var main_ent = ""
 if ((usecase.dataEntity instanceof DataEntityCluster)){
 main_ent = (usecase.dataEntity as DataEntityCluster).main.name

 for(attribute : (usecase.dataEntity as DataEntityCluster).main.attributes){
 if (attribute.constraint!==null && attribute.constraint.isReadOnly=='isReadOnly')
 readonly_attributes.add(0, attribute.name)
 else
 all_editable_attributes.add(0, attribute.name)
 }

 for(attribute : (usecase.dataEntity as DataEntityCluster).main.attributes){
 if((attribute.type instanceof DataAttributeTypeOriginal)){
 var att_type = (attribute.type as DataAttributeTypeOriginal).type
 if (visibleTypes.contains(att_type)){
 visualization.add(0, attribute.name);
 order.add(0,attribute.name);
 }
 }
 }
 }
 else{
 if ((usecase.dataEntity instanceof DataEntity)){
 main_ent = (usecase.dataEntity as DataEntity).name

 for(attribute : (usecase.dataEntity as DataEntity).attributes){
 if (attribute.constraint!==null && attribute.constraint.isReadOnly=='isReadOnly')
 readonly_attributes.add(0, attribute.name)
 else
 all_editable_attributes.add(0, attribute.name)
 }

 for(attribute : (usecase.dataEntity as DataEntity).attributes) {
 if((attribute.type instanceof DataAttributeTypeOriginal)){
 var att_type = (attribute.type as DataAttributeTypeOriginal).type
 if (visibleTypes.contains(att_type)){
 visualization.add(0, attribute.name);
 order.add(0,attribute.name);
 }
 }
 }

88

 }

 }

'''
Package p_«system.name»

Import p_«system.name».«system.name»
Import p_«system.name».«system.name».*

System UI_«system.name» : Application []

//UIContainer aligned with «usecase.name»
//MAIN WINDOW UI

UIContainer uiCt_«main_ent» : Window [

 component uiCo_«main_ent»List : List: List_Table [
 isScrollable
 dataBinding «main_ent» [
 visualizationAttributes «FOR v : visualization» «main_ent».«v»,«ENDFOR»
 sortAttributes «FOR v : visualization» «main_ent».«v»,«ENDFOR»
 //orderBy «FOR o : order»«main_ent».«order.get(0)» «ENDFOR» DESC
]

 part uip_checkselect: Field: Field_Input : WFC_CheckBox
]

 component uiCo_Filter_«main_ent»: Details [
 dataBinding «main_ent» [
 filterAttributes «FOR v : visualization», «main_ent».«v»«ENDFOR»
]
]

 component uiCo_Search_«main_ent»: Details [
 dataBinding «main_ent» [
 searchAttributes «FOR v : visualization», «main_ent».«v»«ENDFOR»
]
]

 component uiCo_Actions: Menu [

 event uiev_create "Create «main_ent»" : Submit: Submit_Create [navigationFlowTo
uiCt_«main_ent»Creator]
 event uiev_delete "Delete «main_ent»" : Submit: Submit_Delete
 event uiev_update "Edit" : Submit: Submit_Update [navigationFlowTo
uiCt_«main_ent»Creator]
]

]
«var usecase_type = ""»
«IF usecase.type instanceof UseCaseTypeOriginal»
 //UC Type: «usecase_type = (usecase.type as UseCaseTypeOriginal).type»
«ENDIF»

«IF usecase_type == "EntitiesSearch" || usecase_type =="EntitiesManage"»
//UI FOR SEARCH

component uiCo_Search: Details [
 part uip_search: Field: Field_Output: WFC_Label [Text defaultValue "Search:"]
 part uip_search_«main_ent»: Field: Field_Input : WFC_Text [Text defaultValue "Search
«main_ent»"]
 event uiev_search "Search" : Submit: Submit_Ok
]
«ENDIF»
«IF usecase_type == "EntityDelete" || usecase_type =="EntitiesManage" || usecase_type
=="EntitiesBrowse"»
// UI FOR DELETE

UIContainer uiCt_Delete_Warning : Window [
 component uiCo_DeleteWarning : Dialog : Dialog_Warning [

 part uip_Delete_Warning_Text: Field: Field_Output [Text defaultValue "Are you sure you
want to delete «main_ent»?"]
 event uiev_delete : Submit: Submit_Delete [navigationFlowTo uiCt_«main_ent»]
 event uiev_cancel : Submit: Submit_Cancel [navigationFlowTo uiCt_«main_ent»]

89

]
]

UIContainer uiCt_Delete_Confirmation : Window : Window_Modal [
 component uiCo_Delete_Message : Dialog : Dialog_Info [
 part uip_Delete_Confirmation_Text: Field: Field_Output [Text defaultValue "«main_ent»
Deleted"]
 event uiev_confirm : Submit : Submit_Ok [navigationFlowTo uiCt_«main_ent»]
]
]
«ENDIF»
«IF usecase_type == "EntityRead" || usecase_type =="EntitiesManage" || usecase_type
=="EntitiesBrowse"»

UIContainer uiCt_«main_ent»Reader : Window: Window_Modal[

 component uiCo_Edit«main_ent» : Form : Form_Simple [
 «FOR attribute : all_editable_attributes»
 part uip_«attribute»Label : Field: Field_Output : WFC_Label [Text defaultValue
"«attribute»"]
 part uip_«attribute»Value : Field: Field_Input : WFC_Text[Text defaultValue
"Editable Value"]
 «ENDFOR»
 «FOR attribute : readonly_attributes»
 part uip_«attribute»Label : Field: Field_Output : WFC_Label [Text defaultValue
"«attribute»"]
 part uip_«attribute»Value : Field: Field_Output : WFC_Text[Text defaultValue
"Not changeable Value"]
 «ENDFOR»
]
component uiCo_«main_ent»NavigationButtons : Details [

 event uiev_beginning_«main_ent» "Beginning": Submit: Other [navigationFlowTo
uiCt_«main_ent»Reader]
 event uiev_previous_«main_ent» "Previous": Submit: Other [navigationFlowTo
uiCt_«main_ent»Reader]
 event uiev_next_«main_ent» "Next": Submit: Other [navigationFlowTo
uiCt_«main_ent»Reader]
 event uiev_end_«main_ent» "End": Submit: Other [navigationFlowTo
uiCt_«main_ent»Reader]
 event uiev_back "Back": Submit: Other [navigationFlowTo uiCt_«main_ent»]
]

]
«ENDIF»
«IF usecase_type == "EntityCreate" || usecase_type == "EntityUpdate" || usecase_type
=="EntitiesManage" || usecase_type =="EntitiesBrowse"»
//UI FOR CREATE/UPDATE

 UIContainer uiCt_«main_ent»Creator : Window : Window_Modal[
 component uiCo_Edit«main_ent» : Form : Form_Simple [
 «FOR attribute : all_editable_attributes»
 part uip_«attribute»Label : Field: Field_Output : WFC_Label [Text defaultValue
"«attribute»"]
 part uip_«attribute»Value : Field: Field_Input : WFC_Text[Text defaultValue
"Editable Value"]
 «ENDFOR»
 «FOR attribute : readonly_attributes»
 part uip_«attribute»Label : Field: Field_Output : WFC_Label [Text defaultValue
"«attribute»"]
 part uip_«attribute»Value : Field: Field_Output : WFC_Text[Text defaultValue
"Not changeable Value"]
 «ENDFOR»
 event uiev_create "Create «main_ent»" : Submit : Submit_Create [navigationFlowTo
uiCt_«main_ent»]
 event uiev_cancel "Cancel «main_ent»" : Submit : Submit_Cancel [navigationFlowTo
uiCt_«main_ent»]
]
]

 «ENDIF»
'''

}

}

90

91

References

1. Ousterhout, J. K.: A philosophy of software design. Yaknyam Press (2018).

2. Martin, Robert C.: Clean Architecture: A Craftsman's Guide to Software Structure and Design. 1st

edition. Prentice Hall, Upper Saddle River (2017).

3. Al-Fedaghi, S.: Developing Web Applications. International Journal of Software Engineering and Its

Applications (2011).

4. Ferreira, D., Silva, A. R.: RSLingo: An Information Extraction Approach toward Formal

Requirements Specifications. In: 2nd IEEE International Workshop on Model-Driven Requirements

Engineering. IEEE Computer Society (2012).

5. Sommerville, I.: Software engineering. 9th edition. Pearson, Boston (2011).

6. Shah, Tejas & Patel, S.: A Review of Requirement Engineering Issues and Challenges in Various

Software Development Methods. International Journal of Computer Applications (2014).

7. Silva, A. R.: Rigorous Specification of Use Cases with the RSL Language. In Proceedings of the

Information Systems Development (ISD'2019) Conference. AIS (2019).

8. Silva A.R.: Linguistic Patterns and Linguistic Styles for Requirements Specification (I): An

Application Case with the Rigorous RSL/Business-Level Language. In Proceedings of

EuroPLOP’2017, ACM (2017).

9. Silva A.R., Paiva, A. C. R., Silva, V. R.: A Test Specification Language for Information Systems

based on Data Entities, Use Cases and State Machines. In Model-Driven Engineering and Software

Development, Communications in Computer and Information Science, vol 991, Springer (2019).

10. Paiva, A. C. R., Maciel, D., Silva, A. R.: From Requirements to Automated Acceptance Tests with

the RSL Language. In Evaluation of Novel Approaches to Software Engineering, Communications in

Computer and Information Science, vol 1172, Springer (2020).

11. G. R. Pereira, Técnicas Avançadas de Modelacão e Producão Semi-Automática de Aplicações

Web Responsivas, MSc Dissertation, Instituto Superior Técnico, Universidade de Lisboa, 2019

12. OMG, Interaction Flow Modeling Language Specification Version 1.0,

https://www.omg.org/spec/IFML/1.0/, last accessed 2020/04/25.

13. M. G. B. Gonzalez, RiverCure Portal: Collaborative GeoPortal for Curatorship of Digital Resources

in the Water Management Domain “” MSc Thesis, Instituto Superior Técnico, Universidade de Lisboa,

2020

14. K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A Design Science Research

Methodology for Information Systems Research,” J. Manag. Inf. Syst., vol. 24, no. 3, 2007. 15.

Schmidt, D.: Model-driven engineering. IEEE Computer. 39, 41-47 (2006).

92

16. Silva, A. R.: Model-driven engineering: A survey supported by A unified conceptual model.

Computer Languages, Systems & Structures, 43 ,139-155, Elsevier (2015).

17. A.M. Davis, “Software Requirements: Objects, Functions and States”, Englewood Cliffs, 1993

18. Kraeling M, Tania L., Software Engineering for Embedded Systems (Second Edition), 2019

19. Ian Sommerville, Problems with Natural Language, 2008

20. Markus Voelter, DSL Engineering Designing, Implementing and Using Domain Specific Languages

21. https://martinfowler.com/books/dsl.html (last accessed on 31/12/2018)

22. Arie van Deursen and Paul Klint, Domain-Specific Language Design Requires Feature

Descriptions

23. Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej Črepinšek,

Daniela da Cruz, and Pedro Rangel Henriques, University of Maribor, Faculty of Electrical Engineering

and Computer Science, Smetanova 17, 2000 Maribor, Slovenia {Comparing General-Purpose and

Domain-Specific Languages: An Empirical Study

24. Rolf Schwitter, Centre for Language Technology, Macquarie University, Controlled Natural

Languages for Knowledge Representation

25. Brambilla, M., Fraternali, P.: Interaction flow modeling language: Model-driven UI engineering of

web and mobile apps with IFML (2014).

26. Stefano C., Fraternali P., Bongio A.: Web Modeling Language (WebML): A modeling language for

designing Web sites. Computer Networks. 33. 137-157. 10.1016/S1389- 1286(00)00040-2 (2000).

27. https://www.eclipse.org/Xtext/ (last accessed on 27/12/2020)

28. https://www.eclipse.org/xtend/documentation/ (last accessed on 27/12/2020)

29. https://blogs.itemis.com/en/building-domain-specific-languages-with-xtext-andxtend (last accessed

on 30/6/2020)

30. https://www.eclipse.org/xtend/documentation/202_xtend_classes_members.html/ (last accessed

on 30/12/2020)

31. https://www.tiobe.com/tiobe-index/ (last accessed on 27/12/2020)

32.https://www.business2community.com/tech-gadgets/pros-and-cons-of-django-web-framework-for-

app-development-02330165 (last accessed on 27/12/2020)

33. https://data-flair.training/blogs/django-advantages-and-disadvantages/ (last accessed on

27/12/2020)

34. Vincent, W.S.: Django for beginners: build websites with Python & Django (2018)

35. https://docs.djangoproject.com/en/2.2/ref/templates/language/ (last accessed on 27/12/2020)

93

36. https://getbootstrap.com/ (last accessed on 27/12/2020)

37. https://jquery.com/ (last accessed on 27/12/2020)

38. https://reactjs.org/ (last accessed on 27/12/2020)

39. Vincent, W.S.: Django for APIs: Build web APIs with Python & Django (2020)

40. D. Rubio: Beginning Django: Web Application Development and Deployment with Python. F. Bahia,

Ensenada, Baja California, Mexico (2017).

41. Pinkham, A.: Django unleashed. 1st edition. Pearson, Indiana (2016).

42. https://docs.djangoproject.com/en/2.2/ref/contrib/admin (last accessed on 27/12/2020)

43. Mendix Evaluation Guide, https://www.mendix.com/evaluation-guide, last accessed 2020/4/26.

44. OutSystems Evaluation Guide, 16 https://www.outsystems.com/evaluation-guide, last accessed

2020/4/26.

45. López-Landa, R., Noguez, J., Guerra E., Lara, J.: EMF on rails, In: ICSOFT 2012 - Proceedings of

the 7th International Conference on Software Paradigm Trends. 273-278 (2012).

46. Stefano Ceri; Piero Fraternali & A. Bongio (May 2000). "Web modelling language (WebML): A

modelling language for designing Web sites". Proceedings of 9th International World Wide Web

Conference, Amsterdam, 2000

47. Silva A.R., Saraiva J., Silva R., Martins C.: XIS – UML Profile for eXtreme Modeling Interactive

Systems, In: Proceedings of the MOMPES 2007, IEEE Computer Society (2007). 48. Ribeiro, A.,

Silva, A. R.: XIS-Mobile: A DSL for Mobile Applications, Proceedings of the 29th Annual ACM

Symposium on Applied Computing (2014).

49. Ribeiro, A., Silva, A. R.: Evaluation of XIS-Mobile, a Domain Specific Language for Mobile

Application Development, Journal of Software Engineering and Applications, 7(11), pp. 906-919

(2014).

50. Seixas, J., Ribeiro, A., Silva, A. R.: A Model-Driven Approach for Developing Responsive Web

Apps”, Proceedings of ENASE’2019, SCITEPRESS (2019).

51. https://djangosuit.com/ (last accessed on 27/12/2020)

52. https://docs.djangoproject.com/en/2.2/topics/class-based-views/ (last accessed on 27/12/2020)

53. https://django-filter.readthedocs.io/en/stable/ (last accessed on 27/12/2020)

54. Rubio, D.: Beginning Django: Web Application Development and Deployment with Python. 1st

edition. Apress, Ensenada, Baja California, Mexico (2017).

55. https://sparxsystems.com/products/ea/index.html (last accessed on 27/12/2020)

56. https://code.visualstudio.com/ (last accessed on 27/12/2020)

94

57. https://github.com/uctakeoff/vscode-counter (last accessed on 27/12/2020)

58. http://cloc.sourceforge.net/ (last accessed on 27/12/2020)

59. R. Gomes, M. Saramago, and R. Rodrigues, “SVARH - Sistema de Vigilância e Alerta deRecursos

Hídricos,” Relatório Técnico, Instituto da Água, 2003.

60. http://www.prociv.pt/en-us/Pages/default.aspx (last accessed on 30/12/2020)

61. M. Saramago, “Redes de Monitorização Hidrometeorológicas,” Rev. Recur. Hídricos, Assoc.Port.

dos Recur. Hídricos, vol. 38, no. 1, 2017.

62. https://www.postgresql.org/ (last accessed on 1/12/2020)

63. Pereira J. M. S., Classifying Geo-Referenced Photos and Segmenting Satellite Imagery for the

Assessment of Flood Severity, MSc Dissertation , Instituto Superior Técnico, Universidade de Lisboa,

2019

64. Marques J. M. S., RiverCure Portal: Exploring Geographic features on context definition and

integration with the histav hydrometic tool, MSc Dissertation, Instituto Superior Técnico, Universidade

de Lisboa, 2020

65 D. A. S. Conde, “High-Performance Modelling of Tsunami Impacts on Built Environments,” PhD

Thesis, Universidade de Lisboa, Instituto Superior Técnico, 2018.

66. https://www.paraview.org/ (last accessed on 15/12/2020)

67. https://www.paraview.org/web/ (last accessed on 15/12/2020)

68. Montero, S., Díaz, P., Aedo, I.: From requirements to implementations: A model-driven approach

for web development. In: EJIS. 16. 407-419. 10.1057/palgrave.ejis.3000689 (2007).

69. https://genio.quidgest.com/ (last accessed on 27/12/2020)

70. Silva, A. R., Savic D.: Linguistic Patterns and Linguistic Styles for Requirements Specification:

Focus on Data Entities. INESC-ID Technical Report, 2020.

71. Silva, A. R.: Linguistic Patterns and Linguistic Styles for Requirements Specification: Focus on Use

Cases and Scenarios. INESC-ID Technical Report, 2020.

72. Gamito I, Silva, A. R.: From Rigorous Requirements and User Interfaces Specifications into

Software Business Applications. QUATIC, 2020.

