
In Proceedings of EuroPLOP’2015, ACM

A PATTERN LANGUAGE FOR USE CASES SPECIFICATION 

ALBERTO RODRIGUES DA SILVA, INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
DUŠAN SAVIĆ, SINIŠA VLAJIĆ, ILIJA ANTOVIĆ, SAŠA LAZAREVIĆ, VOJISLAV STANOJEVIĆ,
MILOŠ MILIĆ, Faculty of Organizational Sciences, University of Belgrade

Use cases describe a set of interactions between actors/users and the system under study. These interactions should be
described textually according to some style and template to be simultaneously readable, consistent and verifiable. The main
reason for these qualities is that use cases specification should be used both by business analysts and requirements engineers,
when specifying functional requirements, as well as by software developers, when designing and implementing the involved
system functionality. In spite of the popularity of use cases, there are not many patterns and guidance to help produce use cases
specifications in a systematic and high-quality way. Furthermore, in the context of Model Driven Development (MDD)
approaches, use cases specifications can be also considered models with precise syntax and semantics to be automatically
validated or used in model-to-model or model-to-text transformations.
In this paper we propose a pattern language to improve the quality of use cases specifications. These patterns are concrete
guidelines that have emerged from the research and industrial experience of the authors throughout the years, particularly in
the designing of MDD languages and approaches and in applying them in concrete applications. These patterns are
interconnected among themselves and are the following: (P1) DEFINE USE CASE TYPES, (P2) KEEP USE CASE CONSISTENT WITH
THE DOMAIN MODEL, (P3) DEFINE USE CASE WITH DIFFERENT SCENARIO AND INTERACTION BLOCK TYPES, and (P4) DEFINE USE
CASE WITH DIFFERENT ACTION TYPES.

Key Words: Use cases, Requirements Specification, Requirements Patterns

1. INTRODUCTION

Some years ago Alexander Christopher noted that a pattern “describes a problem which occurs over
and over again in our environment, and then describes the core of the solution to that problem, in such
a way that you can use this solution a million times over, without ever doing it the same way twice” [1].
On the other hand, Gamma et al. defined design patterns as “descriptions of communicating objects
and classes that are customized to solve a general design problem in a particular context" [2]. From
these definitions it is understandable that patterns have two important parts: a problem and a
solution, where the solution can be reused several times in different problem domains. Still,
Alexander pointed out that a pattern is “at the same time a thing, which happens in the world, and the
rule which tells us how to create that thing, and when we must create it. It is both a process and a
thing; both a description of a thing which is alive, and a description of the process which will generate
that thing” [1]. Coplien told a similar idea: “a pattern is the rule for making the thing, but it is also, in
many respect, the thing itself" [3].
The book Design Patterns: Elements of Reusable Object-Oriented Software [2] launched an avalanche
of best practices and share knowledge in the world of software engineering and put the design
patterns in the center of software design and development in a very practical way. It is one of the most

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
EuroPLoP '15, July 08-12, 2015, Kaufbeuren, Germany
© 2015 ACM. ISBN 978-1-4503-3847-9/15/07…$15.00
DOI: http://dx.doi.org/10.1145/2855321.2855330

A Pattern Language for Use Cases Specification • 1:2

important source for understanding object-oriented design theory and practice. Up to now, many of
these and other design patterns were made and used in the development of numerous software
systems. A design pattern is primarily seen as a generic solution that can be applied several times
in different problem and situations. In addition, design patterns provide great flexibility in the
program during its maintenance and upgrades. Design patterns belong to solution space patterns that
are mainly used by developers to decide on the system design and code structure [2, 4]. But, for many
years the concept of patterns was adopted by researchers and practitioners and used not only in
design and implementation as well as in other software disciplines, such as requirements engineering
or testing engineering.
Requirements engineering (RE) is a part of the software development process that traditionally
includes two main processes [5]: requirements development (with tasks such as elicitation, analyze,
specification, and validation of requirements) and requirements management. RE is a discipline
where business and technical requirements need to be gathered and refined using various analysis
techniques before being verified by the stakeholders and finally specified. The importance of RE in
software engineering has been documented and extensively discussed in the literature. Errors
produced at this stage, if undetected until a later stage of software development, can be very costly as
reported in several studies [42, 43].
When the concept of patterns emerged, their primary focus was on the solution space. A trend for
considering patterns in the problem space has slowly but steadily risen [6]. Therefore, requirements
patterns have gained popularity to help users in identifying, analyzing and structuring requirements
of a software system. A requirements pattern is defined as a "guide for writing a particular type of
requirement" [7], or "a reusable experience based framework that aids a requirements engineer write or
model better quality requirements in the least possible time" [6]. The major goals of requirements
patterns are [6]: (1) guide the analysts to understand the problem; (2) provide a common framework to
define requirements with which software products can be better evaluated, designed, built and tested;
and (3) be able to trace the design of the system back to the original business objectives. The
application of patterns is important in all requirements activities but mainly in requirements
specification [8]. In particular, the proposed patterns should be used by requirements engineers,
business analysts or developers to solve their problems more effectively.
There are different formats for representing requirements patterns. Generally, requirements patterns
follow a general template format with a structure such as [21]: name, also known as, author, problem
that define the intent of the pattern, context that describes valid uses of the pattern, forces that arise
when the pattern is applied, solution, applicability that describes how and when it can be applied,
classification, known uses, examples, and related patterns. However, the patterns proposed in this
paper follow a simpler pattern template format with the following key elements: pattern name,
context, problem, solution, examples, consequences, related patterns, and known uses.
The proposed pattern language is primary applicable to the context of user requirements specification
of information system, and consists in a coherent set of the following rules: (P1) DEFINE USE CASE
TYPES, (P2) KEEP USE CASE CONSISTENT WITH THE DOMAIN MODEL, (P3) DEFINE USE CASE WITH
DIFFERENT SCENARIO AND INTERACTION BLOCK TYPES, and (P4) DEFINE USE CASE WITH DIFFERENT
ACTION TYPES.

A Pattern Language for Use Cases Specification • 1:3

2. BACKGROUND

During this last decade a trend of approaches has emerged considering models not just as
documentation artifacts, but as central artifacts in the software engineering process. Beyond the
benefits of facilitating and sharing a common and coherent vision of the system under study, models
also allow – through complex techniques such as meta-modeling, model transformation, code
generation or model interpretation – the creation or automatic execution of software systems based on
those models. Several of those approaches have been classified as Model-Driven Development
(MDD) and have been mainly focused on the requirements, analysis and design, and implementation
disciplines [22][23][24]. To better support the software development life cycle’s activities – ranging
from requirements specification to the use of generative programming techniques –, we need to specify
requirements in a more rigorous way, not just informal text specifications but also more formal text or
graphic-based models. To manage these challenges we have been involved in several research projects
and initiatives as we briefly introduce in the following paragraphs. The pattern language proposed in
this paper results from these research initiatives and, consequently, are seen in those involved
languages and tools.

2.1 Authors Background

2.1.1 ProjectIT Approach

The goal of ProjectIT is to provide a complete software development workbench with support for
project management, requirements engineering, analysis, design, and code generation activities [25]
[26][27]. ProjectIT-Requirement is the component of the ProjectIT architecture that deals with
requirements engineering. The main goal of the ProjectIT-Requirements is to develop a textual
language for the definition and documentation of requirements, which, by raising their rigor,
facilitates the reuse of models that might be used in MDD approaches. Taking into account the
different types of requirements this project focus mainly in software requirements, as these can more
easily be transformed into software design models into ProjectIT's languages such as XIS [28] or XIS-
Mobile [29][30]. (Further information is available at https://github.com/MDDLingo).

2.1.2 SilabMDD approach

SilabMDD approach [31] emerged as a key result of Silab Project which was initiated in 2007 in the
Software Engineering Laboratory at Faculty of Organizational Sciences, University of Belgrade. The
main goal of this project was to enable automated analysis and processing of software requirements in
order to achieve automatic generation of different parts of a software system. In the beginning, Silab
Project has been divided in two main sub-projects SilabReq and SilabUI that were being developed
separately. Initially this SilabReq project focused on the formalization of user requirements and their
transformations to different UML models to facilitate the analysis process and to assure the quality of
software requirements. On the other hand, SilabUI project focused on automatic generation of user
interfaces based on use cases specification. When both subprojects reach desired level of maturity,
they integrated in a way that some results of SilabReq project can be used as input for SilabUI
project. As a proof of concept, the Silab has been used for the Kostmod 4.0 [32] project, which was
implemented for the needs of the Royal Norwegian Ministry of Defense. After several years of using
Silab in developing multiple intensive software systems we defined the SilabMDD approach.
Usually, in MDD the implementation is (semi-)automatically generated from models. Despite the fact
that use cases are narratives, there is not a single standard that specifies what a textual specification
of use case should be. In SilabMDD approach we develop SilabReq DSL language that should be used
for use case specification. It requires a rigorous definition of the use case specification, particularly
description of sequences of action steps, pre- and post-conditions, and relationships between use case
models and domain models. SilabMDD approach is use case driven approach but it does not pay much

A Pattern Language for Use Cases Specification • 1:4

attention to the way in which use cases are elicited. They can be derived from business processes or
from plain text requirements. If requirements are expressed in some form of model as in RSLingo
using with RSL-IL (see more below) it is possible to automatically using appropriate transformation to
deliver use cases. Throughout the specification process use cases are specified using SilabReqUC DSL
language and continuous inspection business conceptual model. For business conceptual model
description we developed the small SilabReqBCM DSL language. Action in use cases as well as pre-
condition and post-condition are specified in context of business conceptual models [33].

2.1.3 RSLingo Approach

A couple of years ago the ProjectIT-Requirements evolved to a more flexible approach named RSLingo
[34]. RSLingo is a linguistic approach for improving the quality of requirements specification, based
on two languages and on the mapping between them: the RSL-PL and the RSL-IL. RSL-PL (Pattern
Language) [35] is an extensible language for defining linguistic patterns to be used with natural
language processing and text extraction tools to automatically produce RSL-IL specifications from
requirements written in natural language. On the other hand, RSL-IL (Intermediate Language) [36]
is a formal language with a fixed set of constructs for representing and conveying a large number of
RE-specific concerns. Recently, and still in the context of the RSL-IL language, we introduced the
problem of combinatorial effects based on the evidence of many dependencies that explicitly or
implicitly exist among the elements commonly used on system requirements specification (SRS) [39].
We proposed and discussed a set of practical recommendations to help defining a SRS template that
may better prevent (to some extent) that combinatorial effects problem [40]. Currently RSL-IL
language is extended for integrating privacy requirements [41], and is supported by different tools,
namely a MS-Excel template and an Xtext-based editor. (Further information is available at
https://github.com/RSLingo).

2.2 Withall’s Requirements Patterns

Stephen Withall defined 37 requirements patterns in his book "Software Requirement Patterns" [7].
The objective of these extensive number of requirement patterns is to guide the requirements
engineers on how to specify common types of requirements, to make it quicker and easier to write
them, and to improve the quality of them. These requirement patterns are applied at the level of an
individual requirement meaning they are mainly linguistics patterns and pragmatic guidance to how
better write these sentences.
Withall’s requirements patterns are divided into eight domains: Fundamental, Information, Data
Entity, User Function, Performance, Flexibility, Access Control, and Commercial requirements
patterns. Whitall also proposed the following structure for defining these software requirements
patterns [7]: (1) basic details with information about domain, author, classification and, if exists,
related patterns; (2) the context in which it can be applied; (3) discussion; (4) content that describes
what is necessary to state that type of requirement; (5) template; (6) some examples; (7) extra
requirements; (8) how to use the pattern for implementation purposes; and (9) how to use the pattern
for testing purposes.

2.3 Cruz’s Pattern Language for Use Case Modeling

António Cruz identified the most common use case patterns found on use case models of data
oriented applications (i.e., information systems), namely the following use case patterns [44]: Manage
an entity instance, Manage dependent related entity instances, Manage independent related entity
instances, Manage dependent related entity collections, and Manage independent related entity
collections. These patterns are well-recognized from the different types of relationships (e.g., master,
master-detail or master-reference relationships) established from the entities defined at a domain
model level and also from the common CRUD operations found on these entities.

A Pattern Language for Use Cases Specification • 1:5

In addition Cruz proposed a pattern language for facilitating the use case modeling with a fine
grained use cases (without overcrowding the model with many use cases), but also without losing
the relation to the standard UML, because the proposed use case pattern language constructs
intermingled with the standard UML use case notation, as every construct can be converted to a
standard UML use case pattern and vice-versa [44].
Comparing with our pattern language, Cruz’s is focused on the use case modeling while ours is on use
cases specification. Both proposals recommend the alignment and consistency between use cases and
domain models and, in that way, they can be complementary. However, our proposal emphasizes the
both aspects of modeling and textual specification of requirements (inside the oval) while Cruz’s
emphasizes only the modeling aspects (at the oval level).

A Pattern Language for Use Cases Specification • 1:6

3. OVERVIEW OF THE PATTERN LANGUAGE

Software-intensive systems are a particular class of systems whose essential functionalities and
qualities are realized by software. According to Pohl, there are two classes of software-intensive
systems [5]: (1) information systems, that collect, store, transform, transmit, and process information;
and (2) embedded software-intensive systems, in which the software is part of the system and it is
strongly integrated with hardware. Nakatani et al. [38] emphasized that business application systems
or information systems mainly perform operations such as storage, retrieval, updating and deleting of
information. These characteristics point out that most common use cases can be classified into several
categories such as: data storage, data retrieval, data updating, data creation, documents creation or
document transmission. In their research, 53 out of 58 use cases were classified into these six
categories. They also developed tools [38] that show basic use case patterns, such as: Create, Read,
Update, Delete and Reports-related, to help developers write down use cases and manage the
relationships between use cases and domain objects (or entities) to keep consistency between
requirements. These patterns are expected to cover over 80% of simple use cases of business
application systems. Similar results were also obtained from our Kostmod 4.0 project [32].
This pattern language is primary applicable to the context of user requirements specification of
information system. Figure 1 shows the proposed patterns and respective relationships, namely:
(P1) DEFINE USE CASE TYPES,
(P2) KEEP USE CASE CONSISTENT WITH THE DOMAIN MODEL,
(P3) DEFINE USE CASE WITH DIFFERENT SCENARIO AND INTERACTION BLOCK TYPES, and
(P4) DEFINE USE CASE WITH DIFFERENT ACTION TYPES.
The numbers in the arrows represent the logical order of application these patterns and also how they
are presented in the following sections.
These patterns should preferentially be used together. However, in simpler situations you may only
need to adopt the first two patterns: (P1) DEFINE USE CASE TYPES and (P2) KEEP USE CASE
CONSISTENT WITH THE DOMAIN MODEL. In this situation you only have to define for each use case what
should be its type and identify the respective domain entity.

Fig. 1. Overview of the pattern language for use cases specification.

(P1) Define Use Case Types

(P2) Keep Use Case Consistent with
the Domain Model

(P3) Define Use Case with Different
Scenario and Interaction Block

Types

(P4) Define Use Case with Different
Action Types

(3)

(3)

(4)

(2)

(4)

A Pattern Language for Use Cases Specification • 1:7

Fig. 2. The conceptual model underlying the pattern language.

Bearing in mind that use cases describe interactions between actors/users and the system under
study, to better define these interactions consider use cases specifications as dialog conversations
between users and the system. To specify more clearly the goal of use cases it should be recommended
to define a use case type for each use case (see DEFINE USE CASE TYPES). Use case should be defined in
the context of a domain model, in a way that during the use case specification you can continuously
inspect and check the consistency between the use case model and the domain model (see KEEP USE
CASE CONSISTENT WITH THE DOMAIN MODEL).
The use case’s user-system interactions are defined by scenarios supported by one or more interaction
blocks (see DEFINE USE CASE WITH DIFFERENT SCENARIO AND INTERACTION BLOCK TYPES). Each
Interaction block defines one or more Actor request block and one System response block. Each user-
system interaction should be described with a formal notation that requires the adoption of different
types of use case actions (see DEFINE USE CASE WITH DIFFERENT ACTION TYPE).
Figure 2 shows the conceptual model underlying these four patterns. Use case (UseCase) is the key
concept and is categorized with a type (UseCaseType), that, for example, can be: create, view, update,
delete or search. One or more actors (Actor) interact with a use case. In the scope of information
systems the purpose of a use case is to access or manage data entities, and so each use case is related
to some domain entities (DomainEntity), i.e. an object/entity defined in a domain model. A use case
may be defined by one or more scenarios (Scenario). A scenario has a type (ScenarioType) such as:
main (MainScenario), alternative (AlternativeScenario), exception (ExceptionScenario). A use case
scenario is defined by a set of use case actions (UseCaseAction). These actions are classified in two
categories: the actions performed by the actor (ActorAction) and the actions performed by the system
(SystemAction). These actions may be organized in interaction blocks (InteractionBlock) to better
cluster the user-system interactions. Each interaction block has a type (InteractonBlockType) such as:
persistent, retrieval, select, and customer-action. Depending on the UseCaseType a use case may
contain different types of InteractionBlocks.

DomainEntityUseCase

Scenario

InteractionBlock

UseCaseAction

Actor

*

interacts via >

*

*

*

refers a > +primary entity

0..1

*

*

A Pattern Language for Use Cases Specification • 1:8

4. PATTERNS

The example used to support the discussion of the proposed patterns is based on the "Billing system"
case study as briefly and partially described below:
The Billing system is a business information system to support the management of customers,
products and invoices of any organization. This system should provide configuration features and
should facilitate the work of administrative managers and operators, i.e. it should allow controlling
the organization's invoices and respective payments as well as produce several reports and analytical
dashboards. From the requirements specification purpose, the Billing system can be divided into four
subsystems, namely:
(1) Customer management subsystem.
(2) Product management subsystem.
(3) Invoice management subsystem, which should include creating invoices, searching and updating

existing invoices, printing, sending, exporting invoices and tracking customer's purchases.
(4) General system configuration subsystem, which should include configuring the user of the system,

configuring VAT taxes, etc.
[…]

Figure 3 shows a simple version of the Billing system’s domain model, clearly identifying its key
concepts and relationships: Customer, Invoice, Invoice-Line, VAT-Category and Product.

Fig. 3. Billing system’s domain model.

These patterns are described following the pattern template referred in the end of Section 1, namely
by considering the following elements: pattern name, also known as, context, problem, solution,
example, consequences, related patterns and known uses.

invoice

- customer_id: int
- id: int
- invoice_date: date
- total_value: float
- vat_total_value: float

invoice_line

- description: text
- l ine_value: float
- quantity: int
- unitary_value: int
- vat_line_value: float
- vat_tax: int

vat_category

- category: text
- vat_tax: float

customer

- address: text
- fiscal_id: int
- id: int
- name: text

product

- category: text
- description: text
- discount: float
- id: int
- price: float

1..*

1 0..* 0..* 1

1 *

A Pattern Language for Use Cases Specification • 1:9

4.1 DEFINE USE CASE TYPES Pattern
Context: You are a requirements engineer, a business analyst or even a developer and you frequently
have to specify the requirements of an information system. You want adopt the technique of use cases
as your favorite approach to specify these user requirements. You notice that the specification of
different information systems based on use cases technique share similar context. This pattern is
appropriate when the objective of these use cases is to access and manage data entities, which is very
common in information systems.
Problem: You are always in doubt about how to specify and organize your use cases. After specifying
several use cases you realize that some use cases emerge and are very similar. However, you do not
know how to define and reuse them systematically. Some questions appear from the problem stated,
such as: Is it possible to categorize these use cases? What are the most common types? How to make
use cases reusable? Is it possible to create templates for scenarios or actions and later add specificity
to these general actions?
Solution: As suggested in Figure 4, first, you should define a predefined set of use case types. The
majority of use cases can be classified either as entity-create, entity- search, entity-view, entity-
update or entity-delete, or some combination of these types, e.g., entity-manage. We may also
consider other types of use cases, such as entity-browse, entity-report, entity-dashboard, entity-
import, entity-export, entity-sync, or even a general customer type. Another good starting for
this identification is to research the use case content patterns as discussed by Martin Langlands [18].
Second, you should categorize every use case according to this set of types. Third, you should relate
each use case with a primary entity defined in a complementary domain model (as discussed in the
pattern KEEP USE CASE CONSISTENT WITH THE DOMAIN MODEL).

Fig. 4. DEFINE USE CASE TYPES pattern: conceptual solution.

Example: Figure 5 shows a use case model where each use case is categorized by a respective type.
Consequence: As a result of this pattern each use case becomes clearly classified by a type and then
prepared to be assigned to a specific domain entity. This is the first step to ensure the consistency
between the use case and the domain model (see KEEP USE CASE CONSISTENT WITH THE DOMAIN
MODEL), and then to define appropriate interaction blocks (see DEFINE USE CASE WITH INTERACTION
BLOCKS).
Related Patterns: OBJECT MANAGER, and KEEP USE CASE CONSISTENT WITH THE DOMAIN MODEL.
Known Uses: SilabMDD approach follows directly this pattern. XIS and XIS-Mobile languages apply
this pattern by classifying use cases based on predefined Boolean tag values (e.g., CreateMaster,
ReadMaster, UpdateMaster, CreateDetail, CreateReference).

«enumeration»
UseCaseType

create-entity
search-entity
view-entity
update-entity
delete-entity
manage-entity
...

UseCase

- ...
- name
- type: UseCaseType

P1

«use»

A Pattern Language for Use Cases Specification • 1:10

Fig. 5. Use cases specification with use case types.

4.2 KEEP USE CASE CONSISTENT WITH THE DOMAIN MODEL Pattern

Context: Use cases are used for identifying and specifying functional requirements. On the other
hand, a domain model provides the foundation for the understanding of the underlining (domain)
problem and for a clear understanding of the main concepts of the system under study. Consequently,
it is a good practice to define such domain model to better support the system requirements
specification, for example, in order that the same concepts and terms are referred consistently
throughout the specification of multiple use cases.
Problem: A use case encapsulates both structural and behavioral elements. The structure of a use
cases is not separated from its behavior; they are intertwined (overlapped) in use case actions, use
case pre-conditions and post-conditions. Use case actions describe the use case behavior, and at the
same time they hide its structure because the structure encapsulated in the use case is a part of the
domain model. The problem is how to properly ensure this consistency bearing in mind that there are
many use cases specified with different level of detail, throughout a requirements specification.

Fig.6. KEEP USE CASE CONSISTENT WITH THE DOMAIN MODEL pattern: conceptual solution.

Solution: As suggested in Figure 6, to ensure the consistency between the use cases and the domain
model, each part of the use case must be related with the entities defined at that domain model. Each
use case should be related to just one primary domain entity, meaning that its behavior is directly
related to that domain entity (in the example of the Figure 7 that domain entity is Invoice and Invoice-
Line). That means that all entities that are referenced by any use case action should be related with
that entity (Customer and Invoice-Line entities in the Billing system example). Everything that is
specified in use cases should follow some rules. For example, an input rule must define which data
information the user needs to enter when he wants to create a new invoice. This rule should be
specified in the context of the domain model.

Create/Update Invoice

Export Invoices

Employee

Print invoice

Create/Update Invoice
line

Manage Invoices

{type = entity-create}

{type = entity-report}

{type = entity-export}{type = entity-manage}

{type = entity-create}

<<include>>

<<extend>>

<<extend>>

<<extend>>

UseCase
- name
- type: UseCaseType

DomainEntity

P2

*

refers a > +primary entity

0..1

A Pattern Language for Use Cases Specification • 1:11

Example-A: Figure 7 shows a use case model where each use case is categorized by a respective type
and is assigned to a primary domain entity.

Fig. 7. Use cases specification with use case types and primary domain entities assigned.

Example-B: Figure 8 shows a textual specification of the use case "Create new invoice" and its
relationship with the (partial) domain model based on the SillabReq language. Each input rule is
bound to a domain entity and also specifies the type of domain object. For example, the input rule
"Invoice basic detail" is bound to the Invoice domain entity. Each input property should be bound to a
domain entity attribute. This information has an impact on the system operation that the system
should provide so must be somewhere specified.

Fig 8 "Create new invoice" use case (partial) specification.

Create/Update Invoice

Export Invoices

Employee

Print invoice

Create/Update Invoice
line

Manage Invoices

{type = entity-create}

{type = entity-report}

{type = entity-export}{type = entity-manage}

{type = entity-create}

invoice

invoice_line

<<include>>

<<extend>>

<<extend>>

<<extend>>

A Pattern Language for Use Cases Specification • 1:12

Consequence: As a result of the application of this pattern the consistency between use cases and
the involved domain model is kept. In addition, both models are defined in parallel resulting in more
consistent and complete models. Finally, this pattern also implies that the resulting use cases become
defined rigorously and can be used in the context of MDD approaches allowing, for example, model-to-
model or model-to-text transformations.
Related Patterns: DEFINE USE CASE TYPES.
Known Uses: SilabMDD approach follows directly this pattern. XIS and XIS-Mobile languages apply
this pattern by introducing the concept of “business entities” which are higher-level entities that
aggregate one or more domain entities, with just one entity performing as the “master” and other
entities with “detail” ou “reference” roles.

4.3 DEFINE USE CASE WITH DIFFERENT SCENARIO AND INTERACTION BLOCK TYPES Pattern

Context: User-system interactions need to be clear enough to be readable and understandable by all
stakeholders. On one hand, they should be readable by non-technical stakeholders that can just read
and verify them but, on the other hand, they should include enough details for developers to
implement the required system operations, for testers to generate or make automated tests, and for
user-interface designers to design or generate user-interface prototypes.

Fig. 9. DEFINE USE CASE WITH DIFFERENT SCENARIO AND INTERACTION BLOCK TYPES pattern: conceptual solution.

«enumeration»
InteractionBlockType

persistent
retrieval
select
action

«enumeration»
ScenarioType

main
alternative
exception

«enumeration»
UseCaseType

create-entity
search-entity
view-entity
update-entity
delete-entity
manage-entity
...

InteractionBlock

- type: InteractionBlockType

Scenario

- type: ScenarioType

UseCase

- name
- type: UseCaseType

P3

ActorInputBlock SystemOperationBlock

*

11..*

*

A Pattern Language for Use Cases Specification • 1:13

Problem: User-system interactions are usually done through graphical user-interfaces. Therefore,
graphical user-interfaces are used by the actor to send request to system to execute a system's
operation, as well as, for the system to present results from the execution of system operation. How
can we describe this interaction, so that we can separate information related to the user interface
from information that is just important to the system's operation, but also to ensure the consistency
between them?
Solution: As suggested in Figure 9, the solution is to specify the interactions between the actors and
the system using an interaction block. In that way, a use case scenario should include one or more
interaction blocks. In addition, an interaction block is composed of several actor input blocks and one
system operation block which is associated with a particular system response block.
An actor input block includes one or more ActorPrepareData actions. Each ActorPrepareData action
should be bound to particular input rule that describe information that user enters during interaction.
A system operation block includes one ActorCallsSystem action. Each system operation block is
associated with a system response block which specifies the result of system operation execution.
After the execution of the system operation the system returns some results to the actors. In case that
the actor sends request to the system to execute:
(1) System operation which type is C, D, or U, system response is appropriate use case which type is

view or update (see DEFINE USE CASE TYPES). For example: In use case "Create new invoice" if use
send request to system to execute system operation "create invoice", the system response is use
case "Update invoice" (update last saved invoice) or response can be use case "Manage invoices"
(manage all invoices)

(2) System operation which type is R, system response is a respective "Retrieval" interaction block
The following types of interaction blocks are defined:
(1) Persistent interaction block. This block describes a user-system interaction in which user send

request to system to create, delete or update a domain object. Therefore, this interaction block
contains zero or more ActorPrepareData actions and one ActorCallsSystem action.

(2) Retrieval interaction block. This block describes user-system interaction when user requires
from system to retrieve (find) some domain object or objects (for example search customer). The
extension of Retrieval interaction block is Select interaction block.

(3) Select interaction block. This block presents extension of Retrieval interaction block used to
describe the interaction between user and system when user wants, after searching for a domain
object, to select one or more domain entities and put them available in another use case (for
example in use case "Create new invoice" user need to select customer for invoice, therefore, actor
start some select interaction flow to find customer, and put him on the invoice (select)). This
interaction block can be used in conjunction with Action interaction block. After selection of some
domain object or object actor can request to system to execute some operation (for example, when
user select customer, actor can request from system to show details with existing invoices).

(4) Action interaction block. This block is used to describe all possible system operation that actor
can request from system on some domain entity object. This block can be used in all types of use
cases. This block can be used in description as alternative action block for System operation block.

Table 1 presents the constraints between the types of interaction blocks and the types of use cases. Of
course this table can be extended with other types of use cases that may be considered.

A Pattern Language for Use Cases Specification • 1:14

Table 1. Interaction block types
INTERACTION BLOCK TYPES
PERSISTENT RETRIEVAL SELECT ACTION / SELECT WITH ACTION

U
SE

 C
AS

E
TY

PE
S

UC: Search + +
UC: Create + + +
UC: View + +
UC: Update + + + +
UC: Delete + +

Example: Figure 10 presents the specification of the use case "Create new invoice" according to the
appropriate interaction blocks. This use case contains one interaction block (type Persistent), with two
blocks Actor input block and one System operation block. We have two Actor input block because they
are related to different domain objects. The first one is bound to Invoice object, while the second one is
bound to Invoice item object (see KEEP USE CASE CONSISTENT WITH THE DOMAIN MODEL).

Fig.10. "Create new invoice" use case (partial) specification.

Consequence: As a result of the application of this pattern we clearly define system required
behavior as a set of system operation that system should provide. Specification of use case at this level
also provide ability to constantly check consistency between use case and domain model (see KEEP
USE CASE CONSISTENT WITH THE DOMAIN MODEL), as well as a good basis for specifying the details of
user interfaces in a platform-independent way.
Related Patterns: DEFINE USE CASE TYPES, KEEP USE CASE CONSISTENT WITH THE DOMAIN MODEL.
Known Uses: SilabMDD approach follows directly this pattern.

A Pattern Language for Use Cases Specification • 1:15

4.4 DEFINE USE CASE WITH DIFFERENT ACTION TYPES Pattern
Context: The integration of use cases in a MDD approach requires rigorous specifications. This
means that use case specification should be considered as a model with precise syntax and semantic.
On the other hand, use cases as a technique for user requirements specification is popular because
they are very useful and readably. Despite the fact that use cases describe user-system interactions,
other approaches such as task modeling are used independently or in conjunction with use cases for
describing these interactions.
Problem: Different types of actions exist for describing use case scenarios. The problem is that the
semantics of these actions is not always clearly defined resulting in a vague level of use case
specification. The specification of these actions can range from very informal textual description to
very formal, from description of user intention to description of user task and details of user interface.
Surely, this depends on the analysts experience and skills as well as on their goals.
Solution: As suggested in Figure 11, use case specification should consider a predefined set of use
case action types. Define that set of types to better specify the syntax and the semantics of each use
case action. These actions may be classified in two categories: the actions performed by the actor
(ActorAction), and the actions performed by system (SystemAction) [37].

Fig. 11. DEFINE USE CASE WITH DIFFERENT ACTION TYPES pattern: conceptual solution.

These categories may be further subdivided into subcategories. For example, in the category of actions
performed by the user, there are the following subcategories: (1.1) actor prepares data for system
operation (ActorPreparesData) and (1.2) actor calls system to execute system operation
(ActorCallsSystem).

«enumeration»
InteractionBlockType

persistent
retrieval
select
action

«enumeration»
ScenarioType

main
alternative
exception

«enumeration»
UseCaseType

create-entity
search-entity
view-entity
update-entity
delete-entity
manage-entity
...

InteractionBlock

- type: InteractionBlockType

Scenario

- type: ScenarioType

UseCase

- name
- type: UseCaseType

UseCaseAction

- type: ActionType

«enumeration»
ActionType

ActorCallsSystem
ActorPreparesData
SystemExecutes
SystemReturnsResult

P4

*

*

*

A Pattern Language for Use Cases Specification • 1:16

On the other hand, in the category of actions performed by the system, there are the following
subcategories such as: (2.1) system executes system operation (SystemExecutes) and (2.2) system
returns to the user the result of the system operation execution (SystemReturnsResult).
Each ActorPreparesData action should be bound to a particular input rule that defines the data that
user enters. ActorCallsSystem action should be specified in a system operation block. Each
SystemExecutes action can be further categorized according the CRUD pattern, and for each of these
actions can also specify the respective SystemReturnsResult action.
As already mentioned above, each interaction block contains multiple actor input blocks and just one
system operation block. An actor input block may contain several ActorPreparesData actions. On the
other hand, a system operation block contains just one ActorCallsSystem action corresponding to the
intended system action. Table 2 summarizes the possible combinations between the different types of
use case interaction blocks and the use case actions.

Table 2. Summary of use case actions in the context of the interaction blocks.

Types of use
case
interaction
block

Interaction block

Actor input block
System operation block
Mandatory Optional

Persistent ActorPreparesData (zero or more) ActorCallsSystem, related to one
create, update or delete operation

More (retrieval
system operations)

Retrieval ActorPreparesData (one or more) ActorCallsSystem, related to one
retrieval system operations

More (retrieval
system operations)

Select ActorPreparesData (one or more) ActorCallsSystem, related to one
retrieval system operations

More (retrieval
system operations)

Action NO ActorCallsSystem, related to one
create, update or delete system
operation

More (create,
update or delete
system operation)

Example: Figure 10 presents the specification of the use case "Create new invoice" with the detail of
interaction blocks. This use case contains one interaction block (type Persistent), with two blocks Actor
input block and one System operation block. In this example, the persistent interaction block contains
two ActorPreparesData actions, and the system operation block that defines the create system action
(system operation: save_invoice).
Consequence: Use cases should be defined in a clear and precise manner. This requires additional
level of rigorous with predefined types and notation for clearly identify use case actions. Different
types of use case actions can be defined in the context of different use case interaction blocks, but not
all of them should exist in every interaction blocks. Hence, this pattern also allows defining the
correct relationships that should exist between interaction blocks and use case actions, depending on
their respective types.
Related Patterns: PROPERTY LIST, FILED LIST; DEFINE USE CASE TYPES, KEEP USE CASE CONSISTENT
WITH THE DOMAIN MODEL.
Known Uses: SilabMDD approach follows directly this pattern.

A Pattern Language for Use Cases Specification • 1:17

5. CONCLUSION

To produce requirements specifications of information systems with high quality, these specifications
need to be constantly checked for consistency, completeness and correctness. However, checking
requirements based on use cases, usually written in natural language, is a very difficult task. In spite
of that, writing use cases to be readable by users and other stakeholders can be improved with
concrete guidance and patterns such as the ones proposed in this paper.
In this paper we propose a cohesive set of patterns that makes that possible: Keeping the consistency
between use cases model and the domain model is more important when dealing with intensive
information systems. The first step for reusing use cases is to identify types (such as create, view,
update, delete, search) or to define abstract classes of use cases at a meta or high-level of abstraction.
Interactions between users and the system should be defined as user-system dialogs and structured as
scenarios and interaction blocks. Considering that these interactions are usually done through
graphical user interface, specification of user interfaces could also be defined in the scope of each use
cases specification as a complementary model.
Use case specifications using this pattern language are being supported by some approaches and tools
that are being developed and put publicly available to the community [28, 29, 31].

ACKNOWLEDGEMENTS

This work was partially supported by Portuguese funds through FCT – Fundação para a Ciência e a
Tecnologia, under the projects CMUP-EPB/TIC/0053/2013, UID/CEC/50021/2013 and DataStorm
Research Line of Excellency funding (EXCL/EEI-ESS/0257/2012), and by Ministry of Education,
Science and Technological Development of the Republic of Serbia, grant number 174031. Finally,
thanks to David West, our EuroPLoP’2015 shepherd, for his relevant criticism and suggestions that
helped to improve the paper.

REFERENCES

[1] CHRISTOPHER, A., ISHIKAWA, S., SILVERSTEIN, M., JACOBSON, M., FIKSDAHL-KING, I., ANGEL, S., A Pattern
Language. Oxford University Press, New York, 1977.

[2] GAMMA, E., HELM,R., JOHNSON, R., VLISSIDES,J., Design Patterns : Elements of Reusable Object Oriented Software,
Addison Wesley Professional, 1994.

[3] COPLIEN, J., Software Patterns, SIGS, 1996.
[4] BUSCHMANN F, MEUNIER R, ROHNERT H, SOMMERLAD P & STAL M., Pattern Oriented Software Architecture: A

System of Patterns, John Wiley & Sons, 1996.
[5] POHL, K., Requirements Engineering - Fundamentals, Principles, and Techniques. Springer, 2010.
[6] MAHENDRA, P., & GHAZARIAN, A., Patterns in the Requirements Engineering: A Survey and Analysis Study, 2014.
[7] WITHALL, S. Software Requirements Patterns. Microsoft Press, 2007.
[8] CHENG, B., ATLEE, J. Research Directions in Requirements Engineering, Future of Software Engineering (FOSE '07), pp.

285 – 303, 2007.
[9] TOVAL, J.A., NICOLÁS, J., MOROS, B., GARCIA. F., Requirements Reuse for Improving Information Systems Security: A

Practitioner's Approach, Requirements Engineering, 6(4), pp.205-219, 2002.
[10]WAHONO, R. S. , CHENG, J., Extensible Requirements Patterns of Web Application for Efficient Web Application

Development, International Symposium on Cyber Worlds (CW), 2002.
[11]ROBERTSON, S., Requirements Patterns Via Events/Use Cases. PLoP, 1996.
[12]DURÁN, A., BERNÁRDEZ, B., RUÍZ, A., TORO, M., A Requirements Elicitation Approach Based in Templates and

Patterns, 1999.
[13]MOROS, B., VICENTE, C., TOVAL, A., Metamodeling Variability to Enable Requirements Reuse, EMMSAD, 2008.
[14]J. YANG, L. LIU, Modeling Requirements Patterns with a Goal and PF Integrated Analysis Approach, COMPSAC, 2008.

A Pattern Language for Use Cases Specification • 1:18

[15]FRANCH,X., PALOMARES,C., QUER,C., RENAULT,S., LAZZER, F., A Metamodel for Software Requirement Patterns,
REFSQ 2010: 85-90, 2010.

[16]ADOLPH, S., BRAMBLE, P., COCKBURN, A., POLS, A., Patterns for Effective Use Cases. Addison Wesley, 2002.
[17]OVERGAARD, G., PALMKVIST, K., Use Cases: Patterns and Blueprints. Addison Wesley, 2005.
[18]LANGLANDS, M., Inside The Oval: Use-Case Content Patterns, Technical report, Planet Project, 2010. Accessed on 2015.

http://planetproject.wikidot.com/use-case-content-patterns
[19]CHUNG, L., SUPAKKUL, S. 2006.“Capturing and reusing functional and non-functional requirements knowledge: A goal-

object pattern approach”, IEEE International Conference on Information Reuse and Integration (IRI).
[20]ISSA, A. A. , AL-ALI, A. 2010“Use Case Patterns Driven Requirements Engineering”, International Conference on

Computer Research and Development (ICCRD)
[21]CHUNG, L., PAECH,B., ZHAO,L., LIU, L., SUPAKKUL.S. 2012., RePa Requirements Pattern Template, International

Workshop on Requirements Patterns (RePa‘12)
[22] STAHL, T., VOLTER, M., Model-Driven Software Development, Wiley, 2005.
[23] SELIC, B., Personal reflections on automation, programming culture, and model-based software engineering. Automated

Software Engineering, 15(3-4): 379-391, 2008.
[24] SILVA, A.R., Model-Driven Engineering: A Survey Supported by a Unified Conceptual Model, in Computer Languages,

Systems & Structures, Elsevier (to be published), 2015.
[25]SILVA, A.R., VIDEIRA, C., SARAIVA, J., FERREIRA, D., SILVA, R., The ProjectIT-Studio, an integrated environment for

the development of information systems, In Proc. of the 2nd Int. Conference of Innovative Views of .NET Technologies
(IVNET’06), SBC and Microsoft, 2006.

[26]SILVA, A. R., SARAIVA, J., FERREIRA, D., SILVA, R., VIDEIRA, C., Integration of RE and MDE Paradigms: The
ProjectIT Approach and Tools, IET Software, IET, 2007.

[27]FERREIRA, D., SILVA, A.R., A Controlled Natural Language Approach for Integrating Requirements and Model-Driven
Engineering, ICSEA, 2009.

[28]SILVA, A.R., SARAIVA, J., SILVA, R., MARTINS, C., XIS – UML Profile for eXtreme Modeling Interactive Systems, in
Proceedings of MOMPES'2007, IEEE Computer Society, 2007.

[29]RIBEIRO, A., SILVA, A.R., XIS-Mobile: A DSL for Mobile Applications, Proceedings of the 29th Annual ACM Symposium
on Applied Computing (SAC), 2014.

[30]RIBEIRO, A., SILVA, A.R., Evaluation of XIS-Mobile, a Domain Specific Language for Mobile Application Development,
Journal of Software Engineering and Applications, 7(11), pp. 906-919, Oct. 2014.

[31]SAVIĆ, D., VLAJIĆ, S., LAZAREVIĆ, S., ANTOVIĆ, I., STANOJEVIĆ, V., MILIĆ, M., SILVA, A. R., SilabMDD: A Use
Case Model Driven Approach, ICIST 2015 5th International Conference on Information Society and Technology, 2015.

[32]KOSTMOD4.0 http://rapporter.ffi.no/rapporter/2009/01002.pdf, accessed in January, 2013
[33]SAVIĆ, D., SILVA, A. R., VLAJIĆ, S., LAZAREVIĆ, S., ANTOVIĆ, I., STANOJEVIĆ, V., MILIĆ, M., Use Case Specification

at Different Abstraction Level, Proceedings of QUATIC’2012 Conference, IEEE Computer Society, 2012.
[34]FERREIRA, D., SILVA, A.R., RSLingo: An information extraction approach toward formal requirements specifications,

Proceedings of MoDRE’2012, IEEE Computer Society, 2012.
[35]FERREIRA, D., SILVA, A.R., RSL-PL: A Linguistic Pattern Language for Documenting Software Requirements, in

Proceedings of RePa’13, IEEE Computer Society, 2013.
[36]FERREIRA, D., SILVA, A.R., RSL-IL: An Interlingua for Formally Documenting Requirements, in Proceedings of MoDRE,

in the 21st IEEE International Requirements Engineering Conference (RE'2013), IEEE Computer Society, 2013.
[37]JACOBSON I. ET AL. Object-Oriented Software Engineering: A Use-Case Driven Approach, Addison-Wesley1992.
[38]NAKATANI, T., URAI, T., OHMURA, S., TAMAI, T., A requirements description meta-model for use cases, Eighth Asia-

Pacific Software Engineering Conf. (APSEC’01), 2001.
[39]VERELST, J., SILVA, A.R., MANNAERT, H., FERREIRA, D., HUYSMANS, Identifying Combinatorial Effects in

Requirements Engineering. In Proceedings of Third Enterprise Engineering Working Conference (EEWC 2013), Advances in
Enterprise Engineering, LNBIP, May 2013, Springer.

[40]SILVA, A.R., VERELST, J., MANNAERT, H., FERREIRA, D., HUYSMANS, P., Towards a System Requirements
Specification Template that Minimizes Combinatorial Effects, Proceedings of QUATIC’2014 Conference, IEEE Computer
Society, 2014.

[41]CARAMUJO, J., SILVA, A.R., Analyzing Privacy Policies based on a Privacy-Aware Profile: the Facebook and LinkedIn
case studies, Proceedings of IEEE CBI'2015, IEEE, 2015.

[42]THE STANDISH GROUP, Chaos Summary 2009 Report, The 10 Laws of Caos, 2009.
[43]Eveleens, L., Verhoef, C., The Rise and Fall of the Chaos Report Figures, IEEE Software, Jan/Feb, 2010.
[44]CRUZ, A.M., A Pattern Language for Use Case Modeling, Proceedings of MODELSWARD 2014, INSTICC Press, 2014.

